首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
针对沙捞越盆地盆地类型的不同观点,通过盆地区域构造背景、构造演化阶段、构造沉降曲线的分析以及构造地质事件的恢复,得到以下认识:①盆地的构造演化可划分为晚白垩世—晚始新世,拉让洋壳向婆罗洲基底俯冲,并在婆罗洲中部形成火山岛弧的俯冲增生期;渐新世—早中新世,拉让洋壳俯冲消减完毕,路科尼亚地块与婆罗洲碰撞,并俯冲于婆罗洲基底之下,形成周缘前陆盆地的前陆盆地期;中中新世至今,南中国海开启、婆罗洲碰撞抬升引起盆地稳定沉降的被动边缘期3个阶段。②盆地所选井的构造沉降曲线具有早期缓慢沉降、晚期快速沉降这一前陆盆地的典型特征。③盆地构造地质事件复原图表明,盆地晚期处于被动大陆边缘构造背景。由此,认为沙捞越盆地为复合型盆地,即早期为前陆盆地,晚期则转化为大陆边缘型盆地。  相似文献   

2.
The Afowo-1 well is situated west of Lagos on the onshore part of the Dahomey basin. Biostratigraphic data from this exploratory well have been used to determine the subsidence history of the western part of the Nigerian continental margin. The formation of the Dahomey basin is associated with rifting and break-up of the African and South American plates. Lithospheric cooling and contraction probably produced post break-up subsidence of the basin. This concept of a thermally controlled isostatic subsidence is supported by reconstructed subsidence curves. After the component of subsidence due to sediment loading has been removed, it is found that the tectonic subsidence yt varies directly as √t, where t is the time since subsidence began.The time/temperature/depth relations for sediments in this part of the Nigerian continental margin have been reconstructed from the subsidence and palaeotemperature data. The results clearly indicate that most post-Turonian sediments have hardly been subjected to temperatures higher than 75°C at any time. Insight into the level of maturation of the organic matter contained in the sediments has been provided by the extent of ‘cooking’ to which these sediments have been subjected. The hydrocarbon prospects of this part of the Nigerian continental margin are poor.  相似文献   

3.
南海北部陆缘记录了南海形成演化的历史,但是其新生代构造沉积演化特征在东段和西段的差异及其原因目前还不太清楚。本文分别在珠江口盆地和琼东南盆地的深水区选择了数口构造地理位置相似的井通过精细地层回剥分析,重建了两沉积盆地的沉积速率和沉降速率并结合前人研究成果进行了对比分析。研究结果发现,两沉积盆地在裂陷期的沉积和沉降特征基本相似,但是两者在裂后期的构造沉积演化特征差异明显。珠江口盆地深水区沉积和沉降速率都表现为幕式变化特征,其中沉积速率表现为“两快三慢”的特征而沉降速率表现为“两快一慢”的特征。琼东南盆地深水区的沉积速率表现为“地堑式”变化特征,但是沉降速率表现为“台阶式”上升的变化特征。琼东南盆地“台阶式”上升的沉降速率推测主要是受到海南地幔柱伴随红河断裂的右旋走滑而向西北漂移的影响,这也与南海西北部的岩浆活动以及周围盆地的沉降特征吻合。红河断裂在2.1 Ma BP的右旋走滑控制了琼东南盆地1.8 Ma BP以来的快速沉积和加速沉降分布。  相似文献   

4.
Two-dimensional flexural backstripping and thermal modelling (assuming uniform stretching and cooling) is applied to four interpreted, depth-converted seismic profiles across the Rockall, Faroe–Shetland and Vøring basins, along 1600 km of the Atlantic continental margin of NW Europe. The results reveal a significant discrepancy between the modelled palaeo-depths for the base of the Cenozoic succession and those proven by geological evidence at control points (subaerial conditions or depositional depth ranges in wells). The discrepancy is of Rm-scale, much larger than the possible range of parameter error determined by sensitivity tests (up to 0.5 km). Assuming a Cretaceous rift episode (100 Ma), the discrepancy is at least 1.7 km in the Rockall Basin, up to 2.1 km in the Faroe–Shetland Basin and at least 1 km in the Vøring Basin (which also contains evidence of kilometre-scale uplift of the inner margin). Assuming (unproven) a second rift in the early Cenozoic (60 Ma), the discrepancy remains of kilometre-scale in the Rockall and Faroe–Shetland basins. The restorations also provide evidence of uplift, both above compressive structures and across the modelled profiles as seaward rotations of palaeo-bathymetric records. The palaeo-bathymetric discrepancy corresponds to an anomaly in subsidence that is the cumulative product of all the tectonic episodes that have affected the NW European margin, and may incorporate both permanent effects of the last episode of lithospheric extension and transient responses to the interaction of the margin with mantle convective flow. Any explanation must accommodate both the large magnitude of anomalous subsidence along the margin and evidence of its episodic character.  相似文献   

5.
The Southeast Basin of France is the thickest onshore French sedimentary basin which contains locally as much as 10 km of Mesozoic-Cenozoic sediment. Basin development occurred in several stages between late Carboniferous and late Cretaceous times. Partial tectonic inversion took place during two compressive events, the so-called ‘Pyrenean’ and ‘Alpine’ phases of late Cretaceous-early Tertiary and late Tertiary ages respectively. They are separated by an intervening stretching event of Oligocene age, which further south resulted in the opening of the western Mediterranean oceanic basin. As a result of this complex tectonic history, structural traps were difficult to image on the seismic data shot during the first phase of exploration prior to 1980. Oil and gas natural seeps, and shows in several wells, indicate that some petroleum systems are, or have been active, at least in some places.The present erosional western margin of the basin is more or less superimposed on the initial Triassic-Jurassic margin. Margin subsidence and Tertiary inversion are discussed using regional sections on which the polyphase history of the entire basin is well shown. These sections are located on three major segments where the Mesozoic margin is either partly preserved (Ardèche), or has been partly inverted in late Tertiary times (Vercors-Chartreuse), or has been completely inverted in early Tertiary times (Corbières-eastern Pyrenees). 1-D ‘Genex’ basin modelling on the Ardèche segment, and 2-D ‘Thrustpack’ structural-maturity modelling in the Vercors-Chartreuse segment are used to further assess the remaining petroleum plays.  相似文献   

6.
南沙海区万安盆地构造演化与成因机制   总被引:2,自引:1,他引:1  
本文基于地震、钻井和区域地质资料,运用回剥法和平衡剖面技术定量研究了万安盆地的构造沉降和伸展程度,重建盆地的构造演化史并探讨其成因机制。模拟结果表明,万安盆地构造沉降曲线为多段式,其南北部构造沉降差异明显,且沉降中心逐渐向南发展的趋势。晚始新世-渐新世(37.8~23.03 Ma BP)盆地中、北部快速沉降,存在两个沉降中心;早中新世(23.03~16.0 Ma BP)盆地南部也发生快速沉降,整个盆地存在3个沉降中心;中中新世(约16.0~11.63 Ma BP)沉降作用减弱,盆地进入裂后热沉降期。万安盆地的伸展和形成演化呈现北早南晚的特征,与南海海底扩张密切相关,同时受控于万安断裂带交替地右旋-左旋走滑作用,是伸展和走滑双重作用的结果。盆地的构造演化过程可细分为4个阶段:初始裂谷期、主要裂谷期、走滑改造期和裂后加速沉降期。  相似文献   

7.
Subsidence analysis (backstripping) was carried out on a series of wells from the Gulf of Suez and northern Red Sea region of Egypt in order to examine the interplay between tectonic events, basin subsidence, sedimentation and sea level changes in a young, developing ocean basin and continental margin. Using constraints on chronostratigraphy and paleodepth from various sources combined with stratigraphic and structural information from industry wells and other geophysical sources it has been possible to compile the data necessary to perform geohistory analyses throughout the region.Major subsidence due to crustal thinning began ∼25 Ma with sedimentation initially occurring in isolated sub-basins. These earliest sediments record the transition from continental to marine depositional environments. Subsequently during early and middle Miocene times subsidence was rapid and uniform along and across the entire rift basin. Open marine sedimentation occurred across all structural regimes. The mid-Clysmic tectonic event (16.5 Ma) resulted in structural rearrangement of the rift basin and uplift of the rift shoulders. Rapid subsidence continued as global sea level fell, producing a series of prograding, siliciclastic fan-deltas at the rift margins. At ∼15.5 Ma, opening of the Suez rift was terminated, tectonic subsidence decreased dramatically in the southern rift and ceased entirely in the northern rift. Tensional plate motion probably was transferred from the Gulf of Suez to sinistral strike-slip movement on the Dead Sea transform at this time. The quiescence in subsidence combined with a lowered global sea level resulted in the deposition of a thick (up to 4 km) series of evaporites within the central trough of the rift from the middle to latest Miocene. The accumulation of such a thick sequence of sediments during a phase of decreased tectonic subsidence is interpreted as a ‘filling-in’ of the rift topography which developed during the earlier period of rapid subsidence and rift-shoulder uplift and continued compaction.A rapid global sea level rise concomitant with a subsequent pulse of increased tectonic activity in the latest Miocene—earliest Pliocene returned the rift to dominantly marine conditions.  相似文献   

8.
The Liwan Sag, with an area of 4 000 km~2, is one of the deepwater sags in the Zhujiang River(Pearl River) Mouth Basin, northern South China Sea. Inspired by the exploration success in oil and gas resources in the deepwater sags worldwide, we conducted the thermal modeling to investigate the tectono-thermal history of the Liwan Sag,which has been widely thought to be important to understand tectonic activities as well as hydrocarbon potential of a basin. Using the multi-stage finite stretching model, the tectonic subsidence history and the thermal history have been obtained for 12 artificial wells, which were constructed on basis of one seismic profile newly acquired in the study area. Two stages of rifting during the time periods of 49–33.9 Ma and 33.9–23 Ma can be recognized from the tectonic subsidence pattern, and there are two phases of heating processes corresponding to the rifting.The reconstructed average basal paleo-heat flow values at the end of the rifting events are ~70.5 and ~94.2 mW/m~2 respectively. Following the heating periods, the study area has undergone a persistent thermal attenuation phase since 23 Ma and the basal heat flow cooled down to ~71.8–82.5 mW/m~2 at present.  相似文献   

9.
琼东南盆地新生代构造研究现状及展望   总被引:1,自引:0,他引:1  
琼东南盆地属于南海北部陆缘拉张盆地,但是由于其不同的发育历史及红河断裂的影响,具有与东部陆缘盆地不同的构造特征。琼东南盆地和珠江口盆地在地壳结构、基底特征等方面存在差异,但是这种差异的原因还不清楚。新生代沉降速率发生多期变化,并存在裂后异常沉降、沉降延迟等现象,其形成机制尚需要进一步研究;平面上,构造具有迁移性,但是对不同地质时期的构造迁移方向仍存在不同的看法。盆地沉降中心和沉积中心经历了由裂陷期和裂后早期的较好重合到裂后晚期的逐步分离,直至完全分离的过程。盆地形成与地幔流的关系,以及红河断裂对盆地裂后沉降迁移的影响,也都是需要进一步确定的工作。鉴于以上各方面存在的问题,对琼东南盆地与南沙的共轭关系、盆地异常沉降、红河断裂及内部构造转换带对构造迁移的影响、以及琼东南盆地与珠江口盆地的比较等方面的研究是下一步工作的重点。  相似文献   

10.
The principal factors that control the extent of seas through geological time are vertical movements of the lithosphere and global changes in sea level. The relative height of the sea surface determines the facies and the thickness of sediments that can accumulate in a sedimentary basin. Backstripping studies show that the primary factors affecting the subsidence of rifted sedimentary basins are thermal contraction, following heating and thinning of the lithosphere at the time of rifting, and sedimentary loading. Factors such as compaction, palaeobathymetry, erosion and global sea level changes also contribute, but their combined affects are small compared to those of thermal contraction and sedimentary loading. Simple models have been constructed which combine the effects of sedimentary loading and thermal contraction with those of compaction, sub-aerial erosion and global changes in sea level. In the models it was assumed that the lithosphere was heated and thinned by stretching at the time of rifting, sedimentary loading occurs by flexure of a lithosphere that progressively increases its flexural rigidity with age following rifting and, that sediment compaction and bathymetry change across a basin but do not vary significantly with gwological time. Furthermore, different assumptions were made on the magnitude of curves of global sea level changes and the relationship between denudation rate and regional elevation. The models show that tectonics, in the form of thermal contraction of the lithosphere and flexure and slowly varying global changes in sea level, can explain a number of the stratigraphic features of the US Atlantic continental margin. In this Paper some of the implications of these results are examined for studies of (a) sea level changes through geological time; and (b) the maturation history of continental margin basins.  相似文献   

11.
The North Atlantic margins are archetypally passive, yet they have experienced post-rift vertical movements of up to kilometre scale. The Cenozoic history of such movements along the NW European margin, from Ireland to mid-Norway, is examined by integrating published analyses of uplift and subsidence with higher resolution tectono-stratigraphic indicators of relative movements (including results from the STRATAGEM project). Three episodes of epeirogenic movement are identified, in the early, mid- and late Cenozoic, distinct from at least one phase of compressive tectonism. Two forms of epeirogenic movement are recognised, referred to as tilting (coeval subsidence and uplift, rotations <1° over distances of 100s of Kilometres) and sagging (strongly differential subsidence, rotations up to 4° over distances <100 km). Each epeirogenic episode involved relatively rapid (<10 Ma) km-scale tectonic movements that drove major changes in patterns of sedimentation to find expression in regional unconformity-bounded stratigraphic units. Early Cenozoic tilting (late Paleocene to early Eocene, c. 60–50 Ma) caused the basinward progradation of shelf-slope wedges from elongate uplifts along the inner continental margin and from offshore highs. Mid-Cenozoic sagging (late Eocene to early Oligocene, c. 35–25 Ma) ended wedge progradation and caused the onset of contourite deposition in deep-water basins. Late Cenozoic tilting (early Pliocene to present, <4±0.5 Ma) again caused the basinward progradation of shelf-slope wedges, from uplifts along the inner margin (including broad dome-like features) and from offshore highs. The early, mid- and late Cenozoic epeirogenic episodes coincided with Atlantic plate reorganisations, but the observed km-scale tectonic movements are too large to be accounted for as flexural deflections due to intra-plate stress variations. Mantle–lithosphere interactions are implied, but the succession of epeirogenic episodes, of differing form, are difficult to reconcile with the various syn-to post-rift mechanisms of permanent and/or transient movements proposed in the hypothetical context of a plume beneath Iceland. The epeirogenic movements can be explained as dynamic topographic responses to changing forms of small-scale convective flow in the upper mantle: tilting as coeval upwelling and downwelling above an edge-driven convection cell, sagging as a loss of dynamic support above a former upwelling. The inferred Cenozoic succession of epeirogenic tilting, sagging and tilting is proposed to record the episodic evolution of upper mantle convection during ocean opening, a process that may also be the underlying cause of plate reorganisations. The postulated episodes of flow reorganisation in the NE Atlantic region have testable implications for epeirogenic movements along the adjacent oceanic spreading ridge and conjugate continental margin, as well as on other Atlantic-type ‘passive’ margins.  相似文献   

12.
The continental margin of Western Australia is a rifted or “Atlantic”-type margin, with a complex physiography. The margin comprises a shelf, an upper and lower continental slope, marginal plateaus, a continental rise, and rise or lower slope foothills. Notches or terraces on the shelf reflect pre-Holocene deposition of prograded sediment, whose seaward limit was determined by variations in relative sea level, wave energy, and sediment size and volume. The upper continental slope has four physiographic forms: convex, due to sediment outbuilding (progradation) over a subsiding marginal plateau; scarped, due to erosion of convex slopes; stepped, due to deposition at the base of a scarped slope; and smooth, due to progradation of an upper slope in the absence of a marginal plateau. Lying at the same level as the upper/lower slope boundary are two extensive marginal plateaus: Exmouth and Scott. They represent continental crust which subsided after continental rupture by sea-floor spreading. Differential subsidence, probably along faults, gave rise to the various physiographic features of the plateaus. The deep lower continental slope is broken into straight northeasterly-trending segments, that parallel the Upper Jurassic/Lower Cretaceous rift axis, and northwesterly-trending segments that parallel the transform direction. The trends of the slope foothills are subparallel to the rift direction. The four abyssal plains of the region (Perth, Cuvier, Gascoyne and Argo) indicate a long history of subsidence and sedimentation on Upper Jurassic/Lower Cretaceous oceanic crust.  相似文献   

13.
The Cenozoic evolution of the Barents Sea has been widely debated for its implications on hydrocarbon exploration. In this paper, we provide the first, for the area, apatite (U–Th)/He thermochronology data on Early-Middle Jurassic and Early Cretaceous sandstone reservoir samples obtained from three wells located on the western part of the Barents Shelf. A large range of grain ages have been detected, ranging from 1.58 to 50.65 Ma. These thermochronological data, initially integrated with vitrinite reflectance measurements to properly constrain the burial history evolution, have been modelled on the basis of estimated maximum temperature in order to evaluate the cooling path to present-day temperatures. Outputs from modelling indicate that: 1) the amount of net uplift and denudation is in the order of 1000 m, and 2) the last important phase of exhumation occurred during late Miocene-early Pliocene time, therefore challenging the prevailing idea of substantial uplift linked to the observed shelf-progradation along the margin as a result of the Plio-Pleistocene glaciations. The timing of the distinct exhumation event documented here may be, instead, attributed to different mechanisms. These may include basin inversion widespread on the NW European margin that is probably related to local changes in the North Atlantic spreading vector, while other mechanisms may include thermal and lithospheric-scale anomalies observed at the northwestern corner of the Barents-Svalbard Shelf.  相似文献   

14.
Using a mega-regional dataset that includes over 20,000 km of on- and offshore 2D seismic lines and 12 wells, we illustrate three different stages of fault formation and basin evolution in the Caribbean arc-South American continent collisional zone. Transpressional deformation associated with oblique collision of the Caribbean arc migrates diachronously over a distance of ∼1500 km from western Venezuela in Paleogene time (∼57 Ma) to a zone of active deformation in the eastern offshore Trinidad area. Each diachronous stage of pre-, syn-, and post-collisional basin formation is accompanied by distinct patterns of fault families. We use subsidence histories from wells to link patterns of long-term basinal subsidence to periods of activity of the fault families.

Stage one of arc-continent collision

Initial collision is characterized by overthrusting of the south- and southeastward-facing Caribbean arc and forearc terranes onto the northward-subducting Mesozoic passive margin of northern South America. Northward flexure of the South American craton produces a foreland basin between the thrust front and the downward-flexed continental crust that is initially filled by clastic sediments shed both from the colliding arc and cratonic areas to the south. As the collision extends eastward towards Trinidad, this same process continues with progressively younger foreland basins formed to the east. On the overthrusting Caribbean arc and forearc terranes, north-south rifting adjacent to the collision zone initiates and is controlled by forward momentum of southward-thrusting arc terranes combined with slab pull of the underlying and subducting, north-dipping South American slab. Uplift of fold-thrust belts arc-continent suture induces rerouting of large continental drainages parallel to the collisional zone and to the axis of the foreland basins.

Stage two

This late stage of arc-continent collision is characterized by termination of deformation in one segment of the fold-thrust belt as convergent deformation shifts eastward. Rebound of the collisional belt is produced as the north-dipping subducted oceanic crust breaks off from the passive margin, inducing inversion of preexisting normal faults as arc-continent convergence reaches a maximum. Strain partitioning also begins to play an important role as oblique convergence continues, accommodating deformation by the formation of parallel, strike-slip fault zones and backthrusting (southward subduction of the Caribbean plate beneath the South Caribbean deformed belt). As subsidence slows in the foreland basins, sedimentation transitions from a marine underfilled basin to an overfilled continental basin. Offshore, sedimentation is mostly marine, sourced by the collided Caribbean terranes, localized islands and carbonate deposition.

Stage three

This final stage of arc-continent collision is characterized by: 1) complete slab breakoff of the northward-dipping South American slab; 2) east-west extension of the Caribbean arc as it elongates parallel to its strike forming oblique normal faults that produce deep rift and half-grabens; 3) continued strain partitioning (strike-slip faulting and folding). The subsidence pattern in the Caribbean basins is more complex than interpreted before, showing a succession of extensional and inversion events. The three tectonic stages closely control the structural styles and traps, source rock distribution, and stratigraphic traps for the abundant hydrocarbon resources of the on- and offshore areas of Venezuela and Trinidad.  相似文献   

15.
The breakup of western margin of Australia from Greater India started around 155 Ma and progressed southwards. After the separation, the interceding intraplate region experienced large volumes of submarine volcanism, extending over 100 Myrs. The Christmas Island Seamount Province (CHRISP, as it has been dubbed) lies south of the Java-Sunda Trench, and contains numerous submerged volcanic seamounts, and two sub-aerially exposed island groups—Cocos (Keeling) Islands, and Christmas Island. While recent geochronological investigations have shed light on the diverse eruption ages of the volcanics of this region, some islands/seamounts have demonstrated protracted volcanic histories, and it is not clear how the volcanic loading, tectonic subsidence, and subsequent emergence history of the islands relates to these discrete volcanic episodes. This study utilises a number of geophysical techniques to determine the crustal structure, loading and subsidence history, and last sub-aerial exposure age for the CHRISP. The study shows that flexural and subsidence modelling are reliable techniques in constraining the age of the seamounts when geochronological techniques are not possible. Utilising regional gravity signatures, we model the crustal structure underneath the Cocos (Keeling) Island, and constrain the thickness of the limestone cover between 900 and 2,100 m. Using age-depth subsidence curves for oceanic lithosphere the time since these seamounts were exposed above sea-level was determined, and a trend in exposure ages that youngs towards the west is observed. Two episodes of volcanism have been recorded at Christmas Island and they are of different origin. The younger phase in the Pliocene is a manifestation of flexure induced cracks produced in the lithosphere as it rides the subduction fore-bulge, whereas a low velocity seismic zone rising from the lower mantle, and tectonic reorganization, may be associated with the older Eocene volcanic phase, as well as much of the rest of the province. Our modelling also supports the existence of an older, undated volcanic core to Christmas Island, based on the loading ages from flexural modelling.  相似文献   

16.
The Angolan margin is the type area for raft tectonics. New seismic data reveal the contractional buffer for this thin-skinned extension. A 200-km-long composite section from the Lower Congo Basin and Kwanza Basin illustrates a complex history of superposed deformation caused by: (1) progradation of the margin; and (2) episodic Tertiary epeirogenic uplift. Late Cretaceous tectonics was driven by a gentle slope created by thermal subsidence; extensional rafting took place updip, contractional thrusting and buckling downdip; some distal folds were possibly unroofed to form massive salt walls. Oligocene deformation was triggered by gentle kinking of the Atlantic Hinge Zone as the shelf and coastal plain rose by 2 or 3 km; relative uplift stripped Paleogene cover off the shelf, provided space for Miocene progradation, and steepened the continental slope, triggering more extension and buckling. In the Neogene, a subsalt half graben was inverted or reactivated, creating keystone faults that may have controlled the Congo Canyon; a thrust duplex of seaward-displaced salt jacked up the former abyssal plain, creating a plateau of salt 3–4 km thick on the present lower slope. The Angola Escarpment may be the toe of the Angola thrust nappe, in which a largely Cretaceous roof of gently buckled strata, was transported seawards above the thickened salt by up to 20 km.  相似文献   

17.
The Gulf of Lion margin results from the Cligo-Aquitanian rifting and Burdigalian crustal separation between continental Europe and Corsica-Sardinia. Immediately before the onset of extension, the area of the Gulf of Lion was affected by the Pyrenean orogeny which controlled the structural style of the evolving margin. During extension, the foreland of the Pyrenean orogen was affected by extensional thin-skinned tectonics. The décollement level ramped down into the basement, in areas where the latter was thickened during orogeny. In this intermediate part, the margin was extended by several crustal-scale low-angle faults, which generated small amounts of syn-rift sedimentation compared with the accumulation of post-rift sediments. However, more than 4 km of syn-rift sediments were deposited in the Camargue basin, which is located at the transition between thin- and thick-skinned extensional systems. Kinematic restorations and stratigraphy suggest a pre-rift surface elevation above sea-level of at least 1 km in the intermediate part of the margin, which is in agreement with reduced syn-rift sedimentation. The slope area extends seaward of the North Pyrenean Fault, a terrane boundary inherited from the Pyrenean collision. This part of the margin was stretched by seaward dipping low-angle block tilting of the upper crust, and antithetic lower crustal and sub-crustal detachment. The lithospheric structures inherited from the Pyrenean orogeny exerted a strong control on the kinematics of the rifting and on the distribution and history of subsidence. Such parameters need to be integrated in the definition of pre-rift initial conditions in future basin-modelling of the Gulf of Lion.  相似文献   

18.
In a broader application of sequence stratigraphic concept to a tectonically active margin setting, this study presents a sequence model that considers all three controls on sequence development (i.e. eustasy, tectonic movement and sediment supply) as independent variables. The model introduces six sequence types (A to F) including type 1 and type 2 sequences defined in the original Exxon scheme. Each sequence shows a variety in number and stacking pattern of its constituent parasequence sets reflecting combined effects of accommodation change and sediment supply. This model is applied to a seismic sequence analysis of the shelf–slope system (middle to upper Miocene) in the southwestern margin of Ulleung Basin which has experienced significant crustal deformation during the Tertiary back-arc opening and subsequent closing of the East Sea (Sea of Japan). The model application delineates four sequence types whose development is closely associated with the tectonic evolution of the Ulleung Basin margin. During the back-arc opening (early to middle Miocene), type A and B sequences were emplaced as a result of steady creation of accommodation space due to a rapid subsidence combined with a tectonic-controlled high to moderate rate of sediment supply. The sequences associated with the extensional tectonism are characterized by active progradation and aggradation without forced regressive phases. In the initiation stage of back-arc closure (middle to late Miocene), subsidence rates were significantly reduced because of a widespread contractional deformation, while subaerial erosion of the uplifted thrust belt resulted in an increase in sedimentation rate. As a result, steady prograding type-E sequences were formed by alternating normal and forced regressions. During the quiescent phase of back-arc closure in the late Miocene, rise-dominant fluctuating relative sea-level change and moderate to low sediment supply gave rise to type-F sequences (similar to type-1 sequences of the Exxon group) reflecting a major control of eustatic sea-level change.  相似文献   

19.
The Labrador continental margin provides a rich source of data with which to study the relationships between stratigraphy, tectonics and paleoenvironment. We have completed a regional seismic interpretation and integrated this with new biostratigraphic data, based on analyses of palynomorphs from wells in the Hopedale and Saglek Basins which occur on this margin. Our results are summarized in a tectonostratigraphic chart, which displays new and consistent age control for the major lithostratigraphic units and provides more precise evaluation of their depositional and paleoenvironmental history. We have identified and dated six regional unconformities in the wells and we can recognize several others on the seismic data. The older unconformities (Cretaceous) are related to the tectonics of rifting and seafloor spreading, and may delineate the onset of different stages of the rift process. In the Paleocene-Early Eocene, unconformity development was influenced by episodic volcanism due to the passage of the proto-Iceland hotspot to the north and to a major change in spreading direction in the Labrador Sea. Many of these unconformities are also identified in offshore southwest Greenland and the Grand Banks, suggesting widespread controlling mechanisms. During the post-seafloor spreading stage the effects of mass wasting and slumping, and of paleoenvironmental controls on the stratigraphy, were more pronounced. We discuss the petroleum potential of the Hopedale Basin in terms of the structures we see on the seismic data, and highlight the Bjarni Formation, which likely contains the most prospective source and reservoir rocks in this Basin.  相似文献   

20.
The Mid-Polish Trough (MPT) is situated in the easternmost part of the Central European Basin System (CEBS) and stretches NW–SE across the Polish Basin. It was characterised by pronounced subsidence and thick sediment accumulation between the Permian and the Late Cretaceous. Late Cretaceous–early Paleogene basin inversion led to the formation of the Mid-Polish Swell (MPS). The study area is located within the Pomeranian segment of the MPT/MPS (NW Poland) and experienced up to 7 km Permian-Mesozoic subsidence. PetroMod 1-D modelling was performed on several well-sections in order to study Permian to recent burial-uplift evolution. The modelling was calibrated with new vitrinite reflectance (VRr) data and allowed to constrain the magnitude of uplift and related erosion as well as provided a first overview of the temperature history. The base of the studied Permian–Mesozoic successions attained maximum burial depths of 4800–5400 m before the onset of the inversion, less than in the axial trough area. The thickness of pre- and most probably also syn-inversion Upper Cretaceous deposits is estimated as 300 m. Erosion associated with inversion processes removed between 900 and 1400 m of the Mesozoic sediments, i.e. 1000–1500 m less than in the most inverted central part of the trough. VRr data suggest constant Permian–Mesozoic heat flows corresponding to present-day values (40–45 mW/m2). Apatite fission-track (AFT) ages modelled with the PetroMod module PetroTracks show a good fit with AFT ages directly measured on well samples, and further support the assumption of steady heat flow in the range 40–45 mW/m2. Palaeotemperatures appear to have decreased towards the East European Craton margin, which is compatible with the present day distribution of heat flow. Thermal history modelling shows a relatively simple Permian–Mesozoic heat flow pattern in the Pomeranian segment of the MPT. Such a scenario implies that the present-day heat flow distribution has not changed essentially since Mesozoic times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号