首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
青藏高原冻土带天然气水合物的形成条件与分布预测   总被引:37,自引:7,他引:37       下载免费PDF全文
冻土带是天然气水合物发育的两个重要地质环境之一.青藏高原平均海拔在4000m以上,多年冻土面积约1.4×106km2.本文根据青藏高原冻土层厚度和地温梯度特征,运用天然气水合物的热力学稳定域预测方法,确定中低纬度高海拔区冻土带天然气水合物的产出特征.青藏高原多年冻土带热成因天然气水合物形成的热力学相平衡反映,水合物顶界埋深约27~560m,底界埋深约77~2070m.初步计算表明,青藏高原冻土带水合物天然气资源约1.2×1011~2.4×1014m3.在冻土层越厚、冻土层及冻土层之下沉积层的地温梯度越小的地区,最有利于天然气水合物的发育.气温的季节性变化对天然气水合物影响不大.在全球气温快速上升的背景下,青藏高原天然气水合物将处于失稳状态,天然气水合物顶界下降、底界上升,与冻土带的退化相似,分布区逐渐缩小,最终将完全消失.  相似文献   

2.
Permafrost along the Qinghai-Tibet Railroad produces the great change under the influence of climate change, such as the decreasing of permafrost table, the rising of permafrost temperatures, etc. Climate effect on permafrost is the long-term process. Engineering action makes rapidly permafrost the large extent change. On the basis of analyzing the permafrost change under the climate change and engineering action, the thermal regime and spatial distribution of permafrost are predicted for air temperature rising 1℃ and 2℃ after 50 years in this paper. The results show that climate change results in the larger change for the thermal regime and spatial distribution of permafrost. Permafrost change will produce the great effect on the Qinghai-Tibet Railroad engineering, not only resulting in the decreasing of permafrost table beneath the roadbed, but also resulting in thawing settlement due to the thawing of ground ice near permafrost table. The idea of cooling roadbed and active protecting permafrost for the Qinghai-Tibet Railroad engineering could adjust and control the permafrost thermal state, some better methods are provided to ensure the engineering stability in the areas of warm permafrost and high ice content.  相似文献   

3.
Climate warming must lead the mainly air temperature controlled permafrost to degrade.Based on the numerical simulation,the process of permafrost degradation can be divided into five stages,i.e.,starting stage,temperature rising stage,zero geothermal gradient stage,talic layers stage,and disappearing stage,according to the shape of ground temperature profile.Permafrost on the Qinghai-Tibet Plateau (QTP) is generally considered a relic from late Pleistocene,and has been degenerating as a whole during Holocen...  相似文献   

4.
Zeyong Gao  Fujun Niu  Zhanju Lin 《水文研究》2020,34(26):5659-5673
Thermokarst lakes play a key role in the hydrological and biogeochemical cycles of permafrost regions. Current knowledge regarding the changes caused by permafrost degradation to the hydrochemistry of lakes in the Qinghai-Tibet Plateau (QTP) is limited. To address this gap, a systematic investigation of thermokarst lake water, suprapermafrost water, ground ice, and precipitation was conducted in the hinterland of the QTP. The thermokarst lake water in the QTP was identified to be of the Na-HCO3-Cl type. The mean concentrations of HCO3 and Na+ were 281.8 mg L−1 (146.0–546.2 mg L−1) and 73.3 mg L−1 (9.2–345.8 mg L−1), respectively. The concentrations of Li+, NH4+, K+, F, NO2, and NO3 were relatively low. Freeze-out fractionation concentrated the dissolved solids within the lake water during winter, which was deeply deepened on lake depth and lake ice thickness. Owing to solute enrichment, the ground ice was characterized by high salinity. Conversely, repeated replenishment via precipitation led to lower solute concentrations in the ground ice near the permafrost table compared to that within the permafrost. Although lower solute concentration existed in precipitation, the soil leaching and saline ground ice melting processes enhanced the solute load in suprapermafrost water, which is considered an important water and solute resource in thermokarst lakes. The influencing mechanism of permafrost degradation on thermokarst lake hydrochemistry is presumably linked to: (1) the liberation of soluble materials sequestered in ground ice; (2) the increase of solutes in suprapermafrost water and soil pore water; and (3) the changes in lake morphometry. These results have major implications on the understanding of the effects of ground ice melting on ecosystem functions, biogeochemical processes, and energy balance in a rapidly changing climate.  相似文献   

5.
近40年青藏高原湖泊面积变化遥感分析   总被引:6,自引:7,他引:6  
董斯扬  薛娴  尤全刚  彭飞 《湖泊科学》2014,26(4):535-544
以MSS、TM和ETM遥感影像作为主要信息源,综合利用RS、GIS技术,提取青藏高原1970s、1990s、2000s及2010s 4个时段的湖泊面积信息,分别从区域位置、面积规模、海拔高度3方面分析其近40年来的变化趋势及变化特征,同时结合1972-2011年间青藏高原气候变化情况,初步探讨了影响青藏高原湖泊面积变化的主要原因.研究结果表明:(1)青藏高原面积大于10 km2的湖泊有417个,这些湖泊大多是面积为10~100 km2的小型湖泊,空间上集中分布在高原西部地区,海拔上集中在4500~5000 m范围内;(2)近40年青藏高原湖泊面积的变化趋势及差异性特征在整体上表现为湖泊呈加速扩张的趋势,其中2000s-2010s时段是湖泊扩张最显著的时期;在区域位置上,北部地区的湖泊变化最为剧烈;在面积规模上,小型湖泊扩张最为显著;在海拔高度上,低海拔地区湖泊扩张剧烈;(3)近40年青藏高原气候暖湿化程度明显,气候变化对湖泊面积变化影响显著;在气象要素中,降水量的变化是青藏高原湖泊面积变化的主要驱动因子.  相似文献   

6.
The alpine meadow is widely distributed on the Tibetan Plateau with an area of about 1.2×106kn2. Damxung County, located in the hinterland of the Tibetan Plateau, is the place covered with this typical vegetation. An open-path eddy covariance system was set up in Damxung rangeland station to measure the carbon flux of alpine meadow from July to October,2003. The continuous carbon flux data were used to analyze the relationship between net ecosystem carbon dioxide exchange (NEE) and photosynthetically active radiation (PAR), as well as the seasonal patterns of apparent quantum yield (α) and maximum ecosystem assimilation (Pmax).Results showed that the daytime NEE fitted fairly well with the PAR in a rectangular hyperbola function, with α declining in the order of peak growth period (0.0244 μmolCO2 · μmol-1pAR) >early growth period > seed maturing period > withering period (0.0098 μmolCO2 · μmol-1pAR).The Pmax did not change greatly during the first three periods, with an average of 0.433mgCO2· m-2· s-1, i.e. 9.829 μmolCO2· m-2· s-1. However, during the withering period, Pmax was only 0.35 mgCO2 · m-2 · s-1, i.e. 7.945 μmolCO2 · m-2 · s-1. Compared with other grassland ecosystems, the α of the Tibetan Plateau alpine meadow ecosystem was much lower.  相似文献   

7.
The Tibetan Plateau, the Roof of the World, is the highest plateau with a mean elevation of 4000 m. It is characterized by high levels of solar radiation, low air temperature and low air pressure compared to other regions around the world. The alpine grassland, a typical ecosystem in the Tibetan Plateau, is distributed across regions over the elevation of 4500 m. Few studies for carbon flux in alpine grassland on the Tibetan Plateau were conducted due to rigorous natural conditions. A study of soil respiration under alpine grassland ecosystem on the Tibetan Plateau from October 1999 to October 2001 was conducted at Pangkog County, Tibetan Plateau (31.23°N, 90.01°E, elevation 4800 m). The measurements were taken using a static closed chamber technique, usually every two weeks during the summer and at other times at monthly intervals. The obvious diurnal variation of CO2 emissions from soil with higher emission during daytime and lower emission during nighttime was discovered. Diurnal CO2 flux fluctuated from minimum at 05:00 to maximum at 14:00 in local time. Seasonal CO2 fluxes increased in summer and decreased in winter, representing a great variation of seasonal soil respiration. The mean soil CO2 fluxes in the alpine grassland ecosystem were 21.39 mgCO2 · m-2 · h-1, with an average annual amount of soil respiration of 187.46 gCO2 · m-2 · a-1. Net ecosystem productivity is also estimated, which indicated that the alpine grassland ecosystem is a carbon sink.  相似文献   

8.
The Qinghai-Tibet Plateau(QTP)has the highestand largest permafrost coverage in the low-middlelatitudes all over the world.With the progress ofChina’s Western Development,human activities areincreasing significantly on the QTP.For instance,theQinghai-Tibet Railway project started in June2001iscurrently under construction,but permafrost problemwill be one of the critical factors for the engineeringconstruction.Frost heave and permafrost settlementmay destroy engineering construction[1,2]…  相似文献   

9.
10.
SBAS-InSAR技术监测青藏高原季节性冻土形变   总被引:21,自引:0,他引:21       下载免费PDF全文
冻土的冻结和融化的反复交替会造成地质环境与结构的破坏,从而导致房屋和道路等地面工程建筑物的地基破裂或者塌陷,还会引起山体滑坡、洪水暴发以及冰川移动等.因此,监测冻土形变对确保冻土区工程建筑的稳定性和安全性,同时保证冻土区社会经济可持续发展具有重要的意义.目前,在冻土监测方面并没有能大面积监测冻土形变时间演化情况的有效方法,本文提出将InSAR技术中的小基线集方法(SBAS-InSAR)应用于监测冻土来获取其形变时间序列中.考虑到冻土形变呈现明显的季节性特征,本文提出利用周期形变模型来代替传统SBAS方法中的线性形变模型,从而更好地分离出高程残差和大气误差.利用ENVISAT卫星获取的21景ASAR影像图作为实验数据,采用改进的SBAS技术成功获取了青藏高原从羊八井站至当雄站铁路段冻土区的地表形变时间序列图,揭示了该冻土区从2007年到2010年的季节性形变演化情况.通过与研究地区温度变化的联合分析,发现所得到的地表形变结果与冻土的物理变化规律非常吻合,证明了SBAS-InSAR技术在冻土形变监测中具有良好的发展应用前景.  相似文献   

11.
Rock glaciers, a feature associated with at least discontinuous permafrost, provide important topoclimatic information. Active and inactive rock glaciers can be used to model current permafrost distribution. Relict rock glacier locations provide paleoclimatic information to infer past conditions. Future warmer climates could cause permafrost zones to shrink and initiate slope instability hazards such as debris flows or rockslides, thus modeling change remains imperative. This research examines potential past and future permafrost distribution in the Colorado Front Range by calibrating an existing permafrost model using a standard adiabatic rate for mountains (0·5 °C per 100 m) for a 4 °C range of cooler and warmer temperatures. According to the model, permafrost currently covers about 12 per cent (326·1 km2) of the entire study area (2721·5 km2). In a 4 °C cooler climate 73·7 per cent (2004·4 km2) of the study area could be covered by permafrost, whereas in a 4°C warmer climate almost no permafrost would be found. Permafrost would be reduced severely by 93·9 per cent (a loss of 306·2 km2) in a 2·0 °C warmer climate; however, permafrost will likely respond slowly to change. Relict rock glacier distribution indicates that mean annual air temperature (MAAT) was once at least some 3·0 to 4·0 °C cooler during the Pleistocene, with permafrost extending some 600–700 m lower than today. The model is effective at identifying temperature sensitive areas for future monitoring; however, other feedback mechanisms such as precipitation are neglected. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Seasonal changes over 2 years (2004–2006) in soil moisture content (θv) of frozen alpine frost meadow soils of the Qinghai‐Tibet plateau permafrost region under three different levels of vegetation cover were investigated. Vegetation cover and air temperature changes had significant effects (synergistic effect) on θv and its distribution in the soil profile. During periods of soil freezing or thawing, the less the vegetation cover, the quicker the temperature drop or rise of soil water, and the shorter the duration of the soil water freeze–thaw response in the active soil layer. Under 30% and 65% vegetation cover the amplitude of variation in θv during the freezing period was 20–26% greater than that under 93% cover, while during the thawing period, it was 1·5‐ to 40·5‐fold greater. The freezing temperature of the surface soil layer, fTs, was 1·6 °C lower under 30% vegetation cover than under 93% vegetation cover. Changes in vegetation cover of the alpine frost meadow affected θv and its distribution, as well as the relationship between θv and soil temperature (Ts). As vegetation cover decreased, soil water circulation in the active layer increased, and the response to temperature of the water distribution across the soil profile was heightened. The quantity of transitional soil phase water at different depths significantly increased as vegetation cover decreased. The influence of vegetation cover and soil temperature distribution led to a relatively dry soil layer in the middle of the profile (0·70–0·80 m) under high vegetation cover. Alpine meadow θv and its pattern of distribution in the permafrost region were the result of the synergistic effect of air temperature and vegetation cover. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Terrestrial ecosystems are both a carbon source and sink, therefore play an important role in the global carbon cycle that act as a link of interactions between human activities and climate changes[1,2]. Climate change impacts ecosystem carbon cycle through af- fecting biological processes, e.g. plant photosynthesis, respiration, and soil carbon decomposition. Land-use change directly modifies the distribution and structure of terrestrial ecosystems and hence the carbon storage and fluxes. Usi…  相似文献   

14.
高山湖泊远离人类活动直接影响,通常具有面积小、寡营养、食物网单一等特点,对气候变化和营养输入具有较高的敏感性。我国青藏高原东南缘地区氮沉降通量较高、增温幅度显著,已有研究显示该地区可能受湖泊类型、流域特征等影响存在差异性的湖泊响应模式。本研究选择该区域位于树线以下、具有不同水深的3个小型湖泊(盖公错纳、沃迪错、碧沽天池)开展沉积物调查和对比研究,通过钻孔样品测年、理化特征和藻类(硅藻群落、藻类色素)等多指标分析,结合区域气候定量重建和氮沉降等数据收集,评价了过去300年来藻类演替模式的异同特征及湖泊水深的调节作用。结果显示,3个湖泊中硅藻的优势物种与群落组成差异明显。深水型湖泊盖公错纳(最大水深39.4 m)的硅藻群落以浮游种为主(占比达82%),优势种为眼斑小环藻(Pantocsekiolla ocellata)、科曼小环藻(Pantocsekiella comensis);深水型湖泊沃迪错(最大水深20.7 m)的硅藻群落中浮游种和底栖种约各占50%,优势种为眼斑小环藻(Pantocsekiella ocellata)、连结脆杆藻(Saurosira construens);浅水湖...  相似文献   

15.
Changes in the hydrological processes in alpine soil constitute one of the several key problems encountered with studying watershed hydrology and ecosystem stability against the background of global warming. A typically developing thermokarst lake was chosen as a subject for a study using model simulation based on observations of soil physical properties, infiltration processes, and soil moisture. The results showed that the selected thermokarst lake imposed certain changes on the soil infiltration processes and, with the degree of impact intensifying, the initial infiltration rate decreased. The greatest reduction was achieved in the area of moderate impact. However, the stable infiltration rate and cumulative infiltration gradually increased in the surface layer at a depth of 10 and 20 cm, both decreasing initially and then increasing, which is correlated significantly with soil textures. Moreover, the cumulative infiltration changed in line with steady infiltration rate. Based on a comparative analysis, the Horton model helps better understand the effect on the soil infiltration processes of the cold alpine meadow close to the chosen thermokarst lake. In conclusion, the formation of the thermokarst lake reduced the water holding capacity of the alpine meadow soil and caused the hydraulic conductivity to increase, resulting in the reduction of runoff capacity in the area of the thermokarst lake.  相似文献   

16.
Precipitation plays an important role in permafrost hydrology; it can alter the hydrothermal condition of the active layer and even influence the permafrost aggradation or degradation. Moisture recycling from evaporation and transpiration can greatly contribute to local precipitation in some regions. This study selected four monitoring sites and used an isotope mixing model to investigate local moisture recycling in permafrost regions of the central Qinghai-Tibet Plateau (QTP). The results showed that the local water vapour flux in the summer and autumn were dominantly influenced by westerlies and the Indian monsoon. Moistures for precipitation in Wudaoliang (WDL) and Fenghuoshan (FHS) mainly came from the western QTP, eastern Tianshan Mountains, western Qilian Mountains, and the surrounding regions. In comparsion, more than half of precipitation at Tanggula (TGL) was mostly sourced from the Indian monsoon. Local moisture recycling ratios at the four sites ranged from 14% ± 3.8% to 31.6% ± 4.8%, and depended on the soil moisture and relative humidity. In particular, the higher soil moisture and relative humidity promoted local moisture recycling, but frozen ground might be a potential influencing factor as well. The moisture recycling ratios of the study area were consistent with the results from both the Qinghai Lake Basin and the Nam Co Basin, but differed from those of the northwestern QTP. This difference may indirectly confirm the great spatial variability in precipitation on the QTP. Moreover, the rising air temperature and ground temperature, increasing precipitation, higher soil moisture, higher vegetation cover, and expanding lakes in the study area may be conductive to enhancing future local moisture recycling by altering ground surface conditions and facilitating the land surface evaporation and plant transpiration.  相似文献   

17.
Climate variability and underlying surface changes are strongly associated with runoff alterations. The Yarlung Zangbo River Basin (YZRB) is a typical alpine region located in the southeast Qinghai–Tibet Plateau, where runoff is particularly sensitive and vulnerable to climate and environmental changes. Here, we conducted a quantitative assessment of the contributions of climate variability and underlying surface changes to runoff alterations from 1966 to 2015 in the upper, middle, and lower regions of the YZRB. The year 1997 was identified as the runoff breakpoint in all three sub-regions, which divided the runoff time series into the baseline period (1966–1997) and change period (1998–2015). An adjusted Budyko framework accounting for glacier runoff was developed to conduct a runoff alteration attribution analysis. The results indicated that the increase in runoff in the upper region was dominated by changes in the underlying surface and glacier runoff, whose contribution accounted for 59.61 and 49.18%, respectively. The runoff increase in the middle and lower regions was mainly attributed to the increase in precipitation, accounting for 39.36 and 129.21% of the total runoff alteration, respectively. Moreover, due to the little variation in vegetation and degradation of permafrost in the upper region, increases in runoff might be largely attributed to increases in subsurface runoff caused by the melting of permafrost. In the middle region, in addition to increased precipitation, vegetation degradation had positive effects on runoff increases. The lower region exhibited far higher water consumption rates due to its extensive and dense vegetation coverage accompanied by rising temperature, which resulted in a negative contribution (−58.74%) to runoff alteration. Our findings may therefore have important implications for water resource security and sustainable development in alpine regions.  相似文献   

18.
朱守彪  陈霞  杨绪海 《地震研究》2007,30(3):210-215
介绍了应力释放模型、耦合应力释放模型及其在时、空两个方面经过改进的模型。利用改进后的模型研究了青藏高原地区的地震活动,结果显示,在青藏高原地区改进后的应力释放模型仍然适用,并且改进后的耦合应力释放模型要优于简单的应力释放模型,其预测地震的效能和精度都要优于泊松模型。  相似文献   

19.
To assess carbon budget for shrub ecosystems on the Qinghai-Tibet Plateau, CO2flux was measured with an open-path eddy covariance system for an alpine shrub ecosystem during growing and non-growing seasons. CO2 flux dynamics was distinct between the two seasons. During the growing season from May to September, the ecosystem exhibited net CO2uptake from 08:00 to 19:00 (Beijing Standard Time), but net CO2 emission from 19:00 to 08:00.Maximum CO2 uptake appeared around 12:00 with values of 0.71, 1.19, 1.46 and 0.67 g CO2m-2 h-1 for June, July, August and September, respectively. Diurnal fluctuation of CO2 flux showed higher correlation with photosynthetic photon flux density than temperature. The maximum net CO2 influx occurred in August with a value of 247 g CO2 m-2. The total CO2 uptake by the ecosystem was up to 583 g CO2 m-2 for the growing season. During the non-growing season from January to April and from October to December, CO2 flux showed small fluctuation with the largest net CO2 efflux of 0.30 g CO2 m-2 h-1 in April. The diurnal CO2 flux was close to zero during most time of the day, but showed a small net CO2 efflux from 11:00 to 18:00. Diurnal CO2 flux, is significantly correlated to diurnal temperature in the non-growing season. The maximum monthly net CO2 efflux appeared in April, with a value of 105 g CO2 m-2. The total net CO2 efflux for the whole non-growing season was 356 g CO2 m-2.  相似文献   

20.
The accurate estimation of evapotranspiration (ET) is essential for assessing water availability and requirements of regional-scale terrestrial ecosystems, and for understanding the hydrological cycle in alpine ecosystems. In this study, two large-scale weighing lysimeters were employed to estimate the magnitude and dynamics of actual evapotranspiration in a humid alpine Kobresia meadow from January 2018 to December 2019 on the northeastern Qinghai-Tibetan Plateau (QTP). The results showed that daily ETa averaged 2.24 ± 0.10 mm day −1 throughout the study period, with values of 3.89 ± 0.14 and 0.81 ± 0.06 mm day−1 during the growing season and non-growing season, respectively. The cumulative ETa during the study period was 937.39 mm, exceeding precipitation (684.20 mm) received at the site during the same period by 37%, suggesting that almost all precipitation in the lysimeters was returned to the atmosphere by evapotranspiration. Furthermore, the cumulative ETa (805.04 mm) was almost equal to the maximum potential evapotranspiration estimated by the FAO-56 reference evapotranspiration (ET0) (801.94 mm) during the growing season, but the cumulative ETa (132.25 mm) was 113.72% less than the minimum equilibrium ETeq) (282.86 mm) during the non-growing season due to the limited surface moisture in frozen soil. The crop coefficient (Kc) also showed a distinct seasonal pattern, with a monthly average of 1.01 during the growing season. Structural equation model (SEM) and boosted regression tree (BRT) show that net radiation and air temperature were the most important factors affecting daily ETa during the whole study period and growing season, but that non-growing season ETa was dominated by soil water content and net radiation. The daily Kc was dominated by net radiation. Furthermore, both ETa and Kc were also affected by aboveground biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号