共查询到20条相似文献,搜索用时 15 毫秒
1.
Arsenic in shallow groundwater of Bangladesh: investigations from three different physiographic settings 总被引:1,自引:0,他引:1
M. Aziz Hasan K. Matin Ahmed Ondra Sracek Prosun Bhattacharya Mattias von Brömssen Sandra Broms Johan Fogelström M. Lutful Mazumder Gunnar Jacks 《Hydrogeology Journal》2007,15(8):1507-1522
Occurrences of arsenic (As) in the Bengal Basin of Bangladesh show close relationships with depositional environments and sediment textures. Hydrochemical data from three sites with varying physiography and sedimentation history show marked variations in redox status and dissolved As concentrations. Arsenic concentration in groundwater of the Ganges Flood Plain (GFP) is characteristically low, where high Mn concentrations indicate redox buffering by reduction of Mn(IV)-oxyhydroxides. Low DOC, \( {\text{HCO}}^{ - }_{3} \), \( {\text{NH}}^{ + }_{4} \) and high \( {\text{NO}}^{ - }_{3} \) and \( {\text{SO}}^{{2 - }}_{4} \) concentrations reflect an elevated redox status in GFP aquifers. In contrast, As concentration in the Ganges Delta Plain (GDP) is very high along with high Fe and low Mn. In the Meghna Flood Plain (MFP), moderate to high As and Fe concentrations and low Mn are detected. Degradation of organic matter probably drives redox reactions in the aquifers, particularly in MFP and GDP, thereby mobilising dissolved As. Speciation calculations indicate supersaturation with respect to siderite and vivianite in the groundwater samples at MFP and GDP, but groundwater in the GFP wells is generally supersaturated with respect to rhodochrosite. Values of log PCO2 at MFP and GDP sites are generally higher than at the GFP site. This is consistent with Mn(IV)-redox buffering suggested at the GFP site compared to Fe(III)-redox buffering at MFP and GDP sites. 相似文献
2.
Anwar Zahid M. Qumrul Hassan K.-D. Balke Matthias Flegr David W. Clark 《Environmental Geology》2008,54(6):1247-1260
Dissolved major ions and important heavy metals including total arsenic and iron were measured in groundwater from shallow
(25–33 m) and deep (191–318 m) tube-wells in southeastern Bangladesh. These analyses are intended to help describe geochemical
processes active in the aquifers and the source and release mechanism of arsenic in sediments for the Meghna Floodplain aquifer.
The elevated Cl− and higher proportions of Na+ relative to Ca2+, Mg2+, and K+ in groundwater suggest the influence by a source of Na+ and Cl−. Use of chemical fertilizers may cause higher concentrations of NH4+ and PO43− in shallow well samples. In general, most ions are positively correlated with Cl−, with Na+ showing an especially strong correlation with Cl−, indicating that these ions are derived from the same source of saline waters. The relationship between Cl−/HCO3− ratios and Cl− also shows mixing of fresh groundwater and seawater. Concentrations of dissolved HCO3− reflect the degree of water–rock interaction in groundwater systems and integrated microbial degradation of organic matter.
Mn and Fe-oxyhydroxides are prominent in the clayey subsurface sediment and well known to be strong adsorbents of heavy metals
including arsenic. All five shallow well samples had high arsenic concentration that exceeded WHO recommended limit for drinking
water. Very low concentrations of SO42− and NO3− and high concentrations of dissolved Fe and PO43− and NH4+ ions support the reducing condition of subsurface aquifer. Arsenic concentrations demonstrate negative co-relation with the
concentrations of SO42− and NO3− but correlate weakly with Mo, Fe concentrations and positively with those of P, PO43− and NH4+ ions. 相似文献
3.
M. Shamsudduha L. J. Marzen A. Uddin M.-K. Lee J. A. Saunders 《Environmental Geology》2009,57(7):1521-1535
The present study has examined the relationship of groundwater arsenic (As) levels in alluvial aquifers with topographic elevation,
slope, and groundwater level on a large basinal-scale using high-resolution (90 m × 90 m) Shuttle Radar Topography Mission
(SRTM) digital elevation model and water-table data in Bangladesh. Results show that high As (>50 μg/l) tubewells are located
in low-lying areas, where mean surface elevation is approximately 10 m. Similarly, high As concentrations are found within
extremely low slopes (<0.7°) in the country. Groundwater elevation (weekly measured by Bangladesh Water Development Board)
was mapped using water-table data from 950 shallow (depth <100 m) piezometers distributed over the entire country. The minimum,
maximum and mean groundwater elevation maps for 2003 were generated using Universal Kriging interpolation method. High As
tubewells are located mainly in the Ganges–Brahmaputra–Meghna delta, Sylhet Trough, and recent floodplains, where groundwater
elevation in shallow aquifers is low with a mean value of 4.5 m above the Public Works Datum (PWD) level. Extremely low groundwater
gradients (0.01–0.001 m/km) within the GBM delta complex hinder groundwater flow and cause slow flushing of aquifers. Low
elevation and gentle slope favor accumulation of finer sediments, As-carrying iron-oxyhydroxide minerals, and abundant organic
matter within floodplains and alluvial deposits. At low horizontal hydraulic gradients and under reducing conditions, As is
released in groundwater by microbial activity, causing widespread contamination in the low-lying deltaic and floodplain areas,
where As is being recycled with time due to complex biogeochemical processes. 相似文献
4.
Geochemical study of the Holocene sediments of the Meghna River Delta, Chandpur, Bangladesh was conducted to investigate the distribution of arsenic and related trace and major elements. The work carried out includes analyses of core sediments and provenance study by rare earth element (REE) analysis. Results showed that the cores pass downward from silty clays and clays into fine to medium sands. The uppermost 3 m of the core sediments are oxidized [average oxidation reduction potential (ORP) + 230 mV], and the ORP values gradually become negative with depths (−45 to −170 mV), indicating anoxic conditions prevail in the Meghna sediments. The REE patterns of all lithotypes in the study areas are similar and are comparable to the average upper continental crust. Arsenic and other trace elements (Pb, Zn, Cu, Ni, and Cr) have greater concentrations in the silts and clays compared to those in the sands. Positive correlation between As and Fe was found in the sediments, indicating As may be adsorbed on Fe oxides in aquifer sediments. 相似文献
5.
Gökhan Göktürkler Çağlayan Balkaya Zülfikar Erhan Ayça Yurdakul 《Environmental Geology》2008,54(6):1283-1290
Near-surface geophysical methods are commonly used to solve a wide class of geological, engineering and environmental problems. In this study, a geoelectrical survey was performed to investigate an alluvial aquifer. The study area is located in the southwest of the Çubukluda? graben, situated in the south of ?zmir, Turkey. The geophysical studies included the electrical resistivity imaging and self-potential (SP) methods. The resistivity data were acquired along eight profiles in the northern part of the study area by a Wenner-Schlumberger electrode configuration and the data processing was achieved by a tomographic inversion technique. The SP data were collected by gradient technique along 16 profiles. Total field values were calculated for each profile by addition of the successive gradient values, then a total field SP map was obtained. The water-saturated zone in the northern part of the study area was clearly revealed by the electrical resistivity imaging and the SP survey yielded useful information on the subsurface fluid movement. 相似文献
6.
Core sediments from two boreholes and groundwater from fifty four As-contaminated well waters were collected in the Chapai-Nawabganj area of northwestern Bangladesh for geochemical analysis. Groundwater arsenic concentrations in the uppermost aquifer (10 to 40 m of depth) range from 2.76?C315.15 mg/l (average 48.81 mg/l). Arsenic concentration in sediments ranges from 3.26?C10 mg/kg. Vertical distribution of arsenic in both groundwater and sediments shows that maximum As concentration (462 mg/l in groundwater and 10 mg/kg in sediments) occurs at a depth of 24 m. In January 2008, 2009 and 2010, maximum As concentration occurs at the same depth. Environmental scanning electron microscope (ESEM) with EDAX was used to investigate the presence of major and trace elements in the sediments. The dominant groundwater type is Ca-HCO3 with high concentrations of As and Fe, but with low levels of NO3 ? and SO3 ?2. Statistical analysis clearly shows that As is closely associated with Fe (R2 = 0.64) and Mn (R2 = 0.91) in sediments while As is not correlated with Fe and Mn in groundwater samples. Comparatively low Fe and Mn concentrations in some groundwater, suggest that probably siderite and/or rhodochrosite precipitated as secondary mineral on the surface of the sediment particles. The correlations along with results of sequential leaching experiments suggest that reductive dissolution of FeOOH and MnOOH mediated by anaerobic bacteria represents mechanism for releasing arsenic into the groundwater. 相似文献
7.
A. K. M. Masud Alam Shucheng Xie Dilip Kumar Saha Sifatul Quader Chowdhury 《Environmental Geology》2008,53(8):1639-1650
A geo-archaeological examination was carried out in and around the Paharpur area, Badalgacchi upazila of Naogaon District in the north-western part of Bangladesh. Clay mineralogy and global paleo-temperature curves were used to determine the paleoclimatic and depositional environmental conditions of the Holocene archaeological soils (Barind clay residuum) of the Paharpur archaeological spot. Clay mineralogical data show that the dominant clay mineral is illite with subordinate amounts of kaolinite and chlorite. The high illite and low kaolinite content implies a marine or estuarine deposit. The clay mineral ratio log diagram, constructed by plotting the 7–10°Å integrated intensity ratios versus depth, supports this assumption. The presence of illite, together with quartz and feldspar, suggests high detrital input under generally cool to temperate and dry climates. Chlorite is another common by-product of weathering reactions with low hydrolysis, which is typical for cool to temperate and dry climates. The results suggest the existence of a marine–estuarine influence under a generally cool to temperate and dry climates around Paharpur and the surrounding region throughout the Pala dynasty around mid-century 700 a.d. to early 1100 a.d. Furthermore, this observation is consistent with the global paleo-temperature curves. 相似文献
8.
Mohammad A. Hoque Aftab A. Khan M. Shamsudduha Muhammad S. Hossain Tariqul Islam Shahid H. Chowdhury 《Environmental Geology》2009,56(8):1687-1695
This study investigated the relationship between near-surface lithology and the spatial variability of As concentrations using
sediment grain-size analysis and electromagnetic induction survey in the southeast Bangladesh. It has been observed that the
aquifers overlain by finer sediments have higher concentrations of As in groundwater, whereas As concentrations are remarkably
low in aquifers having permeable sandy materials or thinner silt/clay layer at the surface. The near-surface lithology acts
as a controlling factor for spatial distributions of groundwater As within the very shallow depths (<15 m). Shallow alluvial
aquifers can provide low-As drinking water in many areas of the country when tube wells are properly installed after investigation
of the overlying near-surface sediment attributes and hydraulic properties. 相似文献
9.
A. van Geen Z. Aziz A. Horneman B. Weinman R.K. Dhar Y. Zheng S. Goodbred R. Versteeg A.A. Seddique M.A. Hoque K.M. Ahmed 《Journal of Geochemical Exploration》2006,88(1-3):157
The extremely heterogeneous distribution of As in Bangladesh groundwater has hampered efforts to identify with certainty the mechanisms that lead to extensive mobilization of this metalloid in reducing aquifers. We show here on the basis of a high-resolution transect of soil and aquifer properties collected in Araihazar, Bangladesh, that revealing tractable associations between As concentrations in shallow (< 20 m) groundwater with other geological, hydrological, and geochemical features requires a lateral sampling resolution of 10–100 m. Variations in the electromagnetic conductivity of surface soils (5–40 mS/m) within a 500 m × 200 m area are documented with 560 EM31 measurements. The results are compared with a detailed section of groundwater As concentrations (5–150 μg/L) and other aquifer properties obtained with a simple sampling device, “the needle-sampler”, that builds on the local drilling technology. By invoking complementary observations obtained in the same area and in other regions of Bangladesh, we postulate that local groundwater recharge throughout permeable sandy soils plays a major role in regulating the As content of shallow aquifers by diluting the flux of As released from reducing sediments. 相似文献
10.
Olocenic alluvial aquifer of the River Cornia coastal plain (southern Tuscany, Italy): database design for groundwater management 总被引:1,自引:0,他引:1
P. Barazzuoli M. Bouzelboudjen S. Cucini L. Kiraly P. Menicori M. Salleolini 《Environmental Geology》1999,39(2):123-143
Hydrogeological research is in progress, utilizing GIS methods, with the principal aim of modelling the Olocenic alluvial
aquifer of the River Cornia coastal plain (southern Tuscany, Italy), which has been exploited for drinking water, irrigation,
and industrial uses. A consequence of exploitation has been the appearance of wide seawater intrusion. The alluvial aquifer
has recently been subjected to new well fields for the supply of drinking water, with an increase of total average discharge
of about 4×106 m3/year. This paper presents results obtained from updating and integrating basic knowledge and structuring the database. The
hydrogeological study allowed the recognition of the extension of areas that are characterized by a hydraulic head under the
sea level, the progressive salinization of the aquifer, and the increase of water deficit in the aquifer which is produced
by a progressive extraction of water superior to the natural recharge. In addition, benefits and disadvantages resulting from
the location of new well fields in a hydrogeologically favourable zone, and the boundary conditions for much of the area studied
have been defined. The GIS was used as support for making and updating the tabular and spatial database with the aim of integrating
the local and regional hydrogeological knowledge. This study will permit the realization of a numerical simulation of the
groundwater flow of the aquifer aimed at correcting the management of water resources, by means of the GIS-modelling integration.
Received: 23 June 1998 · Accepted: 16 November 1998 相似文献
11.
Peter Ravenscroft William G. Burgess Kazi Matin Ahmed Melanie Burren Jerome Perrin 《Hydrogeology Journal》2005,13(5-6):727-751
Arsenic contaminates groundwater across much of southern, central and eastern Bangladesh. Groundwater from the Holocene alluvium of the Ganges, Brahmaputra and Meghna Rivers locally exceeds 200 times the World Health Organisation (WHO) guideline value for drinking water of 10 µg/l of arsenic. Approximately 25% of wells in Bangladesh exceed the national standard of 50 µg/l, affecting at least 25 million people. Arsenic has entered the groundwater by reductive dissolution of ferric oxyhydroxides, to which arsenic was adsorbed during fluvial transport. Depth profiles of arsenic in pumped groundwater, porewater, and aquifer sediments show consistent trends. Elevated concentrations are associated with fine-sands and organic-rich sediments. Concentrations are low near the water table, rise to a maximum typically 20–40 m below ground, and fall to very low levels between about 100 and 200 m. Arsenic occurs mainly in groundwater of the valley-fill sequence deposited during the Holocene marine transgression. Groundwater from Pleistocene and older aquifers is largely free of arsenic. Arsenic concentrations in many shallow hand-tube wells are likely to increase over a period of years, and regular monitoring will be essential. Aquifers at more than 200 m below the floodplains offer good prospects for long-term arsenic-free water supplies, but may be limited by the threats of saline intrusion and downward leakage of arsenic.
Resumen El arsénico ha contaminado gran parte de las aguas subterráneas en el Sur, centro y Este de Bangla Desh. Su concentración en las aguas subterráneas del aluvial Holoceno de los ríos Ganges, Brahmaputra y Meghna supera localmente en un factor 200 el valor guía del arsénico en el agua potable, establecido por la Organización Mundial de la Salud (OMS) en 10 µg/L. Aproximadamente, el 25% de los pozos de Bangla Desh superan el estándar nacional de 50 µg/L, afectando al menos a 25 millones de personas. El arsénico ha llegado a las aguas subterráneas por la disolución reductora de hidróxidos férricos a los que se adsorbe durante el transporte fluvial. Los perfiles del arsénico en las aguas subterráneas bombeadas, agua de poro y sedimentos del acuífero muestran tendencias coherentes. Las concentraciones elevadas están asociadas a arenas finas y sedimentos ricos en materia orgánica. Las concentraciones de arsénico son bajas cerca del nivel freático, se incrementan hasta un máximo que se localiza generalmente a entre 20 y 40 m bajo la cota del terreno, y disminuyen a valores muy pequeños entre alrededor de 100 y 200 m. El arsénico se encuentra sobretodo en las aguas subterráneas existentes en la secuencia de sedimentación que tuvo lugar en el valle durante la transgresión marina del Holoceno. Las aguas subterráneas del Pleistoceno y acuíferos más antiguos están mayoritariamente libres de arsénico. Es probable que las concentraciones de arsénico aumenten en los próximos años en muchos pozos de tipo tubo perforados manualmente, por lo que será esencial efectuar un muestreo regular. Los acuíferos ubicados a más de 200 m bajo las llanuras de inundación ofrecen buenas perspectivas de abastecimiento a largo plazo sin problemas de arsénico, pero pueden estar limitados por las amenazas de la intrusión salina y de la precolación de arsénico desde niveles superiores.
Résumé Larsenic contamine les eaux souterraines dans la plus grande partie du sud, du centre et de lest du Bangladesh. Les eaux des nappes alluviales holocènes du Gange, du Brahmapoutre et de la Meghna dépassent localement 200 fois la valeur guide donnée par lOMS pour leau de boisson, fixée à 10 µg/l darsenic. Environ 25% des puits du Bangladesh dépassent la valeur standard nationale de 50 µg/l, affectant au moins 25 millions de personnes. Larsenic a été introduit dans les nappes par la dissolution par réduction doxy-hydroxydes ferriques sur lesquels larsenic était adsorbé au cours du transport fluvial. Des profils verticaux darsenic dans leau souterraine pompée, dans leau porale et dans les sédiments des aquifères montrent des tendances convergentes. Les concentrations élevées sont associées à des sédiments à sable fin et riches en matières organiques. Les concentrations sont faibles au voisinage de la surface de la nappe, atteignent un maximum typiquement entre 20 et 40 m sous le sol, puis tombent à des niveaux très bas entre 100 et 200 m. Larsenic est surtout présent dans les eaux souterraines de la séquence de remplissage de vallée déposée au cours de la transgression marine holocène. Les eaux souterraines des aquifères pléistocènes et plus anciens sont très largement dépourvus darsenic. Les concentrations en arsenic dans de nombreux puits creusés à la main doivent probablement augmenter au cours des prochaines années ; aussi un suivi régulier est essentiel. Les aquifères à plus de 200 m sous les plaines alluviales offrent de bonnes perspectives pour des alimentations en eau sans arsenic à long terme, mais ils peuvent être limités par les risques dintrusion saline et la drainance descendante de larsenic.相似文献
12.
Abdulaziz M. Al-Shaibani 《Hydrogeology Journal》2008,16(1):155-165
A hydrogeological and hydrochemical study was conducted on a shallow alluvial aquifer, Wadi Wajj, in western Saudi Arabia
to assess the influence of protection measures on groundwater quality. The hydrochemistry was assessed up-gradient and down-gradient
from potential contamination sources in the main city in dry and wet seasons prior to and after the installation of major
drainage and wastewater facilities. Wadi Wajj is an unconfined aquifer where water is stored and transmitted through fractured
and weathered bedrock and the overlying alluvial sediments. Natural recharge to the aquifer is about 5% of rainfall-runoff.
Hydrochemistry of the aquifer shows temporal and seasonal changes as influenced by protection measures and rainfall runoff.
Both groundwater and runoff showed similar chemical signature, which is mostly of chloride-sulfate-bicarbonate and sodium-calcium
type. Groundwater downstream of the city, though of poorer quality than upstream, showed significant improvement after the
installation of a concrete runoff tunnel and a wastewater treatment plant. Concentrations of many of the groundwater quality
indicators (e.g., TDS, coliform bacteria, and nitrate) exceed US Environmental Protection Agency drinking-water standards.
Heavy metal content is, however, within allowable limits by local and international standards. The chemical analyses also
suggest the strong influence of stream runoff and sewage water on the groundwater quality.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Résumé Une étude hydrogéologique et géochimique a été menée sur l’aquifère phréatique alluviale Wadi Wajj dans l’Ouest de l’Arabie Saoudite afin d’évaluer l’influence de mesures de protection sur la qualité de l’eau souterraine. L’hydrogéochimie de l’eau a été étudiée en amont et en aval de sources potentielles de contamination dans la ville principale, pendant les saisons sèches et humides, avant et après l’installation de réseaux majeurs de drainage et d’eaux usées. L’aquifère Wadi Wajj est libre, l’eau est stockée et s’écoule dans les sédiments alluviaux et dans le socle fracturé et altéré sous-jacent. La recharge naturelle de l’aquifère représente 5% des eaux de pluie et de ruissellement. L’hydrogéochimie de l’eau de l’aquifère montre que les changements saisonniers et temporaires sont influencés par les mesures de protection et par le ruissellement des eaux pluviales. L’eau souterraine et l’eau de ruissellement ont présenté le même faciès chimique, de type bicarbonatée-sulfatée-chlorée et calco-sodique. En aval de la ville, l’eau souterraine, bien que de moins bonne qualité qu’en amont, a présenté une nette amélioration après l’installation d’un système de récupération et d’une station de traitement des eaux usées. Les concentrations de plusieurs paramètres indicateurs de la qualité de l’eau (tels que la charge totale dissoute, les coliformes, et les nitrates) dépassent les normes de potabilité de l’eau de consommation de l’agence américaine de la protection de l’environnement. Les teneurs en métaux lourds en revanche n’excèdent pas les normes locales et internationales. Les analyses chimiques indiquent aussi l’influence importante de l’écoulement par ruissellement et des eaux usées sur la qualité de l’eau souterraine.
Resumen Un estudio hidrogeológico e hidroquímico fue hecho en un acuífero somero de Wadi Wajj, en Arabia Saudi oeste para evaluar la influecia de medidas de protección en la calidad del agua subterránea. La hidroquímica fue evaluada gradiente-arriba y gradiente-abajo de las fuentes potenciales de contaminación de la ciudad principal durante las estaciones seca y lluviosa, antes y después de la instalación de sistemas principales de drenaje y aguas servidas. Wadi Wajj es un acuífero no-confinado donde el agua es almacenada y transmitida a través de roca fracturada y meteorizada, y los sedimentos aluviales que le sobreyacen. La recarga natural del acuífero es de cerca del 5% de la precipitación-escorrentía. La hidroquímica del acuífero muestra cambios temporales y estacionales influenciados por las medidas de protección y la escorrentía de precipitación. Ambas, agua subterránea y escorrentía mostraron composición química similar, siendo mayoritariamente de tipos cloruro-sulfato-bicarbonato y sodio-calcio. El agua subterránea aguas arriba de la ciudad, aunque de calidad más pobre que aguas abajo, mostró significante mejoría después de la instalación de un tunel de concreto para escorrentía y una planta de tratamiento de aguas servidas. Las concentraciones de muchos de los indicadores de calidad de agua subterránea (e.g., STD, coliformes, y nitrato) exceden los estándares de la Agencia de Protección Ambiental USA para agua potable. El contenido de metales pesados está, sin embargo, dentro de los límites permisibles de los estándares locales e internacionales. Los análisis químicos también sugieren la fuerte influencia de la escorrentía y aguas residuales en la calidad del agua subterránea.相似文献
13.
A. H. M. Selim Reza Jiin-Shuh Jean Jochen Bundschuh Chia-Chuan Liu Huai-Jen Yang Chi-Yu Lee 《Environmental Earth Sciences》2013,68(5):1255-1270
Core sediments from three disturbed boreholes (JOR, GHAT, and RAJ) and two undisturbed boreholes (DW1 and DW2) were collected in the study area of the Chapai-Nawabganj district of northwestern Bangladesh for geochemical analyses. In the study area, groundwater samples from fourteen As-contained private wells and five nested piezometers at both the DW1 and DW2 boreholes were also collected and analyzed. The groundwater arsenic concentrations in the uppermost aquifer (10–40 m of depth) range from 3 to 315 μg/L (mean 47.73 ± 73.41 μg/L), while the arsenic content in sediments range from 2 to 14 mg/kg (mean 4.36 ± 3.34 mg/kg). An environmental scanning electron microscope (ESEM) with an energy dispersive X-ray spectrometer was used to investigate the presence of major and trace elements in the sediments. Groundwaters in the study area are generally the Ca–HCO3 type with high concentrations of As, but low levels of Fe, Mn, NO3 ? and SO 4 ?2 . The concentrations of As, Fe, Mn decrease with depth in the groundwater, showing vertical geochemical variations in the study area. Statistical analysis clearly shows that As is closely associated with Fe and Mn in the sediments of the JOR core (r = 0.87, p < 0.05 for Fe and r = 0.78, p < 0.05 for Mn) and GHAT core (r = 0.95, p < 0.05 for Fe and r = 0.93, p < 0.05 for Mn), while As is not correlated with Fe and Mn in groundwater. The comparatively low Fe and Mn concentrations in some groundwater and the ESEM image revealed that siderite precipitated as a secondary mineral on the surface of the sediment particles. The correlations along with results of sequential extraction experiments indicated that reductive dissolution of FeOOH and MnOOH represents a mechanism for releasing arsenic into the groundwater. 相似文献
14.
A detailed water quality analysis was carried out in the quaternary aquifer system of the marginal alluvial plain (Ganga Plain)
in Bah Tahsil, Agra district, India. The electrical conductivity of 50 samples each from dug wells, hand pumps and tube wells
was analysed for the study of salinity levels in shallow, intermediate and deep aquifers. Out of 50, 20 samples of each were
also analysed for other chemical constituents such as Na+, K+, Cl−, F− and TDS. The analyses show drastic changes in the salinity levels of shallow, intermediate and deep aquifers. The deep aquifers
are more saline compared to the shallow and intermediate aquifers. On the contrary, the concentration of chemical constituents
such as Na+, K+, Cl− and F− was more in the shallow aquifers compared to the deep aquifers. Moreover, there is an indication that the salinity and concentration
of the above chemical constituents also escalate with time in each aquifer. The chemical constituents such as Na+, K+, Cl−, F− and TDS range from 51 to 165 mg/l, 1 to 14 mg/l, 224 to 1,459 mg/l, 0 to 1.5 mg/l and 750 to 2,650 mg/l, respectively. Over
a 3-year period, the salinity levels have sharply increased and the average F level has increased by 0.1–0.3 mg/l. An attempt
has been made here to discuss the factors causing the variation and escalation of chemical constituents and salinity in the
water of the three aquifers. 相似文献
15.
Chemical data are used to clarify the hydrogeological regime in the Mafraq area in northern Jordan, as well as to determine
the status of water quality in the area. Groundwater from the shallow aquifer in the Mafraq area can be divided into two major
groups according to geographical locations and chemical compositions. Water in the basaltic eastern part of the study area
is characterized by the dominance of chloride, sulfate, sodium, and potassium, whereas waters in the limestone aquifers in
the west are dominated by the same cations but have higher concentrations of bicarbonate. Stable isotopes show that the shallow
aquifers contain a single water type which originated in a distinct climatic regime. This water type deviates from the Global
Meteoric Water Line (MWL), as well as from the eastern Mediterranean meteoric water line. The waters are poor in tritium,
and thus can be considered generally older than 50 years. Chemical mass balance models suggest that water is moving from the
west towards the north of the study area. This suggests that waters from the different basins are separated from each other.
Degradation of water quality can be attributed to agricultural fertilizers in most cases, although the waste-water treatment
plant at Khirbet es Samra is a contributor to pollution in the southwestern part of the study area.
Received: 20 August 1997 · Accepted: 3 February 1998 相似文献
16.
Hydrogeologic characteristics of the alluvial tuff aquifer of northern Sahand Mountain slopes, Tabriz, Iran 总被引:3,自引:0,他引:3
The Tabriz area is a densely populated area of northwestern Iran (more than 1.5 million in population) with a large proportion of its drinking, domestic, industrial and agricultural water supplied from groundwater resources. The average rate of drinking and industrial water use in the city of Tabriz is about 3.45 m3 s–1. The Plio-Pleistocene unconfined alluvial tuff aquifer (about 1,275 km2), the most important aquifer in the area, has been known for many years as a reliable resource. The greatest estimated thickness of the alluvial tuff lies in the Saidabad area, with 350 m thickness. There are 994 deep and 284 shallow active pumping wells and 83 qanats operate in the alluvial tuff aquifer. The total water withdrawal from all these artificial discharge points has been measured at 72, 3.8 and 17 million m3/year, respectively. Analytical and numerical methods have been applied to the constant rate pumping test data from the Saidabad wellfield (eight pumping and three observation wells). The values of electrical conductivity in the groundwater of alluvial tuff aquifer range from 203 to 960 μS cm–1 and bicarbonate type water dominates. 相似文献
17.
Byoung-Young Choi Hyeon-Jung Kim Kangjoo Kim Seok-Hwi Kim Hwa-Jin Jeong Eungyu Park Seong-Taek Yun 《Environmental Geology》2008,54(2):335-345
Vertical variations of redox chemistry and groundwater quality were investigated in an alluvial aquifer beneath an agricultural
area, in which deep groundwaters are free of NO3, Fe, and Mn problems that are frequently encountered during the development of alluvial groundwaters. This study was performed
to identify and evaluate vertical chemical processes attenuating these chemical species in the study area. For this study,
the processes affecting groundwater chemistry were identified by factor analysis (FA) and the groundwater samples collected
from six multilevel samplers were hierarchically classified into three different redox zones by cluster analysis (CA) based
on the similarity of geochemical features. FA results indicated three major factors affecting the overall water chemistry:
agricultural activities (factor 1), redox reactions (factor 2), and remnant seawater (factor 3). The groundwater quality in
the study area was revealed to be controlled by a series of different redox reactions, resulting in different redox zones
as a function of depth. It was also revealed that the low Fe and Mn levels in the groundwater of the deeper part are associated
with sulfate reduction, which led to precipitation of Fe as iron sulfide and adsorption of Mn on it. 相似文献
18.
The integration of surface geological and geomorphological information with borehole point-data and geophysical (e.g., geoelectrical) images of the subsurface yields spatially consistent representations of alluvial aquifers heterogeneity at different scales, from depositional systems to basin fills. Such an approach requires a conceptual framework to match the stratigraphic units with their evidence from ground-based DC resistivity methods to effectively fill the gaps between sparse borehole data and to obtain valid representations of sedimentary heterogeneities. Such an approach is applied to characterize two sites of the Quaternary aquifers of the central Po Plain (Italy), which represent (1) the middle-upper Pleistocene braided to meandering river depositional systems sitting on Southalpine crust and (2) their down-current counterparts, where they are involved by the latest uplift and deformation due to the tectonic activity of the Apennine frontal thrusts. Electrical resistivity was considered as a proxy of the litho-textural properties of hydrofacies and their major hierarchical association at depth and was interpreted in accordance with the depth-decreasing resolution of ground-based resistivity methods. Thus, it was possible to identify the geophysical signature of hydrostratigraphic units through “Electrostratigraphic Units”, i.e., sedimentary volumes identified by resistivity contrasts that spatially preserve the vertical polarity. Hydrostratigraphy and electrostratigraphy were then joined together through a site-specific relationship between electrical resistivity and hydraulic conductivity, which takes into account the prevailing process of current conduction, the litho-textural properties of hydrofacies and the groundwater electrical conductivity. At the scales of aquifer systems and complexes, this approach permitted to establish the conceptual framework to match hydrostratigraphy, electrostratigraphy, average hydrodynamic properties and distribution of heterogeneities. 相似文献
19.
The Salí River hydrogeological basin is one of the most productive artesian basins in Argentina. It is located in the southeastern
part of the province of Tucumán, northwestern Argentina, and its groundwater resources are developed for water supply and
irrigation. The chemical composition of the water is strongly influenced by the interaction with the basinal sediments and
by hydrologic characteristics such as the flow pattern and time of residence.
Three hydrochemical zones are defined in the study area and the processes that control the chemical composition of the water
are manifestly different in each zone. The dissolution of halite, sodium sulphate, and gypsum explains part of the contained
Na+, K+, Cl–, SO4
2–, and Ca2+, but other processes, such as cation exchange, calcite precipitation, weathering of aluminosilicates, and gas exchange with
the atmosphere, also contribute to the water composition.
The assessment of contamination indicators, such as pH, dissolved organic matter, dissolved oxygen, phosphate, and nitrate,
indicates that the groundwater is suitable for human consumption. However, biological contamination has been detected in samples
from some wells, especially those near the Salí River.
Electronic Publication 相似文献
20.
The National Hydrochemical Survey of Bangladesh sampled the water from 3,534 tube wells for arsenic throughout most of Bangladesh. It showed that 27% of the shallow tube wells (less than 150 m deep) and 1% of the deep tube wells (more than 150 m deep) exceeded the Bangladesh standard for arsenic in drinking water (50 µg L–1). Statistical analyses revealed the main characteristics of the arsenic distribution. Concentrations ranged from less than the detection limit (0.5 µg L–1), to as much as 1,600 µg L–1, though with a very skewed distribution, and with spatial dependence extending to some 180 km. Disjunctive kriging was used to estimate concentrations of arsenic in the shallow ground water and to map the probability that the national limit for arsenic in drinking water was exceeded for most of the country (the Chittagong Hill Tracts and the southern coastal region were excluded). A clear regional pattern was identified, with large probabilities in the south of the country and small probabilities in much of the north including the Pleistocene Tracts. Using these probabilities, it was estimated that approximately 35 million people are exposed to arsenic concentrations in groundwater exceeding 50 µg L–1 and 57 million people are exposed to concentrations exceeding 10 µg L–1 (the WHO guideline value). 相似文献