首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
--A tensiometric method (Wilhelmy plate) is used to study Wood's metal dynamic wettability on specially prepared surfaces of quartz single crystals at low velocities of immersion (2 to 16 wm/s). After correction for buoyancy, the force exerted on the plate by the molten metal is used to derive the unit work of wetting n cos Š where n is the Wood's metal surface tension and Š is the interfacial contact angle. Tests at different temperatures (85, 120 and 200°C) show that below 120°C, viscosity effects cannot be neglected. At an immersion/emersion rate of 2 wm/s, n cos Š is in the range 0.417-0.444 N/m at 120°C, and 0.432-0.458 N/m at 200°C. These figures allow the conversion of injection pressures into capillary diameters during Wood's metal injection tests. The method is promising since it may be used in porous materials to check the sensitivity of the unit work of wetting n cos Š to parameters such as roughness and mineralogy, which are known to vary in a wide range within the pores and cracks of rocks.  相似文献   

2.
在西藏冈底斯山西部措勤县打加错地区新发现一套紫红色石英砂岩、钙质粉砂岩、生物碎屑微晶灰岩夹放射虫硅质岩的地层体,在硅质岩中首次发现了晚三叠世卡尼期—诺利期放射虫动物群Pseudostylosphaera sp.,Perispongidium cf.tethys De Wever.放射虫化石的发现对冈底斯山西部打加错地区地层的划分和地质构造发展演化史的研究具有重要意义.  相似文献   

3.
Microcracks can have a strong influence on the elastic and fracture mechanical properties of rocks if they are numerous, or if they are orientated in unfavourable directions in anisotropic rocks in particular. This paper presents results from a great number of mechanical tests on Stripa granite containing various amounts of microcracks. Variations in the microcrack density were obtained by shock-heating the rock at different temperatures in the range 100–600°C for 3 h.The results presented are obtained from sound velocity measurements, uniaxial compression tests, Brazilian tests and three-point bending tests. The density of microcracks in the heated rock is studied by means of optical microscopy, SEM and differential strain analysis (DSA).Some of the calculated parameters show a maximum value for specimens heat-treated at about 100°C. The tensile strength is, for instance, substantially higher for specimens shock-heated at 100°C than for non-heated ones. Another striking feature is the initial decrease of the diameter observed in specimens heat-treated at 600°C when loaded in uniaxial compression. Both optical microscopy and DSA experiments reveal a large increase in microcracking when the heat-treatment temperature exceeds 300°C.  相似文献   

4.
本文论述了糜棱岩类与碎裂岩类的变形特征,它们各自代表了不同的成因机制,反映了断层带经历过早期韧性剪切和后期脆性破裂的发育历史。根据断层岩石的显微构造特征,估算了断层带发育过程中两个阶段的温度、压力、应变速率、差异应力大小和方位,并讨论了韧性剪切带、地壳中弹塑性过渡带与大陆地震多发层之间的关系  相似文献   

5.
The Zargoli granite, which extends in a northeast–southwest direction, intrudes into the Eocene–Oligocene regional metamorphic flysch‐type sediments in the northwest of Zahedan. This pluton, based on modal and geochemical classification, is composed of biotite granite and biotite granodiorite, was contaminated by country rocks during its emplacement, and is slightly changed to more aluminous. The SiO2 content of these rocks range from 62.4 to 66 wt% with an alumina saturation index of Shand [molar Al2O3/(CaO + Na2O + K2O)] ~ 1.1. Most of its chemical variations could be explained by fractionation or heterogeneous distribution of biotite. The features of the rocks resemble those which are typical to post‐collisional granitoids. Chondrite‐normalized rare‐earth element patterns of these rocks are fractionated at (La/Lu)N = 2.25–11.82 with a pronounced negative Eu anomaly (Eu/Eu* = 3.25–5.26). Zircon saturation thermometry provides a good estimation of magma temperatures (767.4–789.3°C) for zircon crystallization. These characteristics together with the moderate Mg# [100Mg/(Mg + Fe)] values (44–55), Fe + Mg + Ti (millications) = 130–175, and Al–(Na + K + 2Ca) (millications) = 5–50 may suggest that these rocks have been derived from the dehydration partial melting of quartz–feldspathic meta‐igneous lower crust.  相似文献   

6.
The Bashikaogong-Shimierbulake granitoid complex is about 30 km long and 2―6 km wide, with an area of 140 km2, located at the north margin of the Bashikaogong Basin in the north Altun terrain. It intruded into schist, metapelite and metatuff of Precambrian ages. This granitoid complex consists of darkish quartz diorite, grey granite, pink granite and pegmatite. Geochemically, the quartz diorite has I-type granite affinity and belongs to Calc-alkaline sereies, and the other gran- ites have S-type affinity and to high-K calc-alkaline series. Zircon SHRIMP U-Pb dating shows that the quartz diorite has a bigger age than those of other granites, which is 481.6±5.6 Ma for quartz diorite, 437.0±3.0 Ma―433.1±3.4 Ma for grey granite and 443±11 Ma―434.6±1.6 Ma for pink granite, re- spectively. Combined with regional geology, we think that the quartz diorite formed in tectonic envi- ronment related to oceanic crust subduction and the granites in post-collision.  相似文献   

7.
The subduction of “hot” Shikoku Basin and the mantle upwelling related to the Japan Sea opening have induced extensive magmatism during the middle Miocene on both the back-arc and island-arc sides of southwest Japan. The Goto Islands are located on the back-arc side of northwestern Kyushu, and middle Miocene granitic rocks and associated volcanic, hypabyssal, and gabbroic rocks are exposed. The igneous rocks at Tannayama on Nakadori-jima in the Goto Islands consist of gabbronorite, granite, granite porphyry, diorite porphyry, andesite, and rhyolite. We performed detailed geological mapping at a 1:10 000 scale, as well as petrographical and geochemical analyses. We also determined the zircon U–Pb age dating of the igneous rocks from Tannayama together with a granitic rock in Yagatamesaki. The zircon U–Pb ages of the Tannayama igneous rocks show the crystallization ages of 14.7 Ma ± 0.3 Ma (gabbronorite), 15.9 Ma ± 0.5 Ma (granite), 15.4 Ma ± 0.9 Ma (granite porphyry), and 15.1 Ma ± 2.1 Ma (rhyolite). Zircons from the Yagatamesaki granitic rock yield 14.5 Ma ± 0.7 Ma. Considering field relationships, new zircon data indicate that the Tannayama granite formed at ~16–15 Ma, and the gabbronorite, granite porphyry, diorite porphyry, andesite, and subsequently rhyolite formed at 15–14 Ma, which overlaps a plutonic activity of the Yagatamesaki. The geochemical characteristics of the Tannayama igneous rocks are similar to those of the tholeiitic basalts and dacites of Hirado, and the granitic rocks of Tsushima in northwestern Kyushu. This suggests that the Tannayama igneous rocks can be correlated petrogenetically with the igneous rocks in those areas, with all of them generated by the upwelling of hot mantle diapirs during crustal thinning in an extensional environment during the middle Miocene.  相似文献   

8.
梅子坑钼矿位于九岭钨钼成矿带,为中型石英脉型钼矿床。矿区内地层和岩浆岩钼元素含量分别是克拉克值的43倍和21倍。矿体赋存于双桥山群修水组浅变质岩系中及北西向断裂控制的裂隙密集带中;矿石主要类型为石英脉型,矿石有益组分为辉钼矿,形成于石英-黄铁矿-辉钼矿-黄铜矿早期矿化阶段。矿床可能与隐伏的燕山期细粒花岗岩、花岗斑岩岩脉有成因关系,属与燕山期岩浆活动有关的中-高温热液矿床。北西向断裂密集带,硅化、云英岩化、黄铁矿化围岩蚀变,燕山期花岗岩类及双桥山群浅变质岩系,是其主要找矿标志。  相似文献   

9.
IntroductionTheArchaeozoicfelsicrocksarethemaincomponentsoftheuppercrustincratonareas,whichmayalsoexistinthelowercrust(ZHANG,SUN,1999).Thereforethestudyontheircompressionalwavevelocitiesofthiskindofrocksisofimportance.Oneofthecharactersofthistypeofrocksisexistingofquartz.Athightemperatureandpressurethe(phaseofquartztransitsinto(phasecompaniedwithvelocitychange.Consequentlythefeatureoftemperature-velocitycurveoffelsicrocksatacertainpressureisexclusiveforothertypeofrocks.FirstFielitz(1971),…  相似文献   

10.
The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.  相似文献   

11.
Origin of Li-F-rich granite: Evidence from high P-T experiments   总被引:2,自引:0,他引:2  
In South China and some regions around the world, there is a special type of rocks. These rocks are usually ultra-acidic, peraluminous, rich in Na and volatile components, such as H2O, F, B and P, and with higher concentrations of lithophile rare metal elements, including Li, Rb, Cs, Be, Ta, Nb, Sn, W, etc. Rocks of this type are commonly called Li-F-rich, rare-metal bearing granitic rocks, or Li-F granites for short[1]. The economic importance and distinct forma-tion mechanism of Li-…  相似文献   

12.
The Khalkhab–Neshveh (KN) pluton is a part of Urumieh–Dokhtar Magmatic Arc and was intruded into a covering of basalt and andesite of Eocene to early Miocene age. It is a medium to high‐K, metaluminous and I‐type pluton ranging in composition from quartz monzogabbro, through quartz monzodiorite, granodiorite, and granite. The KN rocks show subtle differentiation trends strongly controlled by clinopyroxene, plagioclase, hornblende, apatite, and titanite, where most major elements (except K2O) are negatively correlated with SiO2; and Al2O3, Na2O, Sr, Eu, and Y define curvilinear trends. Considering three processes of magmatic differentiation including mixing and/or mingling between basaltic and dacitic magmas, gravitational fractional crystallization and in situ crystallization revealed that the latter is the most likely process for the evolution of KN magma. This is supported by the occurrence of all rock types at the same level, the lack of mafic enclaves in the granitoid rocks, the curvilinear trends of Na2O, Sr, and Eu, and the constant ratios of (87Sr/86Sr)i from quartz monzodiorite to granite (0.70475 and 0.70471, respectively). In situ crystallization took place via accumulation of plagioclase and clinopyroxene phenocrysts and concentration of these phases in the quartz monzogabbro and quartz monzodiorite at the margins of the intrusion at T ≥ 1050°C, and by filter pressing and fractionation of hornblende, plagioclase, and later biotite in the granitoids at T = ~880°C.  相似文献   

13.
Using the induced fission-track method, mobile uranium leaching and lead isotope analysis, this work obtianed geochemical features of the peraluminous Fucheng granite basement and the host rock (shoshonite) of the No. 6722 uranium deposit in southern Jiangxi Province, (i) Uranium contents of the leucocratic rock-forming minerals (0.18 μg/g for quartz, 0.36 μg/g for feldspar) are lower than the uranium content of the whole rock (4.6 μg/g). Biotite and some accessory mineral inclusions (zircon, monazite and uraninite) are the main uranium carriers of the Fucheng granite pluton. The fissure uranium in altered minerals (hydromica and chlorite) increased evidently, (ii) Leachable rate of mobile uranium in the biotite granite is 10.4⨴; while that in the altered granite increased to 31· · (iii) Caculation based on lead isotopes shows that during alteration the Fucheng granite lost uranium (AU = −37%–−65· · ), whereas the Caotaobei shoshonite gained uranium (AU = +37· ·–+58 · ·). These features suggest that the ore-forming material of the No. 6722 uranium deposit was mainly derived from the altered peraluminous granite basement of Fucheng pluton.  相似文献   

14.
The Moshirabad pluton is located southwest of the Sanandaj–Sirjan Metamorphic Belt, Qorveh, western Iran. The pluton is composed of diorite, monzodiorite, quartz diorite, quartz monzodiorite, tonalite, granodiorite, granite, aplite, and pegmatite. In this study 31 samples from various rocks were chosen for whole‐rock analyses and 15 samples from different lithologies were chosen for mineral chemical studies. The compositions of minerals are used to describe the nature of magma and estimate the pressure and temperature at which the Moshirabad pluton was emplaced. Feldspar compositions are near the binary systems in which plagioclase compositions range from An5 to An53 and alkali‐feldspar compositions range from Or91 to Or97. Mafic minerals in the plutonic rocks are biotite and hornblende. Based on the composition of biotites and whole‐rock chemistry, the Moshirabad pluton formed from a calc‐alkaline magma. Amphiboles are calcic amphiboles (magnesio‐hornblende or edenite). Temperatures of crystallization, calculated with the hornblende–plagioclase thermometer, range 550–750°C. These temperatures indicate that plutonic rocks have undergone some retrogressive changes in their mineral compositions. Aluminum‐in‐hornblende geobarometry indicates that the Moshirabad pluton was emplaced at pressures of 2.3–6.0 kbar, equal to depths of 7–20 km, but with consideration of regional geology, lower pressures than the above pressure range are more probable. Alteration of amphiboles can be the reason for some overestimation of pressures.  相似文献   

15.
新疆阿尔泰成矿带花岗岩发育,其中很多花岗岩与成矿作用有着密切的联系,特别是400Ma左右的岩浆活动是阿尔泰地区一次重要的岩浆成矿活动,阿尔泰许多金属矿床与这一时期的岩浆构造作用有关。本次研究的出露于可可塔勒铅锌矿区的黑云母花岗岩体,其锆石LA-ICPMSU-Pb年龄为(401.8士1.5)Ma,表明可可塔勒花岗岩是阿尔泰成矿带400Ma左右发生的一次重要岩浆构造作用的产物,该黑云母花岗岩体侵入于矿区下泥盆统康布铁堡组火山岩地层中,岩体与围岩接触带附近的围岩蚀变明显,该黑云母花岗岩的侵入以及其后期的岩浆热液活动可能对区内成矿物质的活化、迁移、富集、成矿具有一定的贡献。  相似文献   

16.
Long‐term weathering of a quartz chlorite schist via wetting and drying was studied under a simulated tropical climate. Cubic rock samples (15 mm × 15 mm × 15 mm) were cut from larger rocks and subjected to time‐compressed climatic conditions simulating the tropical wet season climate at the Ranger Uranium Mine in the Northern Territory, Australia. Fragmentation, moisture content and moisture uptake rate were monitored over 5000 cycles of wetting and drying. To determine the impact of climatic variables, five climatic regimes were simulated, varying water application, temperature and drying. One of the climatic regimes reproduced observed temperature and moisture variability at the Ranger Uranium Mine, but over a compressed time scale. It is shown that wetting and drying is capable of weathering quartz chlorite schist with changes expected over a real time period of decades. While wetting and drying alone does produce changes to rock morphology, the incorporation of temperature variation further enhances weathering rates. Although little fragmentation occurred in experiments, significant changes to internal pore structure were observed, which could potentially enhance other weathering mechanisms. Moisture variability is shown to lead to higher weathering rates than are observed when samples are subjected only to leaching. Finally, experiments were conducted on two rock samples from the same source having only subtle differences in mineralogy. The samples exhibited quite different weathering rates leading to the conclusion that our knowledge of the role of rock type and composition in weathering is insufficient for the accurate determination of weathering rates. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Fracturing and frictional sliding of quartz and granite under dry condition generates fractoluminescence, charged particle emission and electromagnetic radiation. Various kinds of experiments indicate that surface charge density on fracture or frictional slip surface of quartz and granite is 10−4 to 10−2 C/m2 which is larger than bound charges induced by the disappearance of piezoelectricity due to the release of stress. Hole and electron trapping centers, which is found in semiconductor devices with the Si–SiO2 system, are causes of surface charging on fracture or frictional slip surface of quartz crystal. The quantity of the surface charge is enough to cause corona discharge that can generate earthquake lights. The mechanism considering the hole and electron trapping centers has a probability to explain why non-piezoelectric minerals or rocks generate electromagnetic phenomena. It can be one of origins of seismo-electromagnetic phenomena (SEP).  相似文献   

18.
This paper reviews many of the mechanical properties of faulted and jointed rock under pressure and temperature and in the presence of water. At low effective confining pressures (below about 1 kilobar), the friction strength is quite variable and depends on the frictional resistance between gouge particles or asperities and on the dilatancy of the fault. At higher pressures the friction strength is nearly independent of mineralogy, temperature, and rate, at least for rocks whose friction strength is less than the failure strength. Water tends to slightly weaken the fault. The type of sliding motion, whether stick-slip or stable sliding, is much more affected by environmental and mineralogical factors. In general, stick-slip is dominant at high pressures and low temperatures, in the presence of strong minerals such as quartz and feldspar, in the absence of gouge, for lower surface roughness, and perhaps in the presence of water. The microscopic deformation mechanisms are poorly understood. At low temperatures, cataclasis dominates in rocks containing mostly quartz or feldspar, and plastic deformation in rocks containing mostly calcite or platy silicates. At high temperature most minerals deform plastically, producing a greater temperature-and rate-dependence of the friction strength. Glass has been found in some sliding surfaces in sandstone.  相似文献   

19.
v--vThe phenomenon of "Lg blockage," where Lg is strongly attenuated by crustal heterogeneities, poses a serious problem to CTBT monitoring because Lg is an important seismic phase for discrimination. This paper examines blockage in three continental regions where the Lg blockages may be caused by large, enclosed sedimentary basins along the propagation path. The Barents Sea Basin blocks Lg propagation across the Barents Sea from the Russian nuclear test sites at Novaya Zemlya to Scandinavian stations. Also, "early Lg" waves are observed in Sn codas on NORSAR, NORESS, and ARCESS recordings of Novaya Zemlya explosions where direct Lg is blocked. Early Lg waves may have resulted from Sn-to-Lg mode conversion at the contact between the Barents Basin and the Kola Peninsula. The Northern and Southern Caspian Sea Basins also block Lg waves from PNEs and earthquakes, perhaps due to thick, low-velocity, low-Q sediments replacing the granitic layer rocks in the crust. Lg blockage has also been observed in the Western Mediterranean/Levantine Basin due to low-Q sediments and crustal thinning. A "basin capture" model is proposed to explain Lg blockage in sedimentary basins. In this model, shear waves that reverberate in the crust and constitute the Lg wave train are captured, delayed, and attenuated by thick, low-velocity sediments that replace the "granitic" layer rocks of the upper crust along part of the propagation path. Sn waves, which propagate below the basin, would not be blocked and in fact, the blocked Lg waves may be diverted downward into Sn waves by the low velocity sediments in the basin.  相似文献   

20.
Field studies and seismic data show that semi-brittle flow of fault rocks probably is the dominant deformation mechanism at the base of the seismogenic zone at the so-called frictional-plastic transition. As the bottom of seismogenic fault, the dynamic characteristics of the frictional-plastic transition zone and plastic zone are very important for the seismogenic fault during seismic cycles. Granite is the major composition of the crust in the brittle-plastic transition zone. Compared to calcite, quartz, plagioclase, pyroxene and olivine, the rheologic data of K-feldspar is scarce. Previous deformation studies of granite performed on a quartz-plagioclase aggregate revealed that the deformation strength of granite was similar with quartz. In the brittle-plastic transition zone, the deformation characteristics of granite are very complex, temperature of brittle-plastic transition of quartz is much lower than that of feldspar under both natural deformation condition and lab deformation condition. In the mylonite deformed under the middle crust deformation condition, quartz grains are elongated or fine-grained via dislocation creep, dynamic recrystallization and superplastic flow, plagioclase grains are fine-grained by bugling recrystallization, K-feldspar are fine-grained by micro-fractures. Recently, both field and experimental studies presented that the strength of K-feldspar is much higher than that of quartz and plagioclase. The same deformation mechanism of K-feldspar and plagioclase occurred under different temperature and pressure conditions, these conditions of K-feldspar are higher than plagioclase. The strength of granite is similar to feldspar while it contains a high content of K-feldspar. High shear strain experiment studies reveal that granite is deformed by local ductile shear zones in the brittle-plastic transition zone. In the ductile shear zone, K-feldspar is brittle fractured, plagioclase are bugling and sub-grain rotation re-crystallized, and quartz grains are plastic elongated. These local shear zones are altered to local slip-zones with strain increasing. Abundances of K-feldspar, plagioclase and mica are higher in the slip-zones than that in other portions of the samples (K-feldspar is the highest), and abundance of quartz is decreased. Amorphous material is easily formed by shear strain acting on brittle fine-grained K-feldspar and re-crystallized mica and plagioclase. Ductile shear zone is the major deformation mechanism of fault zones in the brittle-plastic transition zone. There is a model of a fault failed by bearing constant shear strain in the transition zone:local shear zones are formed along the fractured K-feldspar grains; plagioclase and quartz are fine-grained by recrystallization, K-feldspar is crushed into fine grains, these small grains and mica grains partially change to amorphous material, local slip-zones are generated by these small grains and the amorphous materials; then, the fault should be failed via two ways, 1)the local slip-zones contact to a throughout slip-zone in the center of the fault zone, the fault is failed along this slip-zone, and 2)the local slip-zones lead to bigger mineral grains that are in contact with each other, stress is concentrated between these big grains, the fault is failed by these big grains that are fractured. Thus, the real deformation character of the granite can't be revealed by studies performing on a quartz-plagioclase aggregate. This paper reports the different deformation characters between K-feldspar, plagioclase and quartz under the same pressure and temperature condition based on previous studies. Then, we discuss a mode of instability of a fault zone in the brittle-plastic transition zone. It is still unclear that how many contents of weak mineral phase(or strong mineral phase)will control the strength of a three-mineral-phase granite. Rheological character of K-feldspar is very important for study of the deformation characteristic of the granitic rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号