首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K. Jockers 《Solar physics》1976,47(1):221-221
The two-dimensional force-free field equations are studied. The solar photosphere is considered as flat and infinitely extended and the magnetic field component perpendicular to the photosphere is prescribed as the field of a submerged line dipole, i.e. with two magnetic polarities divided by a straight infinitely long neutral line. In addition the shear of the field lines along the neutral line, i.e. the difference of the coordinate parallel to the neutral line of the two foot-points of a field line, is prescribed as a function f of the distance to the neutral line times a nonnegative constant . The function f is zero at the neutral line, goes through a maximum and drops to zero at large distances from the neutral line. The case = 0 corresponds to the current-free field. An approximate solution is obtained by a test function method. It is shown that for certain choices of the function f there exists a maximum value of beyond which a steady continuation of the solution is impossible. This forces the field to jump to a state of lower energy. The potential field, for instance, is such a lower energy state. Since the shear was prescribed as a boundary condition, the jump of the magnetic field will always be accompanied by a field line reconnection. Even though the field calculated does not closely resemble the flare geometry it is speculated that discontinuities like this one may also occur in more realistic field configurations and may actually trigger the flare.An extended version of this paper is to be published elsewhere.  相似文献   

2.
Loukas Vlahos 《Solar physics》1989,121(1-2):431-447
Particle acceleration during solar flares is a complex process where the main actors (Direct (D.C.) or turbulent electric fields) are hidden from us. It is easy to construct a successful particle accelertion model if we are allowed to impose on the flaring region arbitrary conditions (e.g., strength and scale length of the D.C. or turbulent electric fields), but then we have not solved the acceleration problem; we have simply re-defined it. We outline in this review three recent observations which indicate that the following physical processes may happen during solar flares: (1) Release of energy in a large number of microflares; (2) short time-scales; (3) small length scales; and (4) coherent radiation and acceleration sources. We propose that these new findings force us to reformulate the acceleration process inside a flaring active region assuming that a large number of reconnection sites will burst almost simultaneously. All the well-known acceleration mechanisms (electric fields, turbulent fields, shock waves, etc.) reviewed briefly here, can be used in a statistical model where each particle is gaining energy through its interaction with many small reconnection sites.  相似文献   

3.
R. P. Lin 《Solar physics》1982,113(1-2):217-220
We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting 3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to 100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically 102 kV compared to 10 kV for auroral substorms.  相似文献   

4.
We examine observational evidence concerning energy release in solar flares. We propose that different processes may be operative on four different time scales: (a) on the sub-second time scale of sub-bursts which are a prominent feature of mm-wave microwave records; (b) on the few-seconds time scale of elementary bursts which are a prominent feature of hard X-ray records; (c) on the few-minutes time scale of the impulsive phase; and (d) on the tens-of-minutes or longer time scale of the gradual phase.We propose that the concentration of magnetic field into magnetic knots at the photosphere has important consequences for the coronal magnetic-field structure such that the magnetic field in this region may be viewed as an array of elementary flux tubes. The release of the free energy of one such tube may produce an elementary burst. The development of magnetic islands during this process may be responsible for the sub-bursts. The impulsive phase may be simply the composite effect of many elementary bursts.We propose that the gradual phase of energy release, with which flares typically begin and with which many flares end, involves a steady process of reconnection, whereas the impulsive phase involves a more rapid stochastic process of reconnection which is a consequence of mode interaction.In the case of two-ribbon flares, the late part of the gradual phase may be attributed to reconnection of a large current sheet which is being produced as a result of filament eruption. A similar process may be operative in smaller flares.Also, Department of Applied Physics, Stanford University.  相似文献   

5.
We summarize key problems in our understanding of energy release in solar flares, as addressed by participants in a recent workshop. These problems fall into three broad areas: (i) Transport and thermalization of energy, (ii) acceleration of particles, and (iii) origin and effects of mass motions. We then describe how suitably coordinated collaborative observing sequences during the forthcoming Solar Maximum Year are potentially capable of resolving some of these issues.  相似文献   

6.
B. V. Somov 《Solar physics》1978,60(2):315-321
Radiative cooling and heat conduction determine the temperature structure of flare plasmas along magnetic field. It is shown that both in the case of slow heating and of impulsive heating, temperatures are distributed in such a way that classical collisional heat conduction is valid.  相似文献   

7.
Lin  R. P. 《Solar physics》1987,113(1-2):217-220

We present observations of an intense solar flare hard X-ray burst on 1980 June 27, made with a balloon-borne array of liquid nitrogen-cooled germanium detectors which provided unprecedented spectral resolution (≲1 keV FWHM). The hard X-ray spectra throughout the impulsive phase burst fitted well to a double power-law form, and emission from an isothermal 108–109K plasma can be specifically excluded. The temporal variations of the spectrum indicate that the hard X-ray burst is made up of two superposed components: individual spikes lasting ∼3–15 s, whch have a hard spectrum and a break energy of 30–65 keV; and a slowly varying component characterized by a soft spectrum with a constant low-energy slope and a break energy which increases from 25 keV to ≳100 keV through the event. The double power-law shape indicates that acceleration by DC electric fields parallel to the magnetic field, similar to that occurring in the Earth's auroral zone, may be the source of the energetic electrons which produce the hard X-ray emission. The total potential drop required for flares is typically ∼102 kV compared to ∼10 kV for auroral substorms.

  相似文献   

8.
For the period September 1978 to December 1982 we have identified 55 solar flare particle events for which our instruments on board the ISEE-3 (ICE) spacecraft detected electrons above 10 MeV. Combining our data with those from the ULEWAT spectrometer (MPI Garching and University of Maryland) electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (<1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (<1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.  相似文献   

9.
Team 2 of the Ottawa FLARES 22 Workshop dealt with observational and theoretical aspects of the characteristics and processes of energy release in flares. Main results summarized in this article stress the global character of the flaring phenomenon in active regions, the importance of discontinuities in magnetic connectivity, the role of field-aligned currents in free energy storage, and the fragmentation of energy release in time and space.Report of Team 2, Flares 22 Workshop, Ottawa, May 25–28, 1993.  相似文献   

10.
E. Schatzman 《Solar physics》1967,1(3-4):411-419
Some ideas are developed concerning solar flares which have been presented earlier by the author (Schatzman, 1966a). Emphasis is laid on the problem of energy transport; from the energy supply to the region of the optical flare, on the storage of low energy cosmic ray particles in a magnetic bottle before the beginning of the optical flare, and the mechanism which triggers both the optical flare, and the production of high-energy cosmic rays. The relation between solar and stellar flares is considered.Lecture given at Goddard Space Flight Center, November 4, 1966.  相似文献   

11.
12.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

13.
Second-step acceleration of nonrelativistic protons and ions in impulsive solar flares is discussed extending our earlier calculations for relativistic electrons. We derive the relevant particle transport equation, discussing in detail the influence of the particle's effective charge and mass number on the various momentum gain (stochastic acceleration, diffusive shock wave acceleration) and loss (Coulomb interactions, particle escape) processes. Analytical solutions for the ion-momentum spectra in the hard-sphere approximation are given. The inclusion of Coulomb losses modify the particle spectra significantly at kinetic energies smaller than E B = 0.64( e /5.0) MeV nucl.–1 from the well-known Bessel function variation in long-duration flares. For equal injection conditions this modification explains the observed much smaller ion fluxes from impulsive flares at high energies as compared to long-duration flares. We also calculate the 3He/4He-isotope variation as a function of momentum in impulsive flares in the hard-sphere approximation and find significant variations near E m = 0.38(T e /2 × 106 K) MeV nucl.–1, where T e is the electron temperature of the coronal medium.  相似文献   

14.
N. Gopalswamy 《Solar physics》1987,110(2):327-335
The pulsed electron acceleration and release from the energy release volume in solar flares implies that there is a possibility of interaction between a group of electrons reflected from the foot of a bipolar flux tube with a newly injected beam. It is shown that interaction can lead to the stoppage of the synchrotron maser instability caused by the loss cone distribution and hence can produce further millisecond fine structures in the solar microwave bursts.  相似文献   

15.
Meaurements of solar flare spectra have allowed the electric field strengths in two flares to be determined, using the Inglis-Teller formula. Further, an independently estimated value for the electron density has allowed the two components of this field, that is, the interionic component and the external component that arises, for example, through plasma instabilities, to be separately extracted. External electric field strengths 0.5 kV cm–1 for a limb flare and 1.3 kV cm–1 for a white-light flare are found. Estimates of electric fields strengths generated by the resistive magnetic tearing instability indicate that this process could account for a significant part of the electric field if pre-existing magnetic field strengths in the flaring regions are characterized by a few kilogauss. Other plasma processes probably contribute measurably as well.Operated by the Association of Universities for Research in Astronomy, Inc., under contract NSF AST84-18716 with the National Science Foundation.  相似文献   

16.
A model for second-step electron acceleration in impulsive solar flares is presented. We have extended the theory of stochastic particle acceleration to include Coulomb energy losses which become important at low coronal heights. This inclusion successfully explains the observed steepening of interplanetary electron spectra below 3 MeV following impulsive solar flares taking place at low coronal heights. It also explains the observed spectral differences of relativistic electrons in long-duration and impulsive flares.  相似文献   

17.
Celebrating the diamond jubilee of the Physics Research Laboratory (PRL) in Ahmedabad, India, we look back over the last six decades in solar physics and contemplate on the ten outstanding problems (or research foci) in solar physics:
  1. The solar neutrino problem
  2. Structure of the solar interior (helioseismology)
  3. The solar magnetic field (dynamo, solar cycle, corona)
  4. Hydrodynamics of coronal loops
  5. MHD oscillations and waves (coronal seismology)
  6. The coronal heating problem
  7. Self-organized criticality (from nanoflares to giant flares)
  8. Magnetic reconnection processes
  9. Particle acceleration processes
  10. Coronal mass ejections and coronal dimming
The first two problems have been largely solved recently, while the other eight selected problems are still pending a final solution, and thus remain persistent Challenges for Solar Cycle 24, the theme of this jubilee conference.  相似文献   

18.
19.
A theory of two-ribbon solar flares is presented which identifies the primary energy release site with the tops of the flare loops. The flare loops are formed by magnetic reconnection of a locally opened field configuration produced by the eruption of a pre-flare filament. Such eruptions are commonly observed about 15 min prior to the flare itself. It is proposed that the flare loops represent the primary energy release site even during the earliest phase of the flare, i.e., the flare loops are in fact the flare itself.Based upon the supposition that the energy release at the loop tops is in the form of Joulean dissipation of magnetic energy at the rising reconnection site, a quantitative model of the energy release process is developed based upon an analytic reconnecting magnetic field geometry believed to represent the basic process. Predicted curves of energy density vs time are compared with X-ray observations taken aboard Skylab for the events of 29 July, 13 August, and 21 August in 1973. Considering the crudity of the model, the comparisons appear reasonable. The predicted field strengths necessary to produce the observed energy density curves are also reasonable, being in the range 100–1000 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

20.
Priest  E. R. 《Solar physics》1983,84(1-2):33-44
We have used the 512 channel diode array and vacuum telescope at KPNO to study the photospheric intensity distribution around sunspots, for comparison with isotherms predicted by convective blocking models of heat flow. Raster scan observations of 10 spots on 18 days were carried out in 1980 and 1981. Continuum passbands of 0.25 Å width were selected to avoid contamination by weak Fraunhofer lines, whose strength is sensitive to the presence of magnetic faculae often found near spots. Our observations show no evidence of extended bright rings around the spots at the level of 1–2%, as reported in one recent study using photographic photometry and much wider passbands. But 6 of the 10 spots we measured show marginally significant (2–3σ) bright rings of peak amplitude 0.1–0.3%. We are not able to explain these rings as a result of either residual facular signal, or instrumental effects. The excess radiative flux in these rings is small compared to the missing flux in the spot umbra and penumbra. We compare the brightness of the observed rings with peak brightnesses calculated from models of heat flow around spots of various depths and radii. Even if the spot is assumed to be unrealistically shallow, a detectable bright ring requires that the effective thermal conductivity (and/or its depth gradient) in layers surrounding the spot be significantly lower than the values indicated by mixing length models of the solar convection zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号