首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We use the 2dF Galaxy Redshift Survey to measure the dependence of the b J-band galaxy luminosity function on large-scale environment, defined by density contrast in spheres of radius  8  h −1 Mpc  , and on spectral type, determined from principal component analysis. We find that the galaxy populations at both extremes of density differ significantly from that at the mean density. The population in voids is dominated by late types and shows, relative to the mean, a deficit of galaxies that becomes increasingly pronounced at magnitudes brighter than   M b J−5log10 h ≲−18.5  . In contrast, cluster regions have a relative excess of very bright early-type galaxies with   M b J−5log10 h ≲−21  . Differences in the mid- to faint-end population between environments are significant: at   M b J−5log10 h =−18  early- and late-type cluster galaxies show comparable abundances, whereas in voids the late types dominate by almost an order of magnitude. We find that the luminosity functions measured in all density environments, from voids to clusters, can be approximated by Schechter functions with parameters that vary smoothly with local density, but in a fashion that differs strikingly for early- and late-type galaxies. These observed variations, combined with our finding that the faint-end slope of the overall luminosity function depends at most weakly on density environment, may prove to be a significant challenge for models of galaxy formation.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
We calculate the optical b J luminosity function (LF) of the 2dF Galaxy Redshift Survey (2dFGRS) for different subsets defined by their spectral properties. These spectrally selected subsets are defined using a new parameter, η , which is a linear combination of the first two projections derived from a Principal Component Analysis. This parameter η identifies the average emission- and absorption-line strength in the galaxy rest frame spectrum, and hence is a useful indicator of the present star formation. We use a total of 75 000 galaxies in our calculations, chosen from a sample of high signal-to-noise ratio, low-redshift galaxies observed before 2001 January. We find that there is a systematic steepening of the faint-end slope ( α ) as one moves from passive  ( α =-0.54)  to active  ( α =-1.50)  star-forming galaxies, and that there is also a corresponding faintening of the rest frame characteristic magnitude   M *-5 log10( h )  (from −19.6 to −19.2). We also show that the Schechter function provides a poor fit to the quiescent (Type 1) LF for very faint galaxies  [ M b J-5 log10( h )  fainter than −16.0], perhaps suggesting the presence of a significant dwarf population. The LFs presented here give a precise confirmation of the trends seen previously in a much smaller preliminary 2dFGRS sample, and in other surveys. We also present a new procedure for determining self-consistent k -corrections, and investigate possible fibre-aperture biases.  相似文献   

13.
14.
We investigate the dependence of the strength of galaxy clustering on intrinsic luminosity using the Anglo-Australian two degree field galaxy redshift survey (2dFGRS). The 2dFGRS is over an order of magnitude larger than previous redshift surveys used to address this issue. We measure the projected two-point correlation function of galaxies in a series of volume-limited samples. The projected correlation function is free from any distortion of the clustering pattern induced by peculiar motions and is well described by a power law in pair separation over the range     . The clustering of     galaxies in real space is well-fitted by a correlation length     and power-law slope     . The clustering amplitude increases slowly with absolute magnitude for galaxies fainter than M *, but rises more strongly at higher luminosities. At low luminosities, our results agree with measurements from the Southern Sky Redshift Survey 2 by Benoist et al. However, we find a weaker dependence of clustering strength on luminosity at the highest luminosities. The correlation function amplitude increases by a factor of 4.0 between     and −22.5, and the most luminous galaxies are 3.0 times more strongly clustered than L * galaxies. The power-law slope of the correlation function shows remarkably little variation for samples spanning a factor of 20 in luminosity. Our measurements are in very good agreement with the predictions of the hierarchical galaxy formation models of Benson et al.  相似文献   

15.
16.
We have carried out a study of known clusters within the 2dF Galaxy Redshift Survey (2dFGRS) observed areas and have identified 431 Abell, 173 APM and 343 EDCC clusters. Precise redshifts, velocity dispersions and new centroids have been measured for the majority of these objects, and this information is used to study the completeness of these catalogues, the level of contamination from foreground and background structures along the cluster's line of sight, the space density of the clusters as a function of redshift, and their velocity dispersion distributions. We find that the Abell and EDCC catalogues are contaminated at the level of about 10 per cent, whereas the APM catalogue suffers only 5 per cent contamination. If we use the original catalogue centroids, the level of contamination rises to approximately 15 per cent for the Abell and EDCC catalogues, showing that the presence of foreground and background groups may alter the richness of clusters in these catalogues. There is a deficiency of clusters at     that may correspond to a large underdensity in the Southern hemisphere. From the cumulative distribution of velocity dispersions for these clusters, we derive a space density of     clusters of     This result is used to constrain models for structure formation; our data favour low-density cosmologies, subject to the usual assumptions concerning the shape and normalization of the power spectrum.  相似文献   

17.
18.
19.
We compute the redshift space power spectrum of two X-ray cluster samples: the X-ray Brightest Abell Cluster Sample (XBACS) and the Brightest Cluster Sample (BCS) using the method developed by Feldman, Kaiser & Peacock. The power spectra derived for these samples are in agreement with determinations of other optical and X-ray cluster samples. For XBACS we find the largest power spectrum amplitude expected, given the high richness of this sample ( R ≥2) . In the range 0.05< k <0.4  h  Mpc−1 the power spectrum shows a power-law behaviour P ( k )∝ k n with an index n ≃−1.2 . In a similar range, 0.04< k <0.3  h  Mpc−1 , the BCS power spectrum has a smaller amplitude with index n ≃−1.0 . We do not find significant evidence for a peak at k ≃0.05  h  Mpc−1 , suggesting that claims such of feature detections in some cluster samples could rely on artificial inhomogeneities of the data. We compare our results with power spectrum predictions derived by Moscardini et al. within current cosmological models (LCDM and OCDM). For XBACS we find that both models underestimate the amplitude of the power spectrum but for BCS there is reasonably good agreement at k ≳0.03  h  Mpc−1 for both models.  相似文献   

20.
We construct a galaxy groups catalogue from the public 100-K data release of the 2dF Galaxy Redshift Survey. The group identification is carried out using a slightly modified version of the group-finding algorithm developed by Huchra & Geller. Several tests using mock catalogues allow us to find the optimal conditions to increase the reliability of the final group sample. A minimum number of four members, an outer number density enhancement of 80 and a linking radial cut-off of 200 km s−1 are the best obtained values from the analysis. Using these parameters, approximately 90 per cent of groups identified in real space have a redshift space counterpart. On the other hand, the level of contamination in redshift space reaches 30 per cent, including ∼6 per cent of artificial groups and ∼24 per cent of groups associated with binaries or triplets in real space. The final sample comprises 2209 galaxy groups covering the sky region described by Colless et al.spanning over the redshift range of  0.003 ≤ z ≤ 0.25  with a mean redshift of 0.1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号