首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
东海陆架盆地是位于中国东部华南大陆边缘的一个中、新生代叠合盆地,具有较大油气潜力。目前东海陆架盆地油气的发现均来自于新生界,对中生代残留地层的各方面特征认识不足:在空间上通常集中于特定构造单元,且基本位于盆地西部;在时间上主要涉及白垩纪和侏罗纪,且多是定性或半定量的研究。本文在前人研究的基础上,收集、整理了研究区目前最新、最全的反射地震资料和钻井数据,从钻遇中生界井的标定出发,以地震资料的层序划分和解释为基础,进行残留地层的研究,空间上统一盆地东、西两大坳陷带,时间上统揽白垩纪、侏罗纪以及前侏罗纪三个时期。结果表明,东海陆架盆地中生代残留地层遭受了后期严重的剥蚀改造,总体呈现东厚西薄、南厚北薄的特征,残留地层范围随时间不断东扩。对比各时期残留地层平面展布特征,揭示了东海陆架盆地的演变过程:三叠纪时期盆地原型为被动大陆边缘坳陷型盆地,早、中侏罗世时期为活动大陆边缘弧前盆地,晚侏罗世—晚白垩世时期为大陆边缘弧后伸展盆地;与此相对应,古太平洋板块俯冲肇始于晚三叠世—早、中侏罗世时期,板块后撤始于晚侏罗世。东海陆架盆地在中生代的东侧边界位于钓鱼岛隆褶带的东侧。  相似文献   

2.
China comprises a mosaic of distinct continental fragments separated by fold belts. These fold belts are suture zones resulting from the accretion of various fragments formerly separated by intervening areas of oceanic crust.The major sedimentary basins onshore China can be classified into four groups. Those in western China are flexural, developing as a result of north-south compression. In contrast, those in the east are extensional and related to development of the Pacific oceanic margin. In central China, basins have a more problematic origin. Those of north central China (Ordos, Sichuan) are flexural basins controlled by eastward directed thrusting along their western margin. In contrast, basins further south (Chuxiong, Shiwandashan) are predominantly extensional and related to major strike-slip movements.By synthesizing basin stratigraphies across China in tectonostratigraphic terms (and in particular comparing the nature and timing of unconformities), it is possible to formulate a coherent model for the palaeoreconstruction of China. We identify five major tectonostratigraphic breaks which equate with the collision of the following continental fragments: Tarim/North China (Carboniferous-Permian), South China Block (Permian-Triassic), Qiantang (Late Triassic-Early Jurassic), Lhasa Block (Late Jurassic-Early Cretaceous) and India (Early Tertiary).Prior to Permian times, the southern margin of Eurasia ran approximately along the northern border of modern China. The Late Carboniferous collision of Tarim/North China with Eurasia resulted in the development of a flexural basin (Junggar) and deposition of non-marine clastics. To the south of the suture, shallow marine deposition continued. In the Late Permian-Early Triassic, the progressive collision from east to west of the South China Block with the North China Block resulted in a change to fluvial/lacutrine sedimentation across the entire North China-Tarim block. Open marine carbonate deposition in the north of the South China Block passed southward into a deeper marine clastic sequence deposited in a backarc basin. Further south, a subduction zone existed along the southeastern margin of the South China Block.In western China, northward subduction throughout the Triassic resulted in the development of the Songban-Ganzi accretionary prism with retroarc thrusting resulting in flexure and the first development of the Tarim basin. Oblique collision of the Qiantang Block in the Late Triassic along the east of the South China Block resulted in east-west directed thrusting which initiated the Suchuan and Ordos basins. Continued strike-slip deformation along the south western margin of the South China Block resulted in the development of basins with a significant extensional component such as Chuxiong.The collision of the Qiantang Block with the southern edge of the Tarim Basin (Early Jurassic) resulted in a renewed clastic influx in both the Tarim and Junggar basins. Along the eastern (Pacific) margin a compressional arc and retroarc basin in the south passed northwards into an extensional arc system. Subduction rollback of the extensional arc initiated rifting in the Late Jurassic in the Eren and Songliao basins.The Late Jurassic-Early Cretaceous collision of the Lhasa Block in the west rejuvenated the thrust systems bordering the western basin and resulted in a renewed clastic influx. In the southeast, the compressional arc phase culminated in widespread thrusting and folding of Early Cretaceous age. In the northeast, extension continued with the progressive migration of the rift system southward with time.The arrival of the Indian Block in the Early Tertiary rejuvenated the bounding thrust belts of all the western basins. In the east, the change in convergence of the Pacific plate to a more westerly direction is marked by extension and widespread rifting along the entire length of Eastern China.Throughout most of China, Mesozoic and Cenozoic deposition occurred in predominantly non-marine environments. Source rocks in such settings comprise principally mudstones deposited in lakes (organic-rich mudstones). These can accumulate in both deep and shallow lakes. In order to accumulate substantial volumes, the lake must be significant in space and time.In China, lacustrine ORMs occur in both rift and flexural basins. Lacustrine ORMs deposited under humid climatic conditions are restricted to the period of maximum tectonic subsidence. In the flexural basins of western China, source rock deposition follows basin initiation by 20–30 Ma. In the extensional basins of eastern China, source rock deposition takes place 5–15 Ma after basin initiation. By contrast, semi-arid and arid climate lacustrine ORMs, whilst being best developed during the period of maximum tectonic subsidence, occur at all stages in the basin history.  相似文献   

3.
南沙群岛海域构造地层及构造运动   总被引:1,自引:0,他引:1  
根据对“实验2”号调查船1987—1991年测得的反射地震剖面的解释,论述了南沙群岛海域的构造层划分、时代属性与分布发育特征。提出本区自白垩纪中期以来发生过两次重大的构造运动,形成两个裂谷作用构造旋回。  相似文献   

4.
印支运动以后,在现今的南海及其周围存在过2个古海洋,其中晚侏罗世一早白垩世消失于南海北部陆缘区、北巴拉望-礼乐滩-南沙地块以北的古海洋为“中特提斯”,而早第三纪期间消失于南沙地块以南沙捞越一带的古海洋为“古南海”。它们的结束时间和消失的古地理位置完全不同。对它们的正确识别和区分,对目前进行的南海周边地区中一新生代构造演化研究极为重要。对马来半岛、加里曼丹岛中生代岩相古地理资料的整理和分析结果支持如下结论:中特提斯洋的延伸是从苏门答腊的Woyla缝合线,过婆罗洲的Meratus缝合线。然后绕西南婆罗洲地块至加里曼丹岛的西北(Lupar带或者Boyan带),进入南海西南角(南沙-礼乐滩-北巴拉望地块等以北),再接南海北部陆缘区内的中特提斯缝合线。该区中生代海相地层的分布明显受构造演化的控制,整体趋势是向南退缩。印支运动以前、早-中三叠世的海侵广泛分布于古特提斯带及以南地区,涉及华南,中南地块,马来半岛及以南地区;印支运动基本结束了古特提斯带的海侵,因此晚三叠世一早侏罗世的海侵主要限于中特提斯海域及以南地区,如与中特提斯洋相邻的陆域,包括华南的湘赣粤海湾晚三叠世一早侏罗世的海侵、中南半岛东南部早侏罗世的海侵以及新加坡早侏罗世的海相地层。白垩纪海相地层主要分布于中特提斯以南地区,如加里曼丹岛。  相似文献   

5.
为了探讨北海盆地油气富集的控制因素,对前人在该区的大量研究成果进行了整理和分析,结果显示,北海盆地三叉裂谷所在的3个地堑具有上下2层不同的结构特征,即晚侏罗世末期的裂谷拉伸运动造就了北海盆地的下构造层,而早白垩世之后的热沉降作用塑造了北海盆地的上构造层;断层主要分布在下白垩统之下的老地层中。北海盆地油气成藏组合主要受下构造层的控制,成藏模式主要表现为中生代砂岩断—背斜油气藏,因此,可以认为,北海盆地油气富集的主要控制因素是晚侏罗世—早白垩世的裂谷拉伸运动。  相似文献   

6.
东海陆架盆地南部中生代构造演化与原型盆地性质   总被引:10,自引:0,他引:10  
东海陆架盆地南部夹持于欧亚板块、太平洋板块与印度板块之间,是发育在前中生代基础之上的中、新生代叠合盆地。其构造演化受古太平洋板块俯冲及特提斯-喜马拉雅构造域的联合影响,经历了印支末期基隆运动、燕山期渔山和雁荡运动的叠加改造。结合浙闽隆起带中生代火成岩事件、盆地构造变形、沉积学的一些证据,通过海陆对比研究,认为东海陆架盆地南部早-中三叠世可能为面向古太平洋的被动大陆边缘盆地;晚三叠世-侏罗纪古太平洋板块已对中国大陆有较强的俯冲作用,东海陆架盆地及南部原型盆地为活动大陆边缘弧前盆地;白垩纪受控于滨海断裂表现为活动大陆边缘走滑拉分盆地;古新世-始新世火山岛弧向东移动,东海陆架变为弧后裂谷盆地。  相似文献   

7.
We focus on the northern Ligurian margin, at the geological junction of the subalpine domain and the Ligurian oceanic basin, in order (1) to identify the location of the southern limit of the Alpine compressive domain during the Cenozoic, and (2) to study the influence of a compressive environment on the tectonic and sedimentary evolution of a passive margin.Based on published onshore and offshore data, we first propose a chronology of the main extensional and compressional regional tectonic events.High-resolution seismic data image the margin structure down to ∼3 km below seafloor. These data support that past rifting processes control the present-day margin structure, and that 2800-4000 m of synrift sediment was deposited on this segment of the margin in two steps. First, sub-parallel reflectors indicate sediment deposition within a subsident basin showing a low amount of extension. Then, a fan-shaped sequence indicates block tilting and a higher amount of extension. We do not show any influence of the Miocene Alpine compression on the present-day margin structure at our scale of investigation, despite the southern subalpine relief formed in the close hinterland at that time. The southern front of the Miocene Alps was thus located upslope from the continental margin.Finally, a comparison with the Gulf of Lions margin suggests that the tectonic influence of the Alpine compression on the rifting processes is restrited to an increase of the subsidence related to flexure ahead of the Alpine front, explaining abnormally high synrift thicknesses in the study area. The Alpine environment, however, has probably controlled the sedimentary evolution of the margin since the rifting. Indeed, sediment supply and distribution would be mainly controlled by the permanent building of relief in the hinterland and by the steep basin morphology, rather than by sea-level fluctuations, even during the Messinian sea-level low-stand.  相似文献   

8.
通过选取南黄海盆地东北凹典型地震剖面,开展精细的构造解释,系统梳理了东北凹构造样式特征。采用平衡剖面恢复技术和伸缩率计算方法,恢复了东北凹各时期的地质演化剖面,分析了东北凹不同构造演化阶段的伸缩率变化特征。研究表明,南黄海盆地东北凹主要发育伸展构造、走滑构造(负花状)和反转构造等多种构造组合样式,经历了晚侏罗世的仪征运动和渐新世末的三垛运动,相应地在中—上侏罗统和渐新统沉积时期,东北凹处于明显的收缩阶段,伴随发育TK40和T20不整合界面。同时,本文结合区域应力场特征,探讨了南黄海盆地东北凹的构造演化历程:以两次构造运动为界,划分为3个构造演化阶段(晚三叠世—侏罗纪的初始断陷阶段、白垩纪—渐新世的裂陷-反转阶段、新近纪—第四纪的区域沉降阶段)。南黄海盆地东北凹伸缩率的时空变化及构造演化过程,是对“晚中生代以来,古太平洋板块相对欧亚板块俯冲汇聚速率和方向的改变”的局部响应。  相似文献   

9.
南海北部陆缘张裂--岩石圈拆沉的地壳响应   总被引:4,自引:0,他引:4  
南海北部陆缘在中生代晚期曾形成宏伟的华夏陆缘造山带。火成岩岩石学、岩相古地理学和地球物理学证据显示,该造山带不仅具有巨厚(50~60 km)的陆壳,而且还有巨厚(160~180 km)的岩石圈根,在地势上曾出现过高3 500~4 000 m 的华夏山系。陆缘裂陷盆地的形成发育历史、地壳-岩石圈深部结构、火成岩地球化学特征及理论计算均表明,南海北部陆缘从晚白垩世以来发生的张裂作用起始于华夏陆缘造山带的拉伸塌陷,岩石圈拆沉是南海北部陆缘张裂的重要的引发机制。因此,南海北部陆缘张裂既不同于弧后扩张,也不受控于大西洋式的海底扩张,而是该区大陆构造演化和深部壳幔相互作用的结果。  相似文献   

10.
西南非海岸盆地位于南大西洋的非洲海岸地区,由上侏罗—下白垩统裂谷盆地和上白垩—全新统被动陆缘盆地叠合形成,是一个热点油气勘探区。在调研国外油气地质研究的基础上,根据地震、测井资料,详细描述了西南非海岸盆地在中生代的构造形态与沉积充填特征,明确了其纵向演化与横向迁移规律,并依据已知油气田的钻井与测试资料,综合分析了盆地油气富集的基本地质条件。研究表明,西南非海岸盆地始形成于侏罗纪晚期,早期以剧烈的断裂与火山活动为特点,裂谷盆地内部填充大量砂岩和页岩;在经历白垩纪巴雷姆期与阿普特期的过渡阶段后,于阿尔布期进入被动陆缘阶段,在过渡与被动陆缘阶段,盆地内部以细粒海相沉积为主,可见少量碳酸盐岩与盐岩。盆地阿普特阶主力烃源岩与其上覆的上白垩统碎屑岩储层共同组成了油气成藏组合。  相似文献   

11.
台西南盆地的构造演化与油气藏组合分析   总被引:14,自引:2,他引:14  
本文根据台西南盆地的地质、地球物理资料,对台西南盆地的地壳结构、基底特征、沉积厚度、断裂构造等基本地质构造特征^[1]作了研究,探讨了台西南盆地的构造发展演化及及油气藏组合。认为该盆地的构造演化为幕式拉张。幕式拉张可分为三大张裂幕,相应的热沉降作用使盆地在不同的张裂幕时期发展为断陷,裂陷,裂拗-拗陷。它们分别与板块作用下的区域构造运动阶段相对应,说明区域构造运动不但控制了盆地的发展演化,同时也制约  相似文献   

12.
南海北缘新生代盆地沉积与构造演化及地球动力学背景   总被引:32,自引:0,他引:32  
南海北缘新生代沉积盆地是全面揭示南海北缘形成演化及与邻区大地构造单元相互作用的重要窗口。通过对盆地沉积-构造特征分析,南海北缘新生代裂陷过程显示出明显的多幕性和旋转性的特点。在从北向南逐渐迁移的趋势下,东、西段裂陷过程也具有一定的差异,西部裂陷活动及海侵时间明显早于东部,裂陷中心由西向东呈雁列式扩展。晚白垩世-早始新世裂陷活动应是东亚陆缘中生代构造-岩浆演化的延续,始新世中、晚期太平洋板块俯冲方向改变导致裂陷中心南移,印度欧亚板块碰撞效应是南海中央海盆扩张方向顺时针旋转的主要原因。  相似文献   

13.
东格陵兰盆地陆上和近海地区是目前北极与深水油气勘探的热点地区,但油气勘探程度和资源认识程度低。美国地质调查局(2000、2007年)油气资源评价结果表明该区具有很大的油气资源潜力,同时油气勘探具有高风险和不确定性。通过收集整理东格陵兰盆地、北海盆地油气地质资料及油气田勘探开发数据,从区域上对两个地区的油气成藏条件进行了对比,并采用地球化学方法与类比法,评价了东格陵兰盆地的油气资源潜力。东格陵兰盆地属于晚古生代—中生代的裂谷盆地,呈现两坳一隆的构造格局,与挪威陆架盆地在进入被动陆缘阶段之前具有相同的地质发育过程,沉积环境类似,共同经历古生代和中生代裂谷及裂后的热沉降。东格陵兰盆地发育晚古生代湖相烃源岩、上侏罗统海相烃源岩,储层主要为中侏罗统浅海相砂岩和白垩系深海浊积砂岩,圈闭类型主要为伸展构造圈闭、地垒断块圈闭、盐构造圈闭以及地层圈闭等。东格陵兰盆地油气成藏条件优越,油气资源潜力较大,具有较好的勘探前景。在影响东格陵兰盆地油气资源认识的诸多地质因素中,有利圈闭类型、必要数量的烃源岩以及油气生成条件和适当埋藏史还待进一步证实。  相似文献   

14.
东海陆架盆地西部坳陷为整个盆地内重要的二级构造单元之一,发育有多个次级凹陷,完整记录了盆地及周边晚白垩世以来的构造变形信息,能够为解决太平洋板块俯冲、东亚陆缘类型转换等相关科学问题提供参考。基于二维地震剖面解释,并综合前人研究成果,通过对东海陆架盆地西部坳陷的构造分析认为,该坳陷发育有中—新生界两大构造层,由一系列中—新生代裂陷盆地组成,为早白垩世晚期应力场由挤压环境转换为拉张伸展环境下的产物,以伸展构造样式为主,半地堑、掀斜断块、多米诺式断裂等上述伸展构造样式发育。同时,伴随晚白垩世末期的应力反转,坳陷内长江凹陷局部可见有正反转构造样式。坳陷内断裂展布具有不同时期、方向不同、性质各异的特征,而岩浆岩发育则表现出了广泛分布、不同时代、规模和岩性各异的特点,二者皆与区域构造方向基本一致。白垩纪以来,太平洋板块的漂移方向、俯冲角度的多次变化为坳陷现今中—新生代构造格局形成的主要因素,此外后期菲律宾海板块向欧亚板块的碰撞、挤压、俯冲作用使得整个构造格局更加复杂化。  相似文献   

15.
构造沉降史分析有助于认识盆地的形成演化过程,是盆地分析的重要基础。为对比分析南海西南次海盆两侧陆缘新生代构造演化特征,本文选取了横穿南海西南次海盆两侧陆缘的多道地震剖面测线,其中NH973-3测线横跨西南次海盆北侧陆缘中-西沙地块,NH973-1+SO27-04联合剖面跨越西南次海盆南侧陆缘南沙地块,在地震地层解释的基础上,采用回剥法和平衡剖面技术分析了西南次海盆两侧陆缘构造沉降特征及伸展过程。分析结果表明:(1)西南次海盆两侧陆缘的构造沉降曲线特征表现为裂陷初始期曲线斜率平缓,裂陷强烈期和末期曲线斜率较陡,断-拗转换期和拗陷期曲线斜率又回归相对平缓的反“S”形多段式特征;(2)两侧陆缘的构造沉降具有一定的延迟滞后性,造成此现象的原因可能与西南次海盆两侧陆缘岩石圈的分层差异伸展及南海西缘断裂的右旋走滑活动有关,且南海西缘断裂的右旋走滑活动造成两侧陆缘的构造沉降中心向南迁移;(3)两侧陆缘盆地主要形成于晚渐新世,北侧陆缘因受晚渐新世南海西缘断裂右旋走滑活动的改造影响而形成伸展-走滑相关的沉积盆地,南侧陆缘在早中新世因受到挤压碰撞的改造影响而形成伸展-挠曲复合型沉积盆地。这些研究成果可为南海西南次海盆两侧陆缘沉积盆地的油气和天然气水合物的勘探开发提供重要的科学背景支持。  相似文献   

16.
The North Gabon coastal rift basins consist of a set of 130–150 long-segment asymmetrically tilted half grabens (Interior Basin) and 000–020 short-segment en échelon half grabens (N'Komi Basin) separated by 040–060 major transverse faults. Tectono-sedimentary analysis of field and subsurface data reveals the control exerted by extensional tectonism over continental sedimentation. During Berriasian to early Barremian times, uniform uniaxial 040–060 extension was responsible for the stretching of the brittle upper crust over a 100-km wide domain. During late Barremian–early Aptian times, the main locus of extension stepped westward resulting in severe end-rift uplift and erosion of the failed Interior and N'Komi rift basins. Early Cretaceous coastal rifts in North Gabon display a wide range of styles from oblique rifting (N'Komi Basin), normal rifting (Interior Basin) to transform rifting. The pre-existing Precambrian tectonic fabric exerts a strong control over the mode and over the 100–300 km-scale segmentation of the rifting.  相似文献   

17.
The North Atlantic margins are archetypally passive, yet they have experienced post-rift vertical movements of up to kilometre scale. The Cenozoic history of such movements along the NW European margin, from Ireland to mid-Norway, is examined by integrating published analyses of uplift and subsidence with higher resolution tectono-stratigraphic indicators of relative movements (including results from the STRATAGEM project). Three episodes of epeirogenic movement are identified, in the early, mid- and late Cenozoic, distinct from at least one phase of compressive tectonism. Two forms of epeirogenic movement are recognised, referred to as tilting (coeval subsidence and uplift, rotations <1° over distances of 100s of Kilometres) and sagging (strongly differential subsidence, rotations up to 4° over distances <100 km). Each epeirogenic episode involved relatively rapid (<10 Ma) km-scale tectonic movements that drove major changes in patterns of sedimentation to find expression in regional unconformity-bounded stratigraphic units. Early Cenozoic tilting (late Paleocene to early Eocene, c. 60–50 Ma) caused the basinward progradation of shelf-slope wedges from elongate uplifts along the inner continental margin and from offshore highs. Mid-Cenozoic sagging (late Eocene to early Oligocene, c. 35–25 Ma) ended wedge progradation and caused the onset of contourite deposition in deep-water basins. Late Cenozoic tilting (early Pliocene to present, <4±0.5 Ma) again caused the basinward progradation of shelf-slope wedges, from uplifts along the inner margin (including broad dome-like features) and from offshore highs. The early, mid- and late Cenozoic epeirogenic episodes coincided with Atlantic plate reorganisations, but the observed km-scale tectonic movements are too large to be accounted for as flexural deflections due to intra-plate stress variations. Mantle–lithosphere interactions are implied, but the succession of epeirogenic episodes, of differing form, are difficult to reconcile with the various syn-to post-rift mechanisms of permanent and/or transient movements proposed in the hypothetical context of a plume beneath Iceland. The epeirogenic movements can be explained as dynamic topographic responses to changing forms of small-scale convective flow in the upper mantle: tilting as coeval upwelling and downwelling above an edge-driven convection cell, sagging as a loss of dynamic support above a former upwelling. The inferred Cenozoic succession of epeirogenic tilting, sagging and tilting is proposed to record the episodic evolution of upper mantle convection during ocean opening, a process that may also be the underlying cause of plate reorganisations. The postulated episodes of flow reorganisation in the NE Atlantic region have testable implications for epeirogenic movements along the adjacent oceanic spreading ridge and conjugate continental margin, as well as on other Atlantic-type ‘passive’ margins.  相似文献   

18.
高雅  唐勇  解习农 《海洋科学》2020,44(1):157-164
在阅读相关文献资料的基础上,分析了莫桑比克盆地的区域性幕式构造演化,并进一步总结归纳了其沉积充填特征。研究显示该盆地为东非边缘陆内裂谷盆地,以晚侏罗世破裂不整合面为界划分为断陷期及坳陷期,断陷期为陆相湖盆沉积充填,进入坳陷期后逐渐从海陆过渡相向浅海相和深水相演变。晚白垩世末和渐新世末两次构造抬升,使得盆地沉积环境及物源供应发生明显改变,也逐渐从深水相向滨浅海相或三角洲相演变。  相似文献   

19.
Tectonic evolution of the Cape and Karoo basins of South Africa   总被引:1,自引:0,他引:1  
The Cape and Karoo basins formed within the continental interior of Gondwana. Subsidence resulted from the vertical motion of rigid basement blocks and intervening crustal faults. Each basin episode records a three-stage evolution consisting of crustal uplift, fault-controlled subsidence, and long periods of regional subsidence largely unaccompanied by faulting or erosional truncation. The large-scale episodes of subsidence were probably the result of lithospheric deflection due to subduction-driven mantle flow. The early Paleozoic Cape basin records the combined effects of a north-dipping intra-crustal décollement (a late Neoproterozoic suture) and a right-stepping offset between thick Rio de la Plata craton and Namaqua basement. Following the Saldanian orogeny, a suite of small rift basins and their post-rift drape formed at this releasing stepover. Great thicknesses of quartz sandstone (Ordovician–Silurian) and mudstone (Devonian) accumulation are attributed to subsidence by rheological weakening and mantle flow. In contrast, the Karoo basin is a cratonic cover that mimics the underlying basement blocks. The Permian Ecca and lower Beaufort groups were deposited in a southward-deepening ramp syncline by extensional decoupling on the intra-crustal décollement. Reflection seismic and deep-burial diagenetic studies indicate that the Cape orogeny started in the Early Triassic. Deformation was partitioned into basement-involved strike-slip faults and thin-skinned thrusting. Uplift of the Namaqua basement resulted in erosion of the Beaufort cover. East of the Cape fold belt, contemporaneous subsidence and tilting of the Natal basement created a late Karoo transtensional foreland basin, the Stormberg depocentre. Early Jurassic tectonic resetting and continental flood basalts terminated the Karoo basin.  相似文献   

20.
东海陆架盆地位于欧亚板块的东南边缘,具有东西分带、南北分块的格局,其中东部坳陷带包括福江凹陷、西湖凹陷和钓北凹陷。选择西湖凹陷11条、钓北凹陷2条地震剖面,采用平衡剖面技术,计算了西湖凹陷和钓北凹陷新生代不同演化阶段的伸缩率。伸缩率的分析表明,T50-T34西湖凹陷和钓北凹陷处于伸展状态,T34-T12西湖凹陷处于压缩状态,T34-T30、T30-T12钓北凹陷分别处于压缩、伸展状态,T12至今西湖凹陷和钓北凹陷区域沉降。始新世中期西湖凹陷进入挤压期,玉泉运动(T30)、花港运动(T20)和龙井运动(T12)3次挤压的强度不断加剧。结合盆地充填结构分析,钓北凹陷新生代经历了早中始新世地堑式断陷、晚始新世和渐新世坳陷、早中中新世断陷和晚中新世至今整体沉降的4个演化阶段;西湖凹陷新生代经历了古新世和早中始新世断陷、晚始新世和渐新世坳陷、早中中新世反转和晚中新世至今整体沉降的4个演化阶段。西湖凹陷和钓北凹陷构造演化有很大不同,这是东海陆架盆地南北分块的重要依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号