首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
The concentrations of the trace metals Cd, Cu, Fe, Ni, Pb and Zn in the Göta River estuary have been investigated. The following metal fractions have been determined: acid-leachable, dissolved, labile and particulate.The estuary represents a salt wedge type estuary and is situated in a densely populated region of Sweden. The metal concentrations found for the dissolved fraction is in the range of what can be considered as background levels for freshwater. It is difficult to evaluate any estuarine processes other than conservative mixing for Cd, Cu, Ni and Zn. The dissolved levels in the freshwater end member are Cd, 9–25 ngl?1; Cu, 1·1–1·4 μgl?1; Fe, 20–75 μg l?1: Ni, 0·7–0·9 μg l?1: Pb 0·09–0·2 μg l?1; and Zn, 6–7 μg l?1:The results from the acid-leachable fraction show that at high suspended load the particles sediment in the river mouth. The trace metal levels in this fraction are subject to large variations.  相似文献   

2.
The behavior and budget of Mn, Cd and Cu in the Gironde estuary were investigated through data from both the water column (WC) and sediment depth profiles. In the estuarine freshwater reaches, Mn and Cd removal from and Cu addition to the dissolved phase occurs with a magnitude equivalent to 10%, 30% and 25% of their respective annual fluvial gross dissolved input, respectively. In the saline estuary, diffusive benthic outflow is the main source of dissolved Mn (74% of the total gross dissolved input within the estuary) to the WC. In contrast, Cd (96%) and Cu (89%) are mainly released into the dissolved phase of the WC from fluvial, estuarine and dredging-related particles through complexation (Cd) and organic carbon mineralization (Cu). Anthropogenic activities (sediment dredging) induce pore water inputs, particulate sulfide oxidation and sediment resuspension, significantly contributing to the metal budget of the WC. The related amounts of metals released could be equivalent to 20–50% (Cd) and up to 70% (Cu) of their respective net dissolved addition. Mass balances suggest that a large part of the metals previously released into the dissolved phase from processes within the estuary are removed by suspended particles due to (co-)precipitation of Fe/Mn (oxy)hydroxides and scavenging on autochthonous organic matter. On an annual basis, the Gironde estuary acts as a net sink of dissolved Mn, removing 60% of the dissolved fluvial inputs, and as a net source of dissolved Cd and Cu, contributing ∼ 85% and 20–45% to the dissolved Cd and Cu fluxes to the ocean.  相似文献   

3.
Dissolved and particulate trace metals (Cu, Cd, Pb, Zn, Ni, Fe and Mn) measured at six stations along the Scheldt estuary in October/November 1978 are compared with more recent data. Based on Ca content in the suspended matter, three distinct geochemical regions could be distinguished: the upper estuary (salinity 1–7) dominated by fluvial mud, mid-estuary (salinity 7–17) where the composition of the suspended matter remained relatively constant, and the lower estuary where marine mud prevailed. Re-suspension of sediments is the major factor controlling the composition of the particles in the upstream region. Anoxic conditions prevailed in the upper part of the estuary extending to a salinity of 15 in 1978, while at present the seaward boundary of the anoxic water body is located at less saline waters. Furthermore, the present-day metal load is much lower than in 1978. As a consequence of the changed situation, maxima in dissolved concentrations of redox-sensitive metals in the mid/lower estuary have moved as well, which affects the trace metal re-distribution pattern. In the anoxic zone, exchange processes between dissolved and particulate metal fractions were strongly redox regulated, with Fe and Mn as excellent examples. Iron was removed from the dissolved phase in the early stages of mixing resulting in an increase in the suspended particulate matter of the leachable ‘non-residual' Fe fraction from 2 to 3.5%. Due to its slower kinetics, removal of Mn from solution occurred in mid-estuary where oxygen concentrations increased. Cu, Cd and Zn on the contrary were mobilised from the suspended particles during estuarine mixing. External inputs of Pb, and to a lesser extent of Cu, in the lower estuary resulted in the increase of their particulate and the dissolved concentrations. Calculated Kd (distribution coefficient) values were used to assess the redistribution between the dissolved and particulate phase of the investigated metals. Due to the existence of the anoxic water body in the upper estuary, the importance of redox processes in determining the Kd values could be demonstrated. The sequence of Kd values in the upper estuary (Fe, Cd, Zn, Pb > Cu > Ni, Mn) is significantly different from that in the lower estuary (Fe > Mn > Pb, Ni, Zn, Cu, Cd). Thus, in such a dynamic estuary single metal-specific Kd values cannot be used to describe redistribution processes.  相似文献   

4.
The distribution, partitioning and concentrations of trace metals (Cd, Cr, Cu, Fe, Mn, Pb and Zn) in seawater, including dissolved and particulate phases, and in copepods in the ocean outfall area off the northern coast of Taiwan were investigated. Normalization of metal concentrations to the background metal concentration to yield relative enrichment factors (EF), which were used to evaluate the contamination of dissolved and particulate trace metals in seawater around the ocean outfall. The EF results indicated that the outfall area was significantly contaminated by dissolved Fe and Zn, and by particulate Fe, Cr, Cu, Pb and Zn. In addition, most trace metals were chiefly in the particulate phase. The average percentage of total metal concentrations (dissolved plus particulate phases) bound by suspended particulate matter followed the sequence Al(95%) = Mn(95%) > Pb(88%) > Cu(86%) > Fe(72%) > Zn(32%) > Cr(17.5%) > Cd(3.4%). Therefore, metal contamination is better evaluated in solid phase than in the dissolved phase. The concentration ranges of trace metals in the copepods, Temora turbinata, Oncaea venusta and Euchaeta rimana, near the outfall were: Cd, 0.23-1.81 microg g(-1); Cr, 16.5-195 microg g(-1); Cu, 14-160 microg g(-1); Fe, 256-7255 microg g(-1); Mn, 5.5-80.8 microg g(-1); Pb, 2.6-56.2 microg g(-1); Zn, 132-3891 microg g(-1); and Al, 0.21-1.13%. Aluminum, and probably Fe, seemed to be the major elements in copepods. The concentrations of trace metals in copepods, especially Temora turbinata, near the outfall were generally higher than those obtained in the background station. The mean increase in bioconcentration factor of metals in copepods ranged from 4 to 7 and followed the sequence Al(6.4) > Cu(6.2) > Fe(6.0) > Zn(5.7) > Pb(5.6) > Cr(5.5) > Cd(5.1) > Mn(4.7). Therefore, marine copepods in the waters of northern Taiwan can accumulate trace metals over background concentrations and act as contamination indicators.  相似文献   

5.
Mar Chiquita Coastal Lagoon is located on the Atlantic coast of Argentina, and it has been declared a Biosphere Reserve under the UNESCO Man and Biosphere Programme (MAB). This coastal lagoon constitutes an estuarine environment with a very particular behaviour and it is ecologically important due to its biological diversity. The aim of the present study was to evaluate the distribution and geochemical behaviour of several heavy metals in this coastal system, focusing on their distribution in both the dissolved phase (<0.45 μm) and the suspended particulate matter. Therefore, the general hydrochemical parameters (salinity, temperature, turbidity, pH and dissolved oxygen) and concentration of total particulate and dissolved metals (Cd, Cu, Ni, Zn, Fe, Pb, Cr and Mn) were measured along 2 years (2004–2006) at two different sites. As regards their distribution, hydrological parameters did not present any evidence of deviation with respect to historical values. Suspended particulate matter showed no seasonal variation or any relationship with the tide, thus indicating that in this shallow coastal lagoon neither tides nor freshwater sources regulate the particulate matter input. Heavy metals behaviour, both in dissolved and particulate phases did not reveal any relationship with tide or seasons. Mar Chiquita Coastal Lagoon showed a large input of dissolved and particulate metals, which is probably due to intensive agriculture within the drainage basin of this system.  相似文献   

6.
Anoxic sulfidic waters provide important media for studying the effect of reducing conditions on the cycling of trace metals. In 1987–1988, dissolved and particulate trace metal (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) concentrations were determined in the water column of the anoxic Drammensfjord basins, southeastern Norway. The iminodiacetic acid type chelating resin (Chelex 100) was used for the preconcentration of trace metals. The trace metal concentrations were determined using atomic absorption spectrophotometry (AAS), differential pulse polarography (DPP), and differential pulse-anodic stripping voltammetry (DP-ASV).It was observed that the trace metals Mn and Fe were actively involved in the processes of redox cycling (oxidationreduction and precipitation-dissolution) at the O2/H2S interface. The dissolved concentrations of Mn, Fe and Co showed maxima just below the O2/H2S interface. The seasonal enhancement in the maxima of both dissolved and particulate Mn and Fe at the redox cline is mainly governed by the downward movement of water which carries oxygen. An association of Co with the Mn cycle was observed, while the total dissolved Ni was decreased by only 10–35% in the anoxic waters. The dissolved concentrations of Cu, Zn, Pb and, to a lesser extent, Cd decreased in the anoxic zone.  相似文献   

7.
In 1984, on a transect covering the whole Baltic Sea and parts of the adjacent North Sea, 160 water samples were taken and analysed for their concentrations of particulate and dissolved metals. In addition, the suspended materials were investigated for their elemental bulk composition.The particulate fractions represented from about 5% (Cd, Cu and Ni) to 50% (Fe and Pb) of the total (particulate plus dissolved) concentrations. For some elements (Ba, Cd, Cu, Pb and Zn), the particulate matter from the surface microlayer was enriched with respect to those suspended materials taken from 0.2 m depth. This could reflect the atmospheric input of metal-rich aerosols. In anoxic deep waters, maximum contents of Zn (6400 μg g−1), Cu (1330 μg g−1) and Cd (12 μg g−1) were observed in the particulate matter, indicating sulphidic forms. On the other hand, under oxic conditions the distribution coefficients (Kd) decreased with the water depth (Cd, Fe and Pb).Relative to global background levels, the particulate matter contained metal “excesses” amounting to more than 90% of the total contents (Cd, Mn, Pb and Zn). Automated electron probe X-ray microanalysis (EPXMA) revealed that the elemental composition of sediments is mainly governed by post-depositional processes of early diagenesis and is only weakly related to the composition of suspended matter in the overlying water body. For instance, in relation to surface mud sediments of the central Baltic net-sedimentation basins, Zn, Cd, Cu and Mn had 30–100% higher levels in the suspended materials. The general pattern of metal contents of particulate matter taken from 10 m depth on a transect between the Bothnian Bay and the North Sea were—possibly as a result of anthropogenic inputs—rather similar for Pb, Zn and Cu. For Fe and Mn, the distribution patterns along the transect were probably governed by the natural loading characteristics and by the biogeochemistry of those elements.  相似文献   

8.
The present study was undertaken for assessing the level of heavy metals such as iron, manganese, zinc, copper, nickel, cadmium, lead, and cobalt in recent sediment samples of Safaga Bay, Egypt. Concentration of heavy metals in sediments shows significant variability and ranges from 863.37 to 1144.93 ppm for Fe, 64.29–586.8 ppm for Mn, 2.7–12.68 ppm for Zn, 3.01–7.2 ppm for Pb, 1.53–3.29 ppm for Ni, 0.55–1.57 ppm for Co, 0.16–1.37 ppm for Cu, and 0.22–0.4 ppm for Cd.

Sediment pollution assessments were carried out using an enrichment factor and geoaccumulation index. The calculation of enrichment factor showed that Cd is enriched by 4.1 due to phosphate sources in Safaga Bay. The Geoaccumulation index results revealed that there are positive and negative correlations between Fe, Zn, Mn, Pb, Ni, Cu, Co, and Cd indicating that these metals have complicated geochemical behaviors.  相似文献   

9.
海水养殖池沉积物中重金属形态和生物酶活性的关系研究   总被引:1,自引:0,他引:1  
以连云港市对虾养殖池表层沉积物为研究对象,采用Tessier连续萃取法,研究了表层沉积物中重金属(Cu、Zn、Pb、Cd、Cr、As、Mn)的赋存形态和酶(脲酶、碱性磷酸酶、过氧化氢酶、转化酶)活性的相关性。结果表明,重金属Cu和Zn以有机-硫化物结合态为主要的赋存形态,Pb以铁锰氧化物态为主要的赋存形态,Cd以可交换态(平均33.47%)和碳酸盐结合态(平均31.16%)为主要存在形态,Cr和As主要以残渣态存在,Mn的铁锰氧化物态比例最高。脲酶的活性范围为0.45—8.96mg/(g·24h),碱性磷酸酶活性范围为2.45—6.69mg/(g·24h),过氧化氢酶活性范围为0.14—2.36m L/(g·min),转化酶活性范围为0.45—10.45mg/(g·24h)。脲酶活性与Cd、As的可交换态、Cd的碳酸盐结合态、Cu、As的铁锰氧化物态、Zn、Pb、Cd、Mn的有机硫化物态之间显著相关;碱性磷酸酶活性与Zn、Cd的铁锰氧化物态显著相关;过氧化氢酶活性与Cd的可交换态、碳酸盐结合态及残渣态、Cu、Cd、As的铁锰氧化物态、Zn、Pb、Cd、Mn的有机硫结合态之间显著相关;转化酶活性与Cu、Cd、As的可交换态、Cd的碳酸盐结合态、Cu、Cd、As的铁锰氧化物态、Zn、Pb、Cd、Mn的有机硫化物态、Cd、As的残渣态之间显著相关。酶活性可以用来指示海水养殖池沉积物中重金属的形态转化过程。  相似文献   

10.
A total of 150 samples were collected at a 10-days' anchor station in the Bornholm basin (55° 31.1′N, 15° 32.1′E) and analyzed for dissolved (< 0.4 μm) and particulate trace metals. For dissolved Mn, large gradients have been found in the vertical distribution with minimum concentrations (< 0.2 μgl?1) in the halocline zone and considerably higher values in the deep waters (up to 50 μgl?1). Ultrafiltration studies indicate that dissolved Mn is probably present as Mn2+ in the oxygenated bottom layer. The primary production process was not evident in the particulate Mn profile; the suspended particulate material (SPM), however, shows a considerable enrichment with depth, apparently due to Mn-oxide precipitation.The distribution of dissolved Fe was rather homogeneous, with average concentrations throughout the water column between 0.86 and 1.1 μgl?1, indicating that the oxidation of Fe2+ ions released from the sediments must already be complete in the very near oxidation boundary layer. Relatively high concentrations of particulate Fe were actually measured in the bottom layer, with the maximum mean of 11.2 μgl?1 at 72 m. Similarly to Mn, the profile of particulate Fe does not reflect the SPM curve of the eutrophic layer. On average, about 70% of the total Fe in surface waters was found to be particulate.The average concentrations of dissolved Zn, Cd and Cu were found to be rather homogeneous in the water column but showed a relatively high variability with time. A simplified model on trace-metal uptake by phytoplankton indicates no significant change in dissolved metal concentrations during the period of investigation. On average, only 1.7% Zn, 3.3% Cd and 9.8% Cu of the total metal concentrations were found in particulate form. SPM analyses showed significant correlations of Zn, Cd and Cu with Fe, indicating that particulate iron is an important carrier for particulate trace metals in Baltic waters.  相似文献   

11.
Water column samples have been collected in the outer channel of the Ferrol Ria (NW Spain) during four occasions over a tidal cycle. The objective was to study the exchange of dissolved and particulate Cd, Cu, Pb and Zn and particulate Al, Fe and Si between the ria and the adjacent coastal waters. This study provides the first extensive dataset on dissolved and particulate metal concentrations in the water column of a Galician ria. Typical concentrations of dissolved Cd (96 ± 31 pM), Cu (8 ± 4 nM), Pb (270 ± 170 pM) and Zn (21 ± 10 nM) were similar than in other European Atlantic shelf and coastal waters. The fraction of metals in the particulate phase followed the trend: Pb > Cu Zn > Cd. The outgoing water from the ria was enriched in dissolved and particulate Cu, Pb and Zn compared with incoming waters, whereas Cd concentrations were similar for both waters. The suspended particulate matter was composed of a mixture of marine and continental material. The latter end-member was found to arise from the metal-rich ria bed sediments, which is diluted by the dominant metal-poor marine end-member. The net output flux of Cu from the channel is balanced by the freshwater inputs to the ria, and the net Zn flux gave a positive output to coastal waters. For Pb, the net flux to the coastal waters is less than that input from the rivers, as a result of its particle reactivity and deposition in sediments. On the contrary, a net input flux of dissolved Cd from coastal waters was observed, highlighting the oceanic source of this metal in the Galician rias. Results from the budget calculations are in agreement with the differential geochemical behavior of these elements in coastal waters.  相似文献   

12.
台湾海峡大气微量金属的化学特征及其入海通量   总被引:1,自引:1,他引:0  
2006~2007年,利用大容量气溶胶采样器在台湾海峡采集79个大气气溶胶样品.采用ICP—MS分析法测定了样品中Pb、Cu、Cd、V、Zn、Fe和Al等金属元素的含量.分析结果显示,台湾海峡大气微量金属含量呈现出明显的季节变化,对大部分元素而言,含量最低值出现在夏季,而最高值出现在冬季,气溶胶中微量金属的含量变化与海峡的气象条件等因素有关.通过富集因子、相关性分析和因子分析,对微量金属的来源进行了判别.台湾海峡大气微量金属的来源特征为:Cu、Pb、Cd、V主要来自污染源,而Al、Fe、Zn则主要来自地壳源.比较和分析了台湾海峡海域微量金属的大气与河流输入,Cu和Zn的大气输入低于九龙江和闽江的输入,而Pb、Cd的大气输入则超过了这2条河流的输入.  相似文献   

13.
The distribution of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater was investigated on the Bering Sea shelf (56–64°N, 165–169°W) in September 2000. The unfiltered and filtered seawater samples were used for determination of total dissolvable (TD) and dissolved (D) metals (M), respectively. The TD-M concentrations were generally higher than in the Pacific Ocean. TD-Cd was highest in deep water of the outer shelf domain and dominated by dissolved species. The other TD-M were highest at stations close to the Yukon River delta and had higher fractions of labile particulate (LP) species that were obtained as the difference between TD-M and D-M. Dissolved Al, Ni, and Cu were characterized by input from the Yukon River. Dissolved Mn and Co showed maximums on the bottom of the coastal domain, suggesting influence of sedimentary Mn reduction. The correlations of D-Zn, D-Cd, and macronutrients indicated their distributions were largely controlled through uptake by microorganisms and remineralization from settling particles. All these three processes (river input, sedimentary reduction, and biogeochemical cycle) had an influence on the distribution of D-Fe. D-Pb was fairly uniformly distributed in the study area. The stoichiometry of D-M in the Bering Sea shelf showed enrichment of Co and Pb and depletion of Ni, Cu, Zn, and Cd compared with that in the North Pacific. The LP-M/LP-Al ratio revealed significant enrichment of the other eight metals relative to their crustal abundance, suggesting importance of formation of Fe–Mn oxides and adsorption of trace metals on the oxides.  相似文献   

14.
Between 1980 and 1984 extensive studies were carried out in the Baltic Sea on trace metals (Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb and Zn) in water, suspended matter and sediments. The results enabled the influence of different factors on metal distribution patterns to be considered. The vertical profiles of dissolved and particulate metals in waters of the central deep basins reflect influences caused by oxygen deficiency and anoxic conditions in near-bottom water layers. Peculiarities at Station BY15 in the Gotland Deep included high dissolved Fe, Mn and Co concentrations and remarkable enrichment of Zn (0.64%), Cd (51 μg g−1) and Cu (0.15%) in particulate matter from the anoxic zone. Manganese-rich particles were accumulated above this layer.In fine-grained soft sediments below anoxic deep waters, maximum contents of Cd, Cu and Zn were observed, relative to other coring sites, between Bothnian Bay and Lübeck Bight. The Hg content in sediments probably reflects the joint flocculation with organic matter. Land-based sources seem to play the leading part for maximum lead contents.  相似文献   

15.
Mobilization of metals from riverine suspended matter in seawater   总被引:1,自引:0,他引:1  
Suspended matter from rivers in the Russian Far East was leached by seawater to assess the extent of Zn, Cd, Pb, and Cu release from the land-derived solids to estuarine and coastal waters. The concentration of solids in the leaching experiments was 0.25 g/l. The suspended matter used varied in metal content from background levels to heavily contaminated.The concentration of Zn, Cd, Pb, and Cu in the leaching solution after 1, 4, 24, 48, and 96 h was determined by anodic stripping voltammetry. Measurable Cd was transferred from river suspended matter to seawater with both background and elevated Cd concentrations, though the amount of Cd released was different. The increase in Zn and Pb in solution was observed only at the enriched concentration of metals in the suspended solids. The Cu transfer into solution was more pronounced from material with elevated Cu concentration, but the amount of degradable organic matter in the solid phase was more important.The losses of metals from the riverine solids varied from 60% to 80% of total concentration for Cd to negligible for Pb, independent of contamination. The Zn loss depended on the initial concentration in the solids and decreased from 11–16% for the heavily contaminated suspended matter to 3–8% for the moderately enriched ones and to negligible for the pristine solids. Cu loss varied from 1% to 30% of total content, with no clear dependence on concentration in the suspended matter.The significance of additional input of dissolved metals to estuarine and coastal waters from remobilization was assessed by comparison with the initial concentration of dissolved metals in river water. Such experiments could be used to assess the water quality impact of atmospheric fallout of contaminated solids and storm drainage from the urbanized areas, in addition to river suspended matter studies.  相似文献   

16.
Iron, Mn, Cu, Pb and Zn have been determined in suspended particulate matter (SPM) collected in the estuarine plume regions of the Humber (during winter, spring and summer) and Thames (winter only). Metal concentrations (w/w) were found to increase with SPM concentration and could be defined in terms of the mixing of an ambient, slow settling population, with variable proportions of a diluent population. The end-members of the particle mixing series are fine material derived from coastal erosion, which is modified seasonally by biological production, and contaminated estuarine material which is contained within the estuarine discharge or derived from local resuspension of reworked deposits by tidal currents and wave activity. Iron-normalized metal concentrations exhibited an inverse relationship with SPM concentration in the Humber region and regression analyses enabled seasonal changes in end-member compositions to be evaluated. Since the metal:Fe ratios of the ambient population did not accord with those of local cliff samples, additional sources of metal were proposed whose importance to particle composition increases with a reduction in SPM concentration. Qualitatively, the seasonal variation of end-member compositions was consistent with (i) the coupling between redox processes occurring in the bed sediment and adsorption of metals (Mn, Cu, Zn) released from the pore waters onto ambient and diluent suspended particles in the overlying water column, and (ii) adsorption of metal (Pb) by ambient suspended particles from an extraneous (atmospheric) source. In the Thames plume, an increase in Fe-normalized metal concentrations with increasing particle concentration resulted from the mixing of end-member particles and the effects of additional metal from an internal or extraneous source were less clear, possibly because of metal desorption from suspended particles traversing the salinity gradient in the outer estuary. The processes described in this study regulate the internal cycling of trace metals in estuarine plume regions and the export of metals to neighbouring shelf sea environments.  相似文献   

17.
Ag, Al, Ca, Cd, Cu, Fe, Mg, Mn, Pb and Zn concentrations and 210Po and 210Pb activities were measured in 26 specimens of the squid Nototodarus gouldi taken from the waters of Bass Strait in one jigging operation. All the elements show wide ranges in concentrations in specimens apparently subject to the same environmental conditions. Copper concentration was 27-1 200 μg/g, and 210Po activity 4·8–24·2 Bq/g. The animal wet weights, the elements Ag, Al, Cd, Fe and Zn, and the radionuclide 210Po have coefficients of variation in the range 40–60%; Ca, Mg and Mn show the smallest variability (CV = < 30%), and Cu the greatest (CV = 12%). Significant correlations (p < 0·001) were found between the following pairs of elements: Cd-Zn, Cd-Cu, Zn-Cu, Mg-Mn, Fe-Mn, Ca-Mg and Fe-210Po.  相似文献   

18.
Concentrations of Cd, Cu, Cr, Co, Ni, Zn, Fe, Mn, Pb, As, and Sb were determined in sediment trap and bottom sediment samples collected seasonally from a station on the eastern Turkish coast of the Black Sea. Cd, Pb and Mn concentrations were highest in the sediment trap samples except during the summer period, whereas Co, Ni, Zn and Fe levels were much lower than corresponding levels found in the surface sediments. Cu, Cr, As and Sb levels showed no definite trend with sediment type. In general, with the exception of Cr, relatively lower metal concentrations in the sediment trap material were determined in the summer period. The highest mass flux, 56.5 g m−2 day−1, was measured during autumn. The highest flux of heavy metals also occurred during autumn and was strongly dependent on particle mass flux. Based on these results, we suggest that the downward vertical transport of particulate heavy metals in this region is related to the high degree of land erosion and the resultant particulate flux dynamics, which occur here. It was noteworthy that the highest concentrations of Cd, Cu, Co, Zn, Fe and Sb in particles were measured during winter a finding which suggests that enhanced fossil fuel combustion, which occurs during this period in adjacent urban and industrial areas plays an important role in the metal composition of sinking particles in nearshore waters.  相似文献   

19.
Very high concentrations of Zn, Pb, Cu and Cd occur in the muddy bottom sediments of Lake Macquarie, a saline coastal lagoon in southeastern Australia. The trace metals emanate from industrial sources, especially a lead-zinc smelter, at the northern end of the lake. Individual metal concentrations decrease progressively away from the source area but at differing rates; Zn is most mobile and Cd appears to be deposited first. They approach natural background levels in the southern part of the lake. Mn shows a reverse trend but Ni, Co, Ag and Fe rarely rise above background levels.Shallow cores in the lake bed penetrated a metal enriched surface zone 15–35 cm thick underlain by uncontaminated sediments with natural (background) metal concentrations. Sedimentation rates determined from radiocarbon ages on shells in the cores mainly range between 0·15 and 0·5 mm yr?1. Over the 85 years since industrialization commenced, less than 5 cm of mud has accumulated on the lake bed. Bioturbation is invoked to account for the depth to which the sediment has been enriched in heavy metals.  相似文献   

20.
Suspended matter and sediments from the Adige River mouth were analysed in an attempt to elucidate the transfer of heavy metals from the river to the sea. The vertical profile of grain-size spectra of suspended matter in front of the river mouth has shown that the riverine particles are limited to the upper brackish layer.Particulate matter was found to have a large specific surface area, up to 20 m2 g−1 in the estuarine sample. High quantities of quartz and phyllosilicates (micas and clay minerals) were found in the riverine suspended matter. The quartz content of the suspended matter from the brackish layer was found to be diminishing and with the organic matter becoming the essential component (22%). Higher levels of trace metals were usually detected in suspended matter samples (40 ppm Ni, 200 ppm Cr, 60 ppm Pb, 100 ppm Cu, 320 ppm Zn, and 0·9 ppm Cd) than in sediments.The observed similarity of physico-chemical, mineralogical and geochemical characteristics of riverine suspended matter and recent marine sediments, indicates that most of the riverborne particulate matter is deposited in the proximity of the Adige River mouth.The peculiar characteristics of the chromium level (high bulk concentration and its abundance in the organic fraction of the particular matter) when compared to the other trace metals, indicates the anthropogenic influence on its biogeocycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号