首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Data from 90 permanent broad-band stations spread over central and eastern Europe were analysed using Ps receiver functions to study the crustal and upper-mantle structure down to the mantle transition zone. Receiver functions provide valuable information on structural features, which are important for the resolution of European lithospheric dynamics. Moho depths vary from less than 25 km in extensional areas in central Europe to more than 50 km at stations in eastern Europe (Craton) and beneath the Alpine–Carpathian belt. A very shallow Moho depth can be observed at stations in the Upper Rhine Graben area ( ca. 25 km), whereas, for example, stations in the SW Bohemian Massif show a significantly deeper Moho interface at a depth of 38 km. Vp / Vs ratios vary between 1.60 and 1.96, and show no clear correlation to the major tectonic units, thus probably representing local variations in crustal composition. Delayed arrivals of converted phases from the mantle transition zone are observed at many stations in central Europe, whereas stations in the cratonic area show earlier arrivals compared with those calculated from the IASP91 Earth reference model. Differential delay times between the P410s and P660s phases indicate a thickened mantle transition zone beneath the eastern Alps, the Carpathians and the northern Balkan peninsula, whereas the transition zone thickness in eastern and central Europe agrees with the IASP91 value. The thickening of the mantle transition zone beneath the eastern Alps and the Carpathians could be caused by cold, deeply subducted oceanic slabs.  相似文献   

2.
Summary. Spectral attenuation of coda waves has been studied in the range 2–40 Hz from local events recorded in the western Pyrenean range from 1980 to 1982. Q c was obtained using a single scattering model of S -waves for different segments of the coda. An increase of Q c with lapse time was found and attributed to a rapid increase of Q β with depth.
Three groups of events were selected from distinct focal areas. Two data sets are mainly composed of aftershocks of moderate earthquakes of magnitude 5.1 and 4.8, respectively. No moderate earthquake occurred in the third area in the few years preceding or following the selected events. Use of stations close to epicentres allowed sampling of the coda at very short lapse times and then study of small, distinct scattering volumes. Noticeable differences were found between the three studied areas and attributed to spatial rather than temporal variations.
The Q c frequency dependence was studied according to Q c= qf α. α is found to range from 0.7 to 1.1 and q from 30 to 140. These values are in agreement with those found in other tectonic areas. It is shown that scattering is the dominant attenuation process below 10Hz.  相似文献   

3.
Summary. Available seismic refraction data from three different continental areas, northern Britain and the eastern and western United States, has been studied for possible Pn , velocity anisotropy using the methods described by Bamford. There are various deficiencies in the time—distance data used in each case but, while the uppermost mantle beneath northern Britain and the eastern United States seems to be isotropic within the limits of measurement error, there is a small but significant anisotropy beneath the western United States.
Both the amount (up to 3 per cent) and the direction (70–80° east of north) of this anisotropy are very similar to the results obtained in the Pacific Ocean off California. We tentatively conclude that this anisotropy is present as a consequence of the subduction of oceanic lithosphere beneath the western United States.  相似文献   

4.
Blockage of regional seismic waves by the Teisseyre-Tornquist zone   总被引:1,自引:0,他引:1  
During the Group of Scientific Experts Technical Test (GSETT, second experiment, 22 April-2 June 1991), several hundred seismic events were located in Europe. Associating these events with the detecting stations-altogether 28 European stations including seven arrays participated in the GSETT-2 experiment-clearly shows that the Teisseyre-Tornquist Zone (TTZ) influences the propagation of regional seismic phases. Large explosions in the Bay of Gdańsk, for example, were observed by the well-established Scandinavian arrays'NORSAR (Δ 830km) and ARCESS (Δ 1650km), but not by the Polish station KSP (Δ 470km) nor by the new highly sensitive GERESS array (Δ 750km), both situated south-west of the TTZ. For events in central Europe with comparable magnitudes, we observe a similar increase of the detection threshold at stations located north-east of the TTZ in Scandinavia. to explain these observations, the wave propagation of Pn and Pg perpendicular to the TTZ was modelled for a profile from the Estonian/Russian border region to GERESS with Gaussian-beam seismograms. Published crustal and uppermost mantle models for Poland and for Europe were used as a starting point for developing a model of the TTZ. the observations cannot be explained only by a graben-like crustal structure with a jump in Moho depth from 30km to 50km. to defocus the seismic energy, the TTZ as a structural anomaly between eastern and western Europe must reach down into the upper mantle to a depth of at least about 200 km. the proposed model has such a deep-reaching root of the TTZ.  相似文献   

5.
b
The amplitude of vertical, short period (1 s) Lg -waves from 575 shallow earthquakes recorded within the distance range 0|Mo-30|Mo by the Rhodesian seismograph network during the period 1968–77 are analysed to separate the effects of earthquake size, epicentral distance and station structure.
When corrected for geometrical spreading and Airy phase dispersion the decay of amplitude with distance yields an estimate of anelastic attenuation of 0.160 deg-1 which gives an average value of Q (the specific quality factor) of 603 |Mp 50 for propagation paths that lie along and across the East African Rift System. Inversion of the amplitude—distance curve gives the calibration or distance normalizing function. Thereby the amplitude of Lg can be used to provide an estimate of the size of small, local earthquakes in terms of the teleseismic body wave magnitude mb (after Henderson). The station effects of the six seismograph stations making up the network all lie within |Mp0.1 magnitude units. Since three of the stations lie on the Rhodesian craton while the remaining three lie on Precambrian mobile belts adjacent to the craton, the Precambrian basement geology does not significantly affect the amplitude of Lg  相似文献   

6.
Summary. Two localized regions of velocity heterogeneity in the lower mantle with scale lengths of 1000–2000 km and 2 per cent velocity contrasts are detected and isolated through comparison of S, ScS, P and PcP travel times and amplitudes from deep earthquakes in Peru, Bolivia, Argentina and the Sea of Okhotsk. Comparison of the relative patterns of ScS-S differential travel times and S travel-time residuals across North American WWSSN and CSN stations for the different source regions provides baselines for interpreting which phases have anomalous times. A region of low S and P velocities is located beneath Northern Brazil and Venezuela at depths of 1700–2700 km. This region produces S -wave delays of up to 4 s for signals from deep Argentine events recorded at eastern North American stations. The localized nature of the anomaly is indicated by the narrow bounds in azimuth (15°) and take-off angle (13°) of the arrivals affected by it. The long period S -waves encountering this anomaly generally show 30–100 per cent amplitude enhancement, while the short-period amplitudes show no obvious effect. The second anomaly is a high-velocity region beneath the Caribbean originally detected by Jordan and Lynn, who used travel times from deep Peruvian events. The data from Argentine and Bolivian events presented here constrain the location of the anomaly quite well, and indicate a possible short- and long-period S -wave amplitude diminution associated with it. When the travel-time data are corrected for the estimated effects of these two anomalies, a systematic regional variation in ScS-S station residuals is apparent between stations east of and west of the Rocky Mountains. One possible explanation of this is a long wavelength lateral variation in the shear velocity structure of the lower mantle at depths greater than 2000 km beneath North America.  相似文献   

7.
3-D images of P velocity and P - to S -velocity ratio have been produced for the upper crust of the Friuli area (northeastern Italy) using local earthquake tomography. The data consist of 2565 P and 930 S arrival times of high quality. The best-fitting V P and V P / V S 1-D models were computed before the 3-D inversion. V P was measured on two rock samples representative of the investigated upper layers of the Friuli crust. The tomographic V P model was used for modelling the gravity anomalies, by converting the velocity values into densities along three vertical cross-sections. The computed gravity anomalies were optimized with respect to the observed gravity anomalies. The crust investigated is characterized by sharp lateral and deep V P and V P / V S anomalies that are associated with the complex geological structure. High V P / V S values are associated with highly fractured zones related to the main faulting pattern. The relocated seismicity is generally associated with sharp variations in the V P / V S anomalies. The V P images show a high-velocity body below 6 km depth in the central part of the Friuli area, marked also by strong V P / V S heterogeneities, and this is interpreted as a tectonic wedge. Comparison with the distribution of earthquakes supports the hypothesis that the tectonic wedge controls most of the seismicity and can be considered to be the main seismogenic zone in the Friuli area.  相似文献   

8.
Summary. The paper gives the results of a study of the anisotropy of seismic wave velocities within the Ashkhabad test field in Central Asia. The anisotropy was studied by analysing variations in the values of apparent velocities of first arrivals for epicentral distances ranging from 30 to 130 km and by analysing the delays (Δ ts1-s2 ) between the arrival times of shear waves with different polarizations.
The velocities of P -waves vary with azimuth from 5.3 to 6.27 km s-1 and the velocities of S -waves vary from 3.15 to 3.5 km s-1.
The delay times Δ tS1 - S2 depend on the direction of the propagation. The character of the variation of the propagation velocity of the longitudinal wave, the presence of two differently polarized shear waves S 1 and S 2 propagating at different velocities, and the character of the distribution of Δ tS1 - S2 on the stereogram suggest that the symmetry of the anisotropic medium is close to hexagonal with a nearly horizontal symmetry axis coinciding with the direction of maximal velocity. The azimuth of the symmetry axis of the medium is 140° and coincides with the direction of geological faults.  相似文献   

9.
Summary. Records of 21 earthquakes with ray paths crossing south-eastern China have been examined to establish the nature of propagation of the seismic wave Sn . Sn is seen at stations within 1500km of earthquakes, but not beyond 1500km. No single localized region of attenuation can account for all the missing or weak Sn waves. The inefficient propagation of Sn through south-eastern China is surprising in light of efficient Sn propagation in other continental platforms which, like south-eastern China, appear to have been stable throughout the Cenozoic.  相似文献   

10.
Fundamental-mode Rayleigh and Love waves generated by several earthquakes situated along great-circle paths between pairs of seismograph stations have been analysed to obtain coefficients of attenuation, group velocities, phase velocities, and specific quality factors in the period range 18–80s in two regions of the South American continent. One set of paths crosses the shield region which lies on the eastern coast and another set traverses the mountainous region inland. the average attenuation coefficient values are clearly higher in the tectonically active western region throughout the entire period range than in the eastern or shield region.
Inversion of the attenuation data yielded shear wave internal friction ( Q -1β) models as a function of depth in the crust and upper mantle in both regions. A low- Q zone below the lithosphere is prominent in both regions. the results show that substantial variations of Q β occur in the two regions of South America. the Qβ values were found to be inversely related to the heat flow values or to the temperature.  相似文献   

11.
Summary. New fault plane solutions, Landsat photographs, and seismic refraction records show that rapid extension is now taking place in the northern and eastern parts of the Aegean sea region. The southern part of the Aegean has also been deformed by normal faulting but is now relatively inactive. In northwestern Greece and Albania there is a band of thrusting near the western coasts adjacent to a band of normal faulting further east. The pre-Miocene geology of the islands in the Aegean closely resembles that of Greece and Turkey, yet seismic refraction shows that the crust is now only about 30 km thick beneath the southern part of the sea, compared with nearly 50 km beneath Greece and western Turkey. These observations suggest that the Aegean has been stretched by a factor of two since the Miocene. This stretching can account for the high heat flow. The sinking slab produced by subduction along the Hellenic Arc may maintain the motions, though the geometry and widespread nature of the normal faulting is not easily explained. The motions in northwestern Greece and Albania cannot be driven in the same way because no slab exists in the area. They may be maintained by blobs of cold mantle detaching from the lower half of the lithosphere, produced by a thermal instability when the lithosphere is thickened by thrusting. Hence generation and destruction of the lower part of the lithosphere may occur beneath deforming continental crust without the production of any oceanic crust.  相似文献   

12.
Seismic anisotropy within the uppermost mantle of southern Germany   总被引:1,自引:0,他引:1  
This paper presents an updated interpretation of seismic anisotropy within the uppermost mantle of southern Germany. The dense network of reversed and crossing refraction profiles in this area made it possible to observe almost 900 traveltimes of the Pn phase that could be effectively used in a time-term analysis to determine horizontal velocity distribution immediately below the Moho. For 12 crossing profiles, amplitude ratios of the Pn phase compared to the dominant crustal phase were utilized to resolve azimuthally dependent velocity gradients with depth. A P -wave anisotropy of 3–4 per cent in a horizontal plane immediately below the Moho at a depth of 30 km, increasing to 11 per cent at a depth of 40 km, was determined. For the axis of the highest velocity of about 8.03 km s−1 at a depth of 30 km a direction of N31°F was obtained. The azimuthal dependence of the observed Pn amplitude is explained by an azimuth-dependent sub-Moho velocity gradient decreasing from 0.06 s−1 in the fast direction to 0 s−1 in the slow direction of horizontal P -wave velocity. From the seismic results in this study a petrological model suggesting a change of modal composition and percentage of oriented olivine with depth was derived.  相似文献   

13.
Rates of active deformation in the Aegean Sea and surrounding regions   总被引:3,自引:0,他引:3  
Abstract Average strain rates are calculated from earthquakes in the period 1908-81 that occurred in the Aegean Sea extensional region, and in the convergent zone associated with the Hellenic Trench. In spite of large uncertainties resulting from the use of an MS : Mo relationship, seismic N-S extensional rates in the Aegean are in the region 20–60 mm yr-1 whereas seismic shortening rates in the Hellenic Trench are less than about 15 mm yr-1. This is surprising because Africa and Eurasia are known to be converging, not separating. This apparent anomaly is caused by most of the convergence in the Hellenic Trench occurring aseismically. By contrast, the seismic extensional rates in the Aegean agree quite well with those expected from other arguments. The present day extensional rates are sufficiently high for McKenzie's instantaneous stretching model to be applicable. There is some evidence that these high extensional rates have operated throughout the last 5 Myr.  相似文献   

14.
Summary. Travel times and waveforms of long-period SH -waves recorded at distances of 10–30° and some SS waveforms are used to constrain the upper mantle velocities down to a depth of 400km beneath both the Indian Shield and the Tibetan Plateau. the shear velocity in the uppermost mantle beneath both the Indian Shield and the Tibetan Plateau is high and close to 4.7 km s−1. the Indian Shield has a fairly thick high velocity lid, and the mean velocity between 40 and 250 km is between 4.58 and 4.68 km s−1. In contrast, S -wave travel times and waveforms of S -waves, as well as a few for SS , show that the mean velocity between 70 and 250km beneath the central and northern part of the Tibetan Plateau is slower by 4 per cent or more than that beneath the Indian Shield and probably is between 4.4 and 4.5km s−1. No large differences in the structure of the two areas below 250 km are required to explain both the arrival times and the waveforms of SH phases crossing Tibet or the Indian Shield. These results show that the structure of Tibet is not that of a shield and imply that the Indian plate is not underthrusting the whole of the Tibetan Plateau at the present time.  相似文献   

15.
Upper mantle shear structure of North America   总被引:5,自引:0,他引:5  
Summary. The waveforms and travel times of S and SS phases in the range 10°–60° have been used to derive upper mantle shear velocity structures for two distinct tectonic provinces in North America. Data from earthquakes on the East Pacific Rise recorded at stations in western North America were used to derive a tectonic upper mantle model. Events on the north-west coast of North America and earthquakes off the coast of Greenland provided the data to investigate the upper mantle under the Canadian shield. All branches from the triplications due to velocity jumps near 400 and 660 km were observed in both areas. Using synthetic seismograms to model these observations placed tight constraints on heterogeneity in the upper mantle and on the details of its structure. SS–S travel-time differences of 30 s along with consistent differences in waveforms between the two data sets require substantial heterogeneity to at least 350 km depth. Velocities in the upper 170 km of the shield are about 10 per cent higher than in the tectonic area. At 250 km depth the shield velocities are still greater by about 4.5 per cent and they gradually merge near 400 km. Below 400 km no evidence for heterogeneity was found. The two models both have first-order discontinuities of 4.5 per cent at 405 km and 7.5 per cent at 695 km. Both models also have lids with lower velocities beneath. In the western model the lid is very thin and of relatively low velocity. In the shield the lid is 170 km thick with very high elocity (4.78 km s-1); below it the velocity decreases to about 4.65 km s-1. Aside from these features the models are relatively smooth, the major difference between them being a larger gradient in the tectonic region from 200 to 400 km.  相似文献   

16.
Summary. The deep structure of the Faeroe–Shetland Channel has been investigated as part of the North Atlantic Seismic Project. Shot lines were fired along and across the axis of the Channel, with recording stations both at sea and on adjacent land areas. At 61°N, 1.7 km of Tertiary sediments overlies a 3.9–4.5 km s-1 basement interpreted as the top of early Tertiary volcanics. A main 6.0–6.6 km s-1 crustal refractor interpreted as old oceanic crust occurs at about 9 km depth. The Moho (8.0 ° 0.2 km s-1) is at about 15–17 km depth. There is evidence that P n may be anisotropic beneath the Faeroe–Shetland Channel. Arrivals recorded at land stations show characteristics best explained by scattering at an intervening boundary which may be the continent–ocean crustal contact or the edge of the volcanics.
The Moho delay times at the shot points, determined by time-term analysis, show considerable variation along the axis of the Channel. They correlate with the basement topography, and the greatest delays occur over the buried extension of the Faeroe Ridge at about 60° 15'N, where they are nearly 1 s more than the delays at 61°N after correction for the sediments. The large delays are attributed to thickening of the early Tertiary volcanic layer with isostatic downsagging of the underlying crust and uppermost mantle in response to the load, rather than to thickening of the main crustal ayer.
The new evidence is consistent with deeply buried oceanic crust beneath the Faeroe–Shetland Channel, forming a northern extension of Rockall Trough. The seabed morphology has been grossly modified by the thick and laterally variable pile of early Tertiary volcanic rocks which swamped the region, accounting for the anomalous shallow bathymetry, the transverse ridges and the present narrowness of the Channel.  相似文献   

17.
An isolated swarm of small earthquakes occurred in 1992, near Dongfang on Hainan Island, southern China. The Institute of Geophysics, State Seismological Bureau of China, monitored the swarm with five DCS-302 digital accelerometers for three months from 1992 June 1. 18 earthquakes, with magnitudes M L ranging from 1.8 to 3.6, were well located by five stations, and shear-wave splitting varying azimuthally was analysed on 27 seismic records from these events. The mean polarization azimuth of the faster shear wave was WNW. Time delays between the split shear waves at two stations varied with time and space. The time delays at one station fell abruptly after earthquakes of magnitudes 3.1 and 3.6, but did not change significantly at the second station. This behaviour is consistent with the delay-time changes being caused by changes in the aspect ratio of vertical liquid-filled (EDA) cracks. Thus, the variation in shear-wave-splitting time delay could be due to changes in crustal stress related to nearby small-magnitude earthquake activity. The connection between earthquake activity and crustal stress variation measured by shear-wave splitting leaves the door open for possible observations of crustal stress transients related to the onset of an earthquake; however, our data cannot be considered as definite evidence for such precursors.  相似文献   

18.
Summary. Reduced Pn travel times from the Archaean Pilbara Craton of north-west Australia show a strong correlation with azimuth, which could be used as evidence of anisotropy. However, the azimuthal correlation could also be explained by a southerly dip of between 1 and 2° on the crust–mantle boundary, although the models from several reversed seismic profiles across the craton suggest a smaller dip.
A time-term analysis of the Pn date yielded several models. The preferred solution, in which the dip on the crust–mantle boundary is similar to that in the models from the reversed profiles, has approximately 2 per cent anisotropy in the uppermost mantle, with the direction of maximum velocity 30° east of north. One possible cause of the anisotropy is that olivine crystals were aligned by syntectonic recrystallization and/or power law creep in the tensional environment caused at the base of the lithosphere by flexure during loading of the lithosphere by the strata of the Hamersley Basin which overlies the Pilbara Craton.
A seismic discontinuity occurs about 15 km below the crust–mantle boundary under the craton. A qualitative analysis of all available seismic data suggests that the velocity below the boundary is probably also anisotropic, with the direction of maximum velocity between north and 40° west of north. The direction of minimum velocity below the sub-Moho boundary correlates loosely with the direction of basement lineaments in the Proterozoic Capricorn Orogenic Belt to the south of the craton, suggesting that the anisotropy under the boundary may be younger than that immediately under the crust/mantle boundary. This is consistent with the notion that the Archaean lithosphere was thinner than the present lithosphere.  相似文献   

19.
b
A two ship refraction profile was undertaken on the Australian continental shelf during the Banda Sea geophysical program, carried out by the Woods Hole Oceanographic Institution, the Scripps Institution of Oceanography and the Geological Survey of Indonesia. S waves originating close to the sea bottom were observed to distances of up to 1150 km at an array of stations in northern Australia.
These observations are interpreted as implying S mantle velocities of 4.60 km s-1 from a depth of 45 km to a depth of 76 km and 4.72 km s-1 below a depth of 76 km.
Ratios of the P and S travel times (Vp/Vs) have been determined to be 1.74 in the crust rising to a value of greater than 1.79 below a velocity discontinuity at a depth of 200 km. It is inferred that this high value arises because the effect of temperature is greater for S than for P .
Using the data from this and other studies in the shield region of Northern Australia it has been found that the S travel times are significantly less than predicted by the Jeffreys—Bullen tables.  相似文献   

20.
The ratio of shear to compressional travel times from a local earthquake gives a good estimate of the average velocity ratio for the wave path, providing the origin time has been moderately well determined. Thus changes of velocity ratio can be identified and mapped from standard observatory data. The method is applied to the principal New Zealand earthquakes since 1964: Gisborne, 1966, M L= 6. 2; Seddon, 1966, M L= 6.0; Inangahua, 1968, M L= 7.1. The results suggest that monitoring could be achieved with a station spacing of 100 km. It appears that velocity change is essentially a rapid process and that the return to normality may not begin until the earthquake is imminent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号