首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
LONG TERM HISTORY (DEXTRAL TO SINISTRAL AND DUCTILE TO BRITTLE) OF THE DAMXUNG—JIALI SHEAR ZONE IN SOUTHERN TIBET  相似文献   

2.
江西武功山东区大型韧性剪切带的显微构造特征   总被引:2,自引:0,他引:2       下载免费PDF全文
吉磊 《地质科学》1995,30(1):95-103
武功山东区存在一条大型韧性剪切带。鞘褶皱倒向以及旋转变形构造(如S-C面理组构、旋转碎斑系、雪球构造和粒内显微破裂构造等)显示此剪切带为由南向北逆冲推覆性质。砾石、黄铁矿还原斑和石英斑晶的有限应变分析表明剪切带西段和东段岩石分别以收缩型椭球和压扁型椭球变形为特征。剪切带的主要变形时代是早古生代,可能与早古生代华夏陆块和扬子陆块之间的碰撞造山作用有关。  相似文献   

3.
《Geodinamica Acta》2013,26(4):203-218
The Variscan continental collision is expressed by large shear zones in Western Europe. The synthesis of granite ages, related to different deformation fields in the Vendée area, suggests a geodynamic model for the tectonic evolution of this part of the Variscan belt between 370 Ma – 320 Ma. After the first step of the continental collision, leading to high temperature and anatexis at 375-360 Ma, the south-eastern part of the Armorican massif underwent large dextral shearing along N110-N125 trending shear zones, related to a bulk NNW-SSE shortening direction, up to early Visean time. Large-scale displacements progressively decreased at around 345-340Ma. During middle Visean time, the shortening axis direction rotated towards a NNE-SSW position implying changes in the regional deformation field. The occurrence of N70-N100 sinistral and N110-N130 dextral conjugate shear zones within leucogranites are related to that epoch. Finally, a new dextral shear zone system, trending N130-N150 along the Parthenay shear zone, occurs during late Visean time. This progressive middle Visean change of shortening direction probably corresponds to a major change in the Iberian plate motion and indentation during the Mississipian collision.  相似文献   

4.
郭泽君  郭彬  苏亭  王强 《地质与资源》2011,20(5):362-364
在辽宁西部建昌县查家店-养马甸子-回流水一带,发育有长度11.5 km、宽约1 km的韧性剪切带.通过多次实地调查,根据宏观的SC组构和镜下的旋转应变构造分析,判断养马甸子韧性剪切带为右行剪切机制,剪切位移1780 m.该韧性剪切带发育在新太古代麻计沟单元花岗岩中,而东侧多处可见中元古代长城纪高于庄期堆积物呈角度不整合覆于其上,从而确定该韧性剪切带形成时代的下限为新太古代晚期,上限为中元古代.  相似文献   

5.
A regional lineament of highly parallelized planar and linear structures can be followed over a distance of 150 km from the coast to the Inland Ice at Nordre Strømfjord in central West Greenland. This shear zone is situated within the Nagssugtoqidian mobile belt and transects an area of intricate interference structures, from which it has been formed by high shear strain. By using data for the orientation of planar structures outside and within the zone, the shear strain is calculated to be approximately 6. This value applies to the shear zone close to the coast where its width is approximately 15 km. The zone is cut by the granulite/amphibolite facies boundary, and towards lower metamorphic grade the width of the zone decreases. At the same time the shear strain increases, so that the offset across the zone could be constant irrespective of width. At the coast, where the zone has been mapped, the fanning of planar structures shows the zone to be wedge-shaped, thinning upwards.It is therefore suggested that the zone represents a deep-seated ductile part of a major, transcurrent fault with a sinistral displacement of at least 100 km.  相似文献   

6.
Folds and thrust faults formed by layer-parallel shortening coaxial with extensional structures such as normal dip-slip faults and ductile necking structures with orthorhombic fabric symmetry are usual, but little-recognised structures formed within normal dip-slip shear zones bounding rifts. They are generated because of the shear distribution in a zone of progressive deformation and may be later extended and disrupted depending on which part of the strain ellipsoid they may be located. We here describe folds and thrust faults from the southern margin of the Ala?ehir Rift in western Turkey as an opportunity to discuss the properties of pure extension–related structures formed by layer-parallel shortening. Such structures are more commonly generated during the early stages of rifting, when deformation rates are slow and the shear zones broader than those forming later in the life of a rift when strain rates are usually higher. Such structures have commonly been mistaken for witnesses documenting regional episodes of shortening rather than as integral parts of the extensional structures forming rifts. Not all layer-parallel shortening-related structures therefore indicate regional shortening. We plead that hasty statements concerning the meaning of geological structures at all scales be avoided before a thorough understanding of bulk strains that have affected a region are properly understood.  相似文献   

7.
Regional mapping of a section across the Eastern Ghats Mobile Belt (EGMB) north of the Godavari graben in Eastern Peninsular India by using Landsat Thematic Mapper data enables recognition of a number of shear zones, lineaments, and structural domes and basins. A conspicuous megashear occurs at the western boundary of the granulite facies rocks of the EGMB adjacent to the Archean granite-greenstone craton. The confinement of a suite of alkaline igneous rocks to this shear zone is a notable feature. The strike extensions of this shear belt extend through to the Elchuru alkaline complex, Prakasam District, Andhra Pradesh, and the syenite plutons of Koraput district, Orissa. The contrasting lithologies, metamorphism and structural history on either side of the shear zone suggests that it might be a Precambrian suture zone. The mesoscopic structural features in the EGMB include prominent foliation with moderate to steep dips, folds, faults/shears, S-C fabrics, pinch and swell structures and other linear fabric elements. These observations favour the consideration of drastic crustal shortening and thickening and a complex deformational sequence. The major rock units in this part of EGMB comprise garnetiferous sillimanite gneisses, quartzites and calc-granulites forming the khondalitic suite of rocks and a wide variety of charnockitic rocks. The contact of the two rock units is generally sheared and often migmatised. The structural fabric suggests two major tectonic events: an essentially horizontal tectonic regime resulting in thrust systems and associated structures, subsequently followed by strike-slip tectonics characterized by high shear strains. Features such as westward-verging thrusts, large-scale recumbent folds, major shear zones, structural domes and basins, indications of tectonic crustal shortening, extensive calc-alkali magmatism and widespread migmatization in the region are attributed to collisional processes during Proterozoic times. The spatial disposition of the EGMB and its linkage with the distribution of similar rock units during the late Precambrian time in a global tectonic scenario are discussed.  相似文献   

8.
甘肃北山白墩子-小西弓韧性剪切带及其控矿作用   总被引:2,自引:1,他引:1  
白墩子—小西弓韧性剪切带是甘肃北山地区8条韧性剪切带中最南侧的一条, 位于北山南带的白墩子—小西弓一带, 呈近东西向展布, 长160km, 宽5~8km。该韧性剪切带以近水平右行剪切为特点, 是一条形成于中低—中偏高温度、较低差应力条件(53~106MPa)下的韧性剪切带, 主应变(Rxz)为4~20, 剪应变(γ)1.41~2.42, 剪位移达10~25km。该韧性剪切带对金矿床控制作用明显, 在区域上控制金矿床(点)的分布, 在矿床范围内控制金矿化带、矿体的形态、产状和规模。压扭性韧性剪切变形特点决定了金矿化类型以蚀变糜棱岩型为主, 蚀变以交代作用为特色。金矿化稍晚于韧性变形。   相似文献   

9.
Transpression   总被引:2,自引:0,他引:2  
Transpression is considered as a wrench or transcurrent shear accompanied by horizontal shortening across, and vertical lengthening along, the shear plane. A model for the strain in transpression is derived, from which the shape and orientation of the finite strain ellipsoid, and the stretch and rotation of lines can be determined. Shortening across the zone of transpression leads to oblate finite strain ellipsoids (k<1).By considering the superposition of small increments of strain various model deformation paths are computed. These are used to interpret the development of structures, such as en-échelon folds, in transpression zones. The incremental strain ellipsoid allows prediction of the orientation of the principal stresses and hence brittle structures within such zones. The model is also applied to bends and terminations of shear zones and used to interpret the observed patterns of folds and fractures in these.  相似文献   

10.
Tectonic lozenges are elongate bodies bounded by relatively more deformed rocks. The focus of this study is on the 2-D structure of tectonic lozenges developed during ductile shear in rocks with a pre-existing mechanical anisotropy. On the basis of a detailed analysis of shear zones in foliated rocks from the Cap de Creus area (Variscan of the eastern Pyrenees), five mechanisms to explain the development of different types of lozenges in foliated rocks are suggested. These mechanisms are explained on the basis of the orientation of the previous foliation relative to the bulk shearing direction. It is shown that the prevailing mechanism does not majorly depend on the bulk kinematics but on the angular relationship between the pre-existing foliation and the bulk kinematic axes, and on shear zone interaction. This has implications on the use of lozenge shapes in tectonic interpretations. The fact that there is a wide range of initial orientations, propagation modes and coalescence types implies that the final lozenge geometry is not univocally related neither to the type of strain nor to the kinematic regime.  相似文献   

11.
Dolomite aggregates deformed by dislocation creep over a wide range of conditions (T = 700–1000 °C, effective pressure of 900 MPa, strain rates of 107 – 104/s) strain weaken by up to 75% of the peak differential stress. Microstructural study of samples shortened to different finite strains beyond the peak differential stress shows that strain becomes highly localized within shear zones by high-temperature creep processes, with no contribution of brittle cracking. At low strains (8%), dolomite deforms homogeneously by recrystallization-accommodated dislocation creep. At progressively higher sample strains, deformation is localized into narrow shear zones made up of very fine (∼3 μm) recrystallized grains and relict porphyroclasts (20–100 μm). Finely-recrystallized dolomite grains in the shear zones are largely dislocation free and localized shear is facilitated by diffusion creep. In contrast, original dolomite grains and porphyroclasts in shear zones have high dislocation densities and do not deform after shear zone formation. Calculated strain rates in the shear zones are two to three orders of magnitude faster than the imposed bulk strain rate of the samples and these strain rates are consistent with predictions of the diffusion creep flow law for fine-grained dolomite.  相似文献   

12.
The shortening direction in rocks deformed in collision or subduction zones is not directly related to the plate-convergence vector; rather, it is perpendicular to the collision zone or subduction zone, even in cases where plate convergence is oblique. The component of convergence parallel to the subduction/collision zone is expressed by strike-slip displacement in the arc region behind the subduction zone. Such strike-slip shear zones have been recognized in the Seven Devils terrane of northeastern Oregon and adjacent Idaho. One of these (the Oxbow shear zone consisting of cataclasite, mylonite, and ultra-mylonite) trends northeasterly from Oxbow, Oregon to Cuprum, Idaho. The original rock types of the shear zone were plagiogranite, gabbro, diabase, bassalt, and keratophyre. The age of the mylonitization is constrained by 40Ar/39Ar dates as Late Triassic. Meso- and microscopic structures (textures and quartz c-axes fabrics) indicate that the shear zone was formed by left-lateral, strike-slip motion. A minimum left-lateral displacement of 65 km has been estimated, but the true displacement may have been much larger. The Oxbow shear zone is interpreted as an intra-arc strike-slip zone of the Seven Devils terrane, related to left-oblique plate convergence during the Triassic.  相似文献   

13.
14.
通过野外观察、室内显微构造分析和磁组构测量方法,在桂北四堡地区浅变质地层中厘定出一条NE30°走向,南东倾,倾角约40°的大型左旋斜冲韧性剪切带——四堡韧性剪切带;该韧性剪切带内发育糜棱岩系列、糜棱面理、拉伸线理、A型褶皱、S-C组构、亚颗粒、显微分层及石英条带等宏观和微观构造特征;磁各向异性度测量结果显示四堡韧性剪切带由一宽约4 km的强应变带及边缘弱带组成,全带宽达10 km,长度超30 km;在对韧性剪切带运动学、构造年代学研究的基础上,结合区域地质资料,认为四堡韧性剪切带是华南加里东晚期华夏地块由南东向北西作低角度斜冲到扬子地块的产物。这一发现揭示了扬子地块与华夏地块碰撞拼合的方式,为深化华南构造演化提供了新资料。  相似文献   

15.
Kinematic models of various types of transpression have been used to explain fabric features and strain in many natural deformation studies. Here, a mathematical model that encompasses all monoclinic and triclinic transpressional deformations including triclinic deformation with inclined simple shear (ϕ) and/or inclined extrusion orientations (υ) can be tested using a step-by-step approach with available field evidence. Two cases are presented. The first case from the Wabigoon–Quetico boundary in the Archean Superior Province utilizes both fabric orientation and quantified strain data. The best fit of the field evidence to the model indicates that deformation likely took place along subvertical shear zones via transpression with subhorizontal simple shear (ϕ = 0–20°) and variable inclined extrusion direction (extrusion can be either east or west and υ typically indicates extrusion orientations between 0 and 50° from vertical). The second case of the South Iberian shear zone has fabric orientation data, but no quantifiable strain possibilities. The best fit of the field evidence to the model indicates that deformation likely took place along a moderately inclined shear zone via transpression with subhorizontal simple shear (ϕ = 0–20°) and variable inclined extrusion direction (υ values between 0° and 80° from the true dip of the shear zone). Using this protocol in other examples of natural deformation will allow further constraints to be applied to kinematic models.  相似文献   

16.
四川锦屏山地区推覆构造带特征及其研究意义   总被引:1,自引:0,他引:1       下载免费PDF全文
锦屏山地区推覆构造带滑移面均为韧性剪切带,而且整个推覆构造带由多个岩片推覆堆叠在一起,在其前缘则出现飞来峰群。通过对韧性剪切带和飞来峰群的精细研究,厘定其缩短距离约30km。同时厘定了扬子西缘的边界断裂——茶铺子-巴折区划性(“槽-台”边界)复活断裂带(韧性剪切带),修正了锦屏山断裂为扬子西缘的边界断裂的认识。  相似文献   

17.
The Gran Paradiso nappe of the northwestern Alps mostly consists of augen gneisses derived from the Alpine deformation of Permian granitoids. The regional foliation of the augen gneisses developed at lower amphibolite facies conditions and is associated with a top-to-west sense of shear. The granitoid protolith is preserved in the kilometre-scale low-strain domain of the Piantonetto Valley and mainly consists of a porphyritic metagranite including joints, leucocratic dykes and biotite-rich schlieren. In this low-strain domain, the Alpine deformation is mainly localized in discrete ductile shear zones within weakly foliated metagranite. The shear zones mostly dip towards S–SE in a shallow (shear zones 1) to steep inclination (shear zones 2). The shear zones show typical features that can be explained by reactivation of pre-existing joints and planar compositional heterogeneities. Palaeostress and strain analysis indicate that shear zones and the metagranite foliation both formed in the presence of a strong component of flattening. The kinematics of individual shear zones depends on the orientation of the original heterogeneities (acting as nucleation planes) and by partitioning of strain components at the kilometre-scale with concentration of the flattening component to the Piantonetto low-strain domain. The strain geometry and the kinematics of individual shear zones within Piantonetto are not directly connected to the top-to-west sense of tectonic transport observed elsewhere in the Gran Paradiso nappe. However, the bulk stress ellipsoid reconstructed for the incipient shear zone network within very weakly deformed granites is oriented consistently with the bulk direction of tectonic transport within the Gran Paradiso massif. We conclude that the shear zone network of the Piantonetto Valley is representative of the incipient stages of ductile deformation of a granite nappe. Even if its architecture is determined by the arrangement of pre-existing structural and compositional heterogeneities, aspects of the large-scale bulk strain can be derived from this local shear zone pattern.  相似文献   

18.
We test the hypothesis that small ductile shear zones are developed from initial rheologically weak domains. We regard weak domains as ellipsoidal inhomogeneities and apply Eshelby's formalism extended for power-law viscous materials to investigate the kinematics and finite strain evolution of the partitioned flow fields in weak domains. We show that, under an imposed bulk flow field, weak domains, regardless of their initial shapes and orientations, deform into zone-like features at relatively small bulk strains and the deformation paths inside weak domains have all characteristics expected in ductile shear zones. We apply our model to the Cap de Creus area Spain, where abundant small ductile shear zones exist. To relate the fabrics inside these shear zones with the regional deformation, we take a multi-scale approach. We assume that the area contained many weak domains which were randomly shaped and oriented initially and were deformed into shear zones eventually in response to the regional flow. We constrain the regional flow field by the fabric patterns across the area and compute numerically the partitioned flow fields in individual weak domains. The latter are related to fabrics inside shear zones. Our model reproduces first-order features of field-observed fabrics. Although the deformation path of each shear zone was close to simple shearing, the deformation of the whole belt was not. Our approach also resolves the strain compatibility problem for a finite-sized shear zone embedded in a far less deformed country rock.  相似文献   

19.
This paper considers the basic principles of the strain analysis method based on the analysis of antitaxial regeneration fibrous fringes around linear rigid inclusions in a low-viscosity rock matrix. This method has been developed for pressure shadows composed of fibrous minerals, whose orientation is controlled by the major elongation direction rather than the orientation of rigid inclusions. This approach is applicable only for rocks exposed to uniform coaxial straining. The strain ellipse is calculated in two ways: for three variably oriented strain markers, it is calculated using Mohr’s circles, and for numerous strain markers by average body ellipse. The strain ellipsoid is calculated using the parameters of a few strain ellipses calculated with three and more non-parallel planes. This paper provides the data on the method testing in reference sites of Dora–Pil’ ore field in the Upper Indigirka district and Vangash area in the Yenisei Range. Regeneration fibrous fringes around fragments of fern fossils and linear rutile metacrystals were used as markers. The results of strain analysis obtained for the reference sites in the Upper Indigirka district made it possible to describe the signs of variable strain stages of developing strike-slip zones making up the Adycha–Taryn Fault Zone. Sublatitudinal ore-bearing strike-slip zones are characterized by a subvertical orientation of the elongation axes X of elongated strain ellipsoids, which are subperpendicular to quartz–carbonate veins and slope kink zones. NW-trending strike-slip zones are characterized by subhorizontal orientation of the Z shortening axes of flattened strain ellipsoids, which are subparallel to the normals of quartz–carbonate veins and veinlets. The results of strain analysis obtained for reference sites in the Vangash area made it possible to describe the thrust strain environment following the metamorphism stage and to reveal specific features in the formation of the strain textures of ore-bearing rocks based on their rheological properties.  相似文献   

20.
The orientation and movement sense of shear fractures in pseudotachylyte generation zones developed in the Ikertôq shear belt, West Greenland are described, and the fracturing sequence is inferred. The generation zones occur in strongly foliated gneisses, and consist of concordant, usually paired, principal displacement shear fractures (paired shears), on which most melt was generated, and a system of minor shear fractures. Minor shear fracturing was most intense between principal displacement shear fractures, and most melt intruded from these paired shears inwards with respect to the zone. Intrusion of injection veins of pseudotachylyte off the principal displacement shear fractures, is believed to be contemporaneous with minor shear fracturing in the generation zones.Generation zones affect intact rocks, and individual principal displacement shear fractures have a maximum displacement of 4.6 m. Paired principal displacement shear fractures are up to 3 m apart, and have a maximum observed length of 1 km. In all the zones described, the fracturing appears to be the result of a single episode of slip. Both dextral and sinistral generation zones occur within the study area, and have different geometries. In each case the displacement is strike-slip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号