首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Adaptive GPS/INS integration for relative navigation   总被引:1,自引:0,他引:1  
Relative navigation based on GPS receivers and inertial measurement units is required in many applications including formation flying, collision avoidance, cooperative positioning, and accident monitoring. Since sensors are mounted on different vehicles which are moving independently, sensor errors are more variable in relative navigation than in single-vehicle navigation due to different vehicle dynamics and signal environments. In order to improve the robustness against sensor error variability in relative navigation, we present an efficient adaptive GPS/INS integration method. In the proposed method, the covariances of GPS and inertial measurements are estimated separately by the innovations of two fundamentally different filters. One is the position-domain carrier-smoothed-code filter and the other is the velocity-aided Kalman filter. By the proposed two-filter adaptive estimation method, the covariance estimation of the two sensors can be isolated effectively since each filter estimates its own measurement noise. Simulation and experimental results demonstrate that the proposed method improves relative navigation accuracy by appropriate noise covariance estimation.  相似文献   

2.
Although the integrated system of a differential global positioning system (DGPS) and an inertial navigation system (INS) had been widely used in many geodetic navigation applications, it has sometimes a major limitation. This limitation is associated with the frequent occurrence of DGPS outages caused by GPS signal blockages in certain situations (urban areas, high trees, tunnels, etc.). In the standard mechanization of INS/DGPS navigation, the DGPS is used for positioning while the INS is used for attitude determination. In case of GPS signal blockages, positioning is provided using the INS instead of the GPS until satellite signals are obtained again with sufficient accuracy. Since the INS has a very short-time accuracy, the accuracy of the provided INS navigation parameters during these periods decreases with time. However, the obtained accuracy in these cases is totally dependent on the INS error model and on the quality of the INS sensor data. Therefore, enhanced navigation parameters could be obtained during DGPS outages if better inertial error models are implemented and better quality inertial measurements are used. In this paper, it will be shown that better INS error models are obtained using autoregressive processes for modeling inertial sensor errors instead of Gauss–Markov processes that are implemented in most of the current inertial systems and, on the other hand, that the quality of inertial data is improved using wavelet multi-resolution techniques. The above two methods are discussed and then a combined algorithm of both techniques is applied. The performance of each method as well as of the combined algorithm is analyzed using land-vehicle INS/DGPS data with induced DGPS outage periods. In addition to the considerable navigation accuracy improvement obtained from each single method, the results showed that the combined algorithm is better than both methods by more than 30%.  相似文献   

3.
A GPS-aided Inertial Navigation System (GAINS) is used to determine the orientation? position and velocity of ground and aerial vehicles. The data measured by Inertial Navigation System (INS) and GPS are commonly integrated through an Extended Kalman Filter (EKF). Since the EKF requires linearized models and complete knowledge of predefined stochastic noises? the estimation performance of this filter is attenuated by unmodeled nonlinearity and bias uncertainties of MEMS inertial sensors. The Attitude Heading Reference System (AHRS) is applied based on the quaternion and Euler angles methods. A moving horizon-based estimator such as Model Predictive Observer (MPO) enables us to approximate and estimate linear systems affected by unknown uncertainties. The main objective of this research is to present a new MPO method based on the duality principle between controller and observer of dynamic systems and its implementation in AHRS mode of a low-cost INS aided by a GPS. Asymptotic stability of the proposed MPO is proven by applying Lyapunov’s direct method. The field test of a GAINS is performed by a ground vehicle to assess the long-time performance of the MPO method compared with the EKF. Both the EKF and MPO estimators are applied in AHRS mode of the MEMS GAINS for the purpose of real-time performance comparison. Furthermore? we use flight test data of the GAINS for evaluation of the estimation filters. The proposed MPO based on both the Euler angles and quaternion methods yields better estimation performances compared to the classic EKF.  相似文献   

4.
Nan Gao  Long Zhao 《GPS Solutions》2016,20(3):509-524
In the complex urban environments, land vehicle navigation purely relying on GNSS cannot satisfy user needs due to the loss of satellite signals caused by obstructions such as buildings, tunnels, and trees. To solve this problem, we introduce a GPS-/MSINS-/magnetometer-integrated urban navigation system based on context awareness. In this system, the data from the Micro Strapdown Inertial Navigation System (MSINS) are used to analyze and detect the context knowledge of vehicles, whose sensor errors can be compensated by the heuristic drift reduction algorithm for different motion situations. When GPS is available, the vehicle position can be estimated by unscented Kalman Filter, whereas in the case of GPS outages, the vehicle attitude is provided by an attitude and heading reference system and the motion constraints-aided algorithm is used to complete the positioning. In the experiment validation, the integrated navigation system is set up by low-cost inertial sensors. The result shows that the proposed system can achieve high accuracy when GPS is available. For most of the time without GPS, the system can guarantee the positioning precision of 10 m and compensate the errors of MSINS effectively, which fully satisfies positioning needs in complex urban environments.  相似文献   

5.
Enhanced MEMS-IMU/odometer/GPS integration using mixture particle filter   总被引:2,自引:2,他引:0  
Dead reckoning techniques such as inertial navigation and odometry are integrated with GPS to avoid interruption of navigation solutions due to lack of visible satellites. A common method to achieve a low-cost navigation solution for land vehicles is to use a MEMS-based inertial measurement unit (IMU) for integration with GPS. This integration is traditionally accomplished by means of a Kalman filter (KF). Due to the significant inherent errors of MEMS inertial sensors and their time-varying changes, which are difficult to model, severe position error growth happens during GPS outages. The positional accuracy provided by the KF is limited by its linearized models. A Particle filter (PF), being a nonlinear technique, can accommodate for arbitrary inertial sensor characteristics and motion dynamics. An enhanced version of the PF, called Mixture PF, is employed in this paper. It samples from both the prior importance density and the observation likelihood, leading to an improved performance. Furthermore, in order to enhance the performance of MEMS-based IMU/GPS integration during GPS outages, the use of pitch and roll calculated from the longitudinal and transversal accelerometers together with the odometer data as a measurement update is proposed in this paper. These updates aid the IMU and limit the positional error growth caused by two horizontal gyroscopes, which are a major source of error during GPS outages. The performance of the proposed method is examined on road trajectories, and results are compared to the three different KF-based solutions. The proposed Mixture PF with velocity, pitch, and roll updates outperformed all the other solutions and exhibited an average improvement of approximately 64% over KF with the same updates, about 85% over KF with velocity updates only, and around 95% over KF without any updates during GPS outages.  相似文献   

6.
Li  Zengke  Gao  Jingxiang  Wang  Jian  Yao  Yifei 《GPS Solutions》2017,21(1):137-148
GPS Solutions - Integration of the global positioning system (GPS) with inertial navigation system (INS) has been very intensively studied and widely applied in recent years. Conventional GPS/INS...  相似文献   

7.
Due to their complementary features of GPS and INS, the GPS/INS integrated navigation system is increasingly being used for a variety of commercial and military applications. An attitude determination GPS (ADGPS) receiver, with multiple antennas, can be more effectively integrated with a low-cost IMU since the receiver gives not only position and velocity data but also attitude data. This paper proposes a low-cost attitude determination GPS/INS integrated navigation system. The proposed navigation system comprises an ADGPS receiver, a navigation computer unit (NCU), and a low-cost commercial MEMS IMU. The navigation software includes a fault detection and isolation (FDI) algorithm for integrity. In order to evaluate the performance of the proposed navigation system, two flight tests have been performed using a small aircraft. The first flight test confirmed the fundamental operation of the proposed navigation system and the effectiveness of the FDI algorithm. The second flight test evaluated the performance of the proposed navigation system and demonstrated the benefit of GPS attitude information in a high dynamic environment. The flight test results show that the proposed ADGPS/INS integrated navigation unit gives reliable navigation performance even when anomalous GPS data is provided and gives better navigation performance than a conventional GPS/INS unit.  相似文献   

8.
卫星导航系统和惯性导航系统(INS)具有极强的互补性,两者组合能有效提高导航定位结果的可用性、连续性和可靠性. 随着北斗卫星导航系统(BDS)的快速发展和低成本惯导元件(IMU)性能的不断提高,进行基于BDS和低成本IMU的组合导航系统相关理论和技术研究具有很强的研究意义和实用价值. 本文首先对BDS RTK/M-EMS INS组合理论模型进行推导,并利用实测车载数据对组合系统的性能进行分析. 实验结果表明,在BDS中引入低成本IMU,可以在不损失定位精度的同时有效改善测速精度. 组合后在车载动态中定位精度影响为mm级,而速度误差改善在北、东、地方向达到了75.8%、79.5%、66.7%. 此外,在BDS+INS紧组合中使用双频数据可以改善测速定姿精度,速度误差改善为18.2%、33.3%、33.3%,姿态误差改善为41.1%、26.7%、59.0%.   相似文献   

9.
CNS+GNSS+INS船载高精度实时定位定姿算法改进研究   总被引:1,自引:1,他引:1  
天文导航(CNS)、卫星导航(GNSS)和惯性导航(INS) 3种系统组合可提供高精度的定位定姿结果。实际工程中因INS长时间误差累积,以及系统硬件传输存在不可忽略的时间延迟,导致INS提供给CNS的预报粗姿态误差较大,恶劣海况下难以保障快速搜星,造成天文导航可靠性下降、姿态测量精度较低的问题。为此,本文提出了一种CNS+GNSS+INS高精度信息融合实时定位定姿框架,引入了等角速度外推措施,有效地解决了惯导信息延迟问题。通过高精度转台模拟恶劣海况下载体大角速度摇摆,验证了本文提出的改进算法的有效性。试验结果表明,该算法架构简单,性能可靠,显著提高了恶劣环境下星敏感器的快速、准确搜星能力,保障了三组合姿态测量的精度和可用性。  相似文献   

10.
MEMS-based integrated system of a global navigation satellite system (GNSS) and an inertial navigation system (INS) has been widely used in various navigation applications. However, such integration encounters some major limitations. On the one hand, the noisy MEMS-based INS undermines the accuracy with time during the frequently occurring GNSS outages caused by signal blockage or attenuation in certain situations such as urban canyon, tunnels, and high trees. On the other hand, the model mismatch between actual GNSS error and the assumed one would also degrade the obtained accuracy even with continuous GNSS aiding. To improve the overall performance for GNSS/MEMS-INS, better error models can be obtained using Allan variance (AV) analysis technique for modeling inertial sensor errors instead of the commonly recommended auto-regressive processes, and on the other hand, the measurement update in Kalman filter is improved using innovation filtering and AV calculation. The performance of each method and the combined algorithm is evaluated by a field test with either differential GNSS (DGNSS) or single-point positioning (SPP) as external aid. In addition to the considerable navigation enhancement brought by each method, the experimental results show the combined algorithm accomplishes overall accuracy improvements by about 18% (position), 8% (velocity), and 38% (attitude) for integration with DGNSS, and by about 15% (position), 75% (velocity), and 77% (attitude) for that with SPP, compared with corresponding traditional counterparts.  相似文献   

11.
针对低动态高抖动环境下,影响GPS/INS紧组合精度的重要因素——惯性测量单元(IMU)数据中的噪声,该文提出利用小波降噪方法分离IMU数据中的噪声和有用信号以提高GPS/INS紧组合的精度。首先对IMU数据进行小波分解后得到的高频系数进行阈值量化处理,然后将GPS观测数据与降噪后的IMU数据进行GPS/INS紧组合解算,最终得到载体的导航信息。实例结果表明,该方法可以大幅提升GPS/INS紧组合的精度和稳定可靠性。  相似文献   

12.
GPS车载导航系统中的航位推算技术   总被引:3,自引:0,他引:3  
在车载导航系统中,相对准确地定位是实现导航的基础和前提。DR系统可以有效补充GPS的不足,是最为常用的定位系统之一。讨论了如何合理地选取DR的传感器件,并在此基础上,研究传感器件的噪声特性和组合导航的原理和方式,为自主车载导航系统的设计提供指导。  相似文献   

13.
14.
An airborne radio occultation (RO) system has been developed to retrieve atmospheric profiles of refractivity, moisture, and temperature. The long-term objective of such a system is deployment on commercial aircraft to increase the quantity of moisture observations in flight corridors in order to improve weather forecast accuracy. However, there are several factors important to operational feasibility that have an impact on the accuracy of the airborne RO results. We investigate the effects of different types of navigation system noise on the precision of the retrieved atmospheric profiles using recordings from the GNSS Instrument System for Multistatic and Occultation Sensing (GISMOS) test flights, which used an Applanix POS/AV 510 Global Positioning System (GPS)/Inertial Navigation System (INS). The data were processed using a carrier phase differential GPS technique, and then the GPS position and inertial measurement unit data were combined in a loosely coupled integrated inertial navigation solution. This study quantifies the velocity precision as a function of distance from GPS reference network sites, the velocity precision with or without an inertial measurement unit, the impact of the quality of the inertial measurement unit, and the compromise in precision resulting from the use of real-time autonomous GPS positioning. We find that using reference stations with baseline lengths of up to 760?km from the survey area has a negligible impact on the retrieved refractivity precision. We also find that only a small bias (less than 0.5% in refractivity) results from the use of an autonomous GPS solution rather than a post-processed differential solution when used in an integrated GPS/INS system. This greatly expands the potential range of an operational airborne radio occultation system, particularly over the oceans, where observations are sparse.  相似文献   

15.
This paper preliminarily investigates the application of unscented Kalman filter (UKF) approach with nonlinear dynamic process modeling for Global positioning system (GPS) navigation processing. Many estimation problems, including the GPS navigation, are actually nonlinear. Although it has been common that additional fictitious process noise can be added to the system model, however, the more suitable cure for non convergence caused by unmodeled states is to correct the model. For the nonlinear estimation problem, alternatives for the classical model-based extended Kalman filter (EKF) can be employed. The UKF is a nonlinear distribution approximation method, which uses a finite number of sigma points to propagate the probability of state distribution through the nonlinear dynamics of system. The UKF exhibits superior performance when compared with EKF since the series approximations in the EKF algorithm can lead to poor representations of the nonlinear functions and probability distributions of interest. GPS navigation processing using the proposed approach will be conducted to validate the effectiveness of the proposed strategy. The performance of the UKF with nonlinear dynamic process model will be assessed and compared to those of conventional EKF.  相似文献   

16.
Objective information on athletic maneuvers for performance evaluation has become highly desired in sports such as skiing, snowboarding, and mountain biking. Body-mounted devices, incorporating low-cost microelectromechanical, inertial navigation units, and global positioning system (GPS) receivers, to calculate sport-specific key performance variables (KPVs) and provide real-time feedback, are now commercially available. However, algorithms implemented for such purposes still lack accuracy and power efficiency. A new GPS/INS (inertial navigation system) integration algorithm is proposed to determine the trajectory of an athlete executing jumps while skiing, snowboarding, mountain biking etc. KPVs, such as jump horizontal distance, vertical height, and drop, are calculated from the trajectory. A new sensor error compensation scheme is developed using sensor fusion and linear Kalman filters (LKF). The LKF parameters are varied to address the fluctuating dynamics of the athlete during a jump. The extended Kalman filter used for GPS/INS integration has an observation vector augmented with sensor error measurements derived from sensor fusion. The performance of the proposed algorithm is evaluated through experimental field tests. For the determination of jump horizontal distance, height, and drop, the proposed algorithm has errors of 14.3 cm (5.5 %), 1.6 cm (38 %), and 6.7 cm (9.4 %), respectively. Errors in KPVs for a set of jumps were first determined with respect to the true KPVs, and then the errors for all the jumps were averaged to calculate the absolute and percentage errors. The accuracy achieved is deemed to fulfill the expectations of both recreational and professional athletes.  相似文献   

17.
Adaptive Kalman Filtering for INS/GPS   总被引:69,自引:0,他引:69  
After reviewing the two main approaches of adaptive Kalman filtering, namely, innovation-based adaptive estimation (IAE) and multiple-model-based adaptive estimation (MMAE), the detailed development of an innovation-based adaptive Kalman filter for an integrated inertial navigation system/global positioning system (INS/GPS) is given. The developed adaptive Kalman filter is based on the maximum likelihood criterion for the proper choice of the filter weight and hence the filter gain factors. Results from two kinematic field tests in which the INS/GPS was compared to highly precise reference data are presented. Results show that the adaptive Kalman filter outperforms the conventional Kalman filter by tuning either the system noise variance–covariance (V–C) matrix `Q' or the update measurement noise V–C matrix `R' or both of them. Received: 14 September 1998 / Accepted: 21 December 1998  相似文献   

18.
中国独立发展的北斗系统已经具备亚太地区的定位导航能力,为研究以北斗系统为主的车载导航技术的应用精度,采用伪距单点定位的方法分别对车载GPS,BD2,GPS\BD2 3种导航模式下的二维导航精度进行对比分析,结果显示定位精度分别为:3.66m,4.76 m,3.01 m,可以看出基于单点定位的北斗二维平面导航精度已达到5 m内,完全满足大众日常的出行要求。组合系统与GPS导航系统对比,组合系统具有更高的精度,是较好的导航模式。并基于visual studio平台编写定位软件,实现对车辆位置和速度信息的提取,监控车辆是否超速。  相似文献   

19.
Extended Kalman filter (EKF) is a widely used estimator for integrated navigation systems, and it works well in general situations. However, in adverse conditions such as partially observable environments and highly dynamic maneuvers, the performance of the traditional EKF-based strap-down inertial navigation system (SINS)/GPS integrated navigation system is easily to be affected by the dynamic changes of the specific force, thus leading to the problem of error covariance inconsistency. Though the inconsistency problem can be overcome to some extent if the system matrix, the states and the error covariance matrix are propagated as fast as possible in the SINS calculation rate, the problem cannot be fully solved. State transformation extended Kalman filter (ST-EKF) mechanization, with a new converted velocity error model for the SINS, is proposed, which can also be used to solve the inconsistency problem. In the ST-EKF, the specific force vector in the system error model is replaced by the nearly constant gravity vector for local navigation. Since the propagation and the updating of the ST-EKF can be executed simultaneously in the updating interval, the computation cost is greatly reduced compared with the traditional EKF. Experiments for the GPS/SINS tightly coupled navigation, including linear vibration Monte Carlo test and an unmanned aerial vehicle flight test, are implemented to evaluate the performance of the proposed ST-EKF. The results show that the proposed ST-EKF has superior performance to the traditional EKF, especially in partially observable situations.  相似文献   

20.
Global navigation satellite system (GNSS), such as global positioning system (GPS), has been widely used for vehicular and outdoor navigation. Accuracy is one, among many, of the advantages of using GNSS in the open sky. However, GNSS finds difficulty in achieving similar results in portable navigation, where users spend most of their time indoors or in urban canyons, places where GNSS signals suffer from multipath error or signal blockage. One of the most common solutions for providing location services in such challenging environments is integrating GNSS with inertial sensors, such as accelerometers and gyroscopes. However, the arbitrary orientation of the portable device can present a more difficult challenge when using inertial sensors for portable navigation. In order to obtain a navigation solution using inertial sensors, an accurate heading estimation is required. Resolving the heading misalignment angle between the portable navigation device and the moving platform, such as using the device while walking or in a vehicle while driving, is critical to obtaining an accurate heading estimation. We present a solution for resolving the misalignment between the portable device and the moving platform, which exploits multiple portable devices like smartphones or tablets and/or smart wearable devices such as smart watches, smart glasses, and/or smart fitness and activity trackers/monitors. Several real field test experiments using portable devices were conducted to examine the performance of the proposed method. Results show how a portable navigation solution can be improved by further enhancing misalignment estimation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号