首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Atmospheric Research》2007,83(3-4):579-590
A method for determining evaporation rates and thermodynamic properties of aqueous solution droplets is introduced. The method combines evaporation rate measurements using modified TDMA technique with data evaluation using an accurate evaporation model. The first set of data has been collected and evaluated for succinic acid aqueous solution droplets.Evaporation rates of succinic acid solution droplets have been measured using a TDMA system at controlled relative humidity (65%) and temperature (298 K). A temperature-dependent expression for the saturation vapour pressure of pure liquid phase succinic acid at atmospheric temperatures has been derived by analysing the evaporation rate data with a numerical model. The obtained saturation vapour pressure of liquid phase succinic acid is ln(p) = 118.41  16204.8/T  12.452ln(T). The vapour pressure is in unit of Pascal and the temperature in Kelvin. A linear expression for the enthalpy of vaporization for liquid state succinic acid is also presented.According to the results presented in the following, a literature expression for the vapour pressure of liquid phase succinic acid defined for temperatures higher than 461 K [Yaws, C.L., 2003. Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Knovel] can be extrapolated to atmospheric temperatures with very good accuracy. The results also suggest that at 298 K the mass accommodation coefficient of succinic acid is unity or very close to unity.  相似文献   

2.
The freezing temperatures of single supercooled drops of binary and ternary sulfuric and nitric acid solutions were measured while varying the acid concentration. An acoustic levitator was used which allows to freely suspend single solution drops in air without electrical charges thereby avoiding any electrical influences which may affect the freezing process. The drops of typically 500 µm in radius were monitored by a video camera during cooling cycles down to − 85 °C to simulate the upper tropospheric and stratospheric temperature range. The present data confirm that liquid solution droplets can be supercooled far below the equilibrium melting point by approximately 35 °C. They follow the general trend of the expected freezing temperatures for homogeneous ice nucleation.  相似文献   

3.
We present a parameterization for numbers of water and ammonia molecules in an equilibrium droplet with fixed number of sulfuric acid molecules at known relative humidity, ammonia mixing ratio and temperature. The radius of the droplet is also parameterized. The parameterizations are based on macroscopic model of solution droplets and up-to-date thermodynamics. The binary parameterizations are valid for temperatures 190–330 K and relative humidities 1–99%. The ternary parameterization can be used at temperatures 240–300 K, relative humidities 5–95%, and ammonia mixing ratios 10− 4–100 ppt. In both cases the parameterizations are valid for droplets containing up to 1011 sulfuric acid molecules. The droplet composition is always between the limits of pure ammonium bisulfate and pure ammonium sulfate.  相似文献   

4.
Summary Evaporation rates determined by energy balance and bulk transfer equations and confirmed with soil moisture sampling was regressed against average daytime temperature, vapour pressure deficit and wind speed over several chinook events between 1986 and 1988. The equationE = 0.45 exp (0.35 + 0.025 — 0.133 [e *e]) yielded reasonable estimates of evaporation with surface soil moisture between saturation and near wilting point.E is evaporation in mmd –1,T, u ande * ande are temperature (°C), wind speed (ms–1), saturation vapour pressure and vapour pressure (mb) respectively. The overbar denotes daytime average.With 8 Figures  相似文献   

5.
《Atmospheric Research》2007,83(3-4):514-522
We present a parameterization for numbers of water and ammonia molecules in an equilibrium droplet with fixed number of sulfuric acid molecules at known relative humidity, ammonia mixing ratio and temperature. The radius of the droplet is also parameterized. The parameterizations are based on macroscopic model of solution droplets and up-to-date thermodynamics. The binary parameterizations are valid for temperatures 190–330 K and relative humidities 1–99%. The ternary parameterization can be used at temperatures 240–300 K, relative humidities 5–95%, and ammonia mixing ratios 10 4–100 ppt. In both cases the parameterizations are valid for droplets containing up to 1011 sulfuric acid molecules. The droplet composition is always between the limits of pure ammonium bisulfate and pure ammonium sulfate.  相似文献   

6.
Simplified numerical models of the atmospheric boundary layer (ABL) are useful both for understanding the underlying dynamics and potentially providing parsimonious modelling approaches for inclusion in larger models. Herein the governing equations of a simplified slab model of the uniformly mixed, purely convective, diurnal ABL are shown to allow immediate solutions for the potential temperature and specific humidity as functions of the ABL height and net radiation when expressed in integral form. By employing a linearized saturation vapour relation, the height of the mixed layer is shown to obey a non-linear ordinary differential equation with quadratic dependence on ABL height. A perturbation solution provides general analytical approximations, of which the leading term is shown to represent the contribution under equilibrium evaporation. These solutions allow the diurnal evolution of the height, potential temperature, and specific humidity (i.e., also vapour pressure deficit) of the mixed layer to be expressed analytically for arbitrary radiative forcing functions.  相似文献   

7.
Gas and particle phase concentrations of atmospheric polychlorinated biphenyls (PCBs) were measured at an urban/industrial site in the city of Bursa, Turkey. PCB concentration levels were presented between July 2004 and May 2005. Average particle and gas phase concentrations of individual PCB congeners ranged from 0.08 (PCB-183) to 6.86 (PCB-49) pg m− 3 and from 0.01 (PCB-209) to 47.2 (PCB-33) pg m− 3, respectively. The mean concentration of total (gas + particle) PCBs varied between 24.27 and 666.21 pg m− 3 with an average of 287.27 ± 174.80 pg m− 3. PCB concentrations at the sampling site were higher than the concentrations reported at non-urban sites. PCBs partitioned between gas and particle phases and the partitioning was examined according to different approaches such as logKp–logPLo, logKp–logKOA and the Junge–Pankow model. In order to present possible interactions, a correlation matrix based on PCB congeners and meteorological parameters was constructed. Application of the Clausius–Clapeyron equation yielded a low slope value indicating possible emissions from local and regional sources originating mainly from urban/industrial areas, landfill and waste incineration plant. Then, likely dry deposition fluxes were estimated depending on reported dry deposition velocity and atmospheric concentration values.  相似文献   

8.
Henry's law constantsK H (mol kg–1 atm–1) have been determined at 298.15 K for the following organic acids: formic acid (5.53±0.27×103); acetic acid (5.50±0.29×103); propionic acid (5.71±0.34×103);n-butyric acid (4.73±0.18×103); isobutyric acid (1.13±0.12×103); isovaleric acid (1.20±0.11×103) and neovaleric acid (0.353±0.04×103). They have also been determined fromT=278.15 K toT=308.15 K forn-valeric acid (ln(K H)=–14.3371+6582.96/T);n-caproic acid (ln(K H)=–13.9424+6303.73/T) and pyruvic acid (ln(K H)=–4.41706+5087.92/T). The influence of 9 salts on the solubility of pyruvic acid at 298.15 K has been measured. Pyruvic acid is soluble enough to partition strongly into aqueous atmospheric aerosols. Other acids require around 1 g of liquid water m–3 (typical of clouds) to partition significantly into the aqueous phase. The degree of partitioning is sensitive to temperature. Considering solubility and dissociation (to formate) alone, the ratio of formic acid to acetic acid in liquid water in the atmosphere (at equilibrium with the gas phase acids) is expected to increase with rising pH, but show little variation with temperature.  相似文献   

9.
Deposition of atmospheric particulate PCBs in suburban site of Turkey   总被引:2,自引:1,他引:2  
Dry deposition and air concentration samples were collected from July 2004 to May 2005 at a suburban site in Turkey. A water surface sampler (WSS) was used to measure directly the dry deposition flux of particulate polychlorinated biphenyls (PCBs) while a high volume air sampler (HVAS) was employed to collect air samples. Particulate PCB concentrations accounted for 15% of total PCBs (gas + particle phase) at the site. The overall particulate phase PCB flux ranged from 2 to 160 ng m− 2 d− 1 with an average of 46.3 ± 40.6 ng m− 2 d− 1. Forty one PCB congeners were targeted in the samples while twenty one congeners were found to be higher than detection limits in deposition samples. Fluxes for homolog groups ranged between 0.9 (7-CBs) and 21.0 (3-CBs) ng m− 2 d− 1. Measured dry deposition fluxes were lower than the ones usually reported for urban sites. Average PCB dry deposition velocity, calculated using flux values and concurrently measured atmospheric concentrations, was 1.26 ± 1.86 cm s− 1 depended on size distribution of particles, atmospheric PCB concentrations and meteorological conditions.  相似文献   

10.
In this paper,the data of continuous atmospheric vertical integral vapour and liquid water content during April-June of 1992-1994 obtained by a ground-based dual-channel microwave radiometer are used to analyse the statistical characteristics of atmospheric vapour and liquid water content,and the relative distribution characteristics of vapour and liquid water content in cloudy atmosphere,the correlative relation of integral liquid water content L and ground precipitation intensity I.and precipitation transform rate of precipitation system.Finally,the weather modification condition of precipitus stratiform clouds and seeding potential is analyzed and discussed.  相似文献   

11.
Some cloud condensation nuclei (CCN) constitute a reservoir of latent ice-forming nuclei (IFN) active by condensation-followed-by-freezing and by sorption. Evaporated droplets occasionally left aerosol particles that acted as sorption IFN at temperatures as high as −5°C and water vapor supersaturation over ice of 0.2%. The newly formed aerosol particles (residues of evaporated droplets) are all mixed particles. The discovery of IFN produced from CCN promotes new insights into the process of ice formation in clouds; in an evaporating parcel of a cloud the rate of formation of ice particles will be enhanced by continuous production of IFN. Aerosol particles left behind after evaporation of a cloud may provide a source of IFN for formation of some of the cirrus clouds.  相似文献   

12.
Two almost identical eddy covariance measurement setups were used to measure the fogwater fluxes to a forest ecosystem in the “Fichtelgebirge” mountains (Waldstein research site, 786 m a.s.l.) in Germany. During the first experiment, an intercomparison was carried out with both setups running simultaneously at the same measuring height on a meteorological tower, 12.5 m above the forest canopy. The results confirmed a close agreement of the turbulent fluxes between the two setups, and allowed to intercalibrate liquid water content (LWC) and gravitational fluxes. During the second experiment, the setups were mounted at a height of 12.5 and 3 m above the canopy, respectively. For the 22 fog events, a persistent negative flux divergence was observed with a greater downward flux at the upper level. To extrapolate the turbulent liquid water fluxes measured at height z to the canopy of height hc, a conversion factor 1/[1+0.116(zhc)] was determined. For the fluxes of nonvolatile ions, no such correction is necessary since the net evaporation of the fog droplets appears to be the primary cause of the vertical flux divergence. Although the net evaporation reduces the liquid water flux reaching the canopy, it is not expected to change the absolute amount of ions dissolved in fogwater.  相似文献   

13.
Data for this study were collected by the instruments mounted on the NCAR King Air and rawinsonde during the First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) on 19 October, 1986. The main purpose of this study is to understand the basic concept of evaporative cooling in a dry layer below a cirrus generating cell. Relative humidity with respect to liquid water RHW and temperature lapse rate γe below the cirrus base at about 6.7 km were about 40% and 3.7°C km−1, respectively. Evaporative cooling rate (ECR) in the 1.5 km thick subcloud layer was estimated to be approximately 0.1 to 2°C h−1 and it was found to be comparable with the infrared heating rate calculated from radiation measurements. Because of ice crystal evaporation, RHW in the same layer may reach saturation with respect to ice in 1.5 hours.  相似文献   

14.
On February 8, 1993, the NASA DC-8 aircraft profiled from 10,000 to 37,000 feet (3.1–11.3 km) pressure altitude in a stratified section of tropical cyclone “Oliver” over the Coral Sea northeast of Australia. Size, shape and phase of cloud and precipitation particles were measured with a 2-D Greyscale probe. Cloud/ precipitation particles changed from liquid to ice as soon as the freezing level was reached near 17,000 feet (5.2 km) pressure altitude. The cloud was completely glaciated at −5°C. There was no correlation between ice particle habit and ambient temperature. In the liquid phase, the precipitation-cloud drop concentration was 4.0 × 103 m−3, the geometric mean diameter Dg=0.5−0.7 mm, and the liquid water content 0.7−1.9 g m−3. The largest particles anywhere in the cloud, dominated by fused dendrites at concentrations similar to that of raindrops (2.5 × 103 m−3) but a higher condensed water content (5.4 g m−3 estimated) were found in the mixed phase; condensed water is removed very effectively from the mixed layer due to high settling velocities of the large mixed particles. The highest number concentration (4.9 × 104 m−3), smallest size (Dg=0.3−0.4 mm), largest surface area (up to 2.6 × 102 cm2 m−3 at 0.4−1.0 g m−3 of condensate) existed in the ice phase at the coldest temperature (−40°C) at 35,000 feet (10.7 km). Each cloud contained aerosol (haze particles) in addition to cloud particles. The aerosol total surface area exceeded that of the cirrus particles at the coldest temperature. Thus, aerosols must play a significant role in the upscattering of solar radiation. Light extinction (6.2 km−1) and backscatter (0.8 sr−1 km−1) was highest in the coldest portion of the cirrus cloud at the highest altitude.  相似文献   

15.
Based on earlier experimental studies, the ice nucleating abilities of further pollen types were investigated in the immersion and contact freezing modes. The studies were carried out at the Mainz vertical wind tunnel with freely floating supercooled droplets down to − 28 °C. The pollen had diameters between 26 and 28 μm and correspondingly low sink velocities around 2.5 cm s 1. The radii of the studied drops were calculated from the recorded wind velocity and for both freezing modes the radii of the observed droplets varied between 315 and 380 μm. Immersion freezing experiments were conducted with pollen particles added to the droplets while in contact freezing experiments supercooled droplets were subjected to a burst of pollen particles. The median freezing temperatures found in the immersion freezing mode were: − 13.5 °C (alder), − 21.5 °C (lombardy poplar), − 21.0 °C (redtop grass) and − 19.8 °C (kentucky blue). The median freezing temperatures in the contact freezing mode were found as: − 12.6 °C (alder), − 17.9 °C (lombardy poplar), − 18.7 °C (redtop grass) and − 16.1 °C (kentucky blue). The results show that the ice nucleating ability of pollen is not restricted to single pollen types but seems to be a general pollen property.  相似文献   

16.
Over the past 15 years atmospheric surface-layer experiments over heterogeneous canopies have shown that the vertical transfer of sensible heat and water vapour exhibit a strong dissimilarity. In particular, the sensible-heat-to-water-vapour transport efficiencies generally exceed unity. One of the main consequences is that evaporation (latent heat flux) computed by the flux-variance method is overestimated, as persistently demonstrated by comparisons with evaporation obtained with the eddy-correlation method. Various authors proposed to take into account the temperature–humidity dissimilarity to extend the applicability of the flux-variance method in order to compute evaporation from non-uniform surfaces. They attempted to connect the sensible-heat-to-water-vapour transport efficiency (λ) to the correlation coefficient between temperature and humidity turbulent fluctuations (R Tq ). This approach was found to be successful over ‘wet’ surfaces for which λ can be approximated by R Tq and ‘dry’ surfaces for which λ can be approximated by 1/R Tq . However, no solution has been proposed until now for intermediate hydrological conditions. We investigated this question using eddy-correlation measurements above and inside a pine forest canopy. For both levels, our data present a strong likeness with previously published results over heterogeneous surfaces. In particular, they confirm that λ is R Tq in wet conditions and 1/R Tq in dry conditions. Moreover, we defined the range of the Bowen ratio (Bo) values for which those two approximations are valid (below 0.1 and greater than 1, respectively) and established a relationship between λ, R Tq and Bo for the intermediate range of Bo. We are confident that this new parameterization will enlarge the applicability of the flux-variance method to all kinds of heterogeneous surfaces in various hydrological conditions  相似文献   

17.
Impact of Sea-Spray on the Atmospheric Surface Layer   总被引:1,自引:0,他引:1  
The feedback effects of sea-spray on the heat and momentum fluxes under equilibrium conditions associated with winds of tropical cyclones are investigated using a one-dimensional coupled sea-spray and atmospheric surface-layer (ASL) model. This model is capable of simulating the microphysical aspects of the evaporation of saline water droplets of various sizes and their dynamic and thermal interaction with the turbulence mixing that is simulated by the Mellor–Yamada 1.5-order closure scheme. Sea-spray droplet generation is described by a state-of-the-art parametrization that predicts the size spectrum of sea-spray droplets for a given surface forcing. The results from a series of simulations indicate the way in which evaporating droplets of various sizes modify the turbulence mixing near the surface, which in turn affects further droplet evaporation. All these results are direct consequences of the effects of sea-spray on the balance of turbulent kinetic energy in the spray-filled surface layer. In particular, the overall impact of sea-spray droplets on the mean wind depends on the wind speed at the level of sea-spray generation. When the wind speed is below 40 m s−1, the droplets are small in size and tend to evaporate substantially and thus cool the spray-filled layer, while for wind speeds above 50 m s−1, the size of the droplets is so large that they do not have enough time to evaporate much before falling back into the sea. The sensible heat carried by the droplets is released to the ambient air, increasing the buoyancy of the surface layer and enhancing the turbulent mixing. The suspension of sea-spray droplets reduces the buoyancy and makes the surface layer more stable, decreasing the friction velocity and the downward turbulent mixing of momentum. The results from the numerical experiments also suggest that, in order not to violate the constant flux assumption critical to the Monin–Obukhov similarity theory, a displacement equal to the mean wave height should be included in the logarithmic profiles of the wind and thermal fields.  相似文献   

18.
Measurements of natural ice nuclei with a continuous flow diffusion chamber   总被引:1,自引:0,他引:1  
Measurements of natural ice nuclei were made in winter continental airmasses with a continuous flow thermal gradient diffusion chamber (described in a separate paper). Over the range of temperatures −7°C to −20°C, the concentration of ice nuclei was closely related to ice supersaturation (SSi) for humidities both below and above water saturation. Measurements below water saturation were interpreted as deposition nuclei with average concentrations (per liter) approximately 0.32 SSi(%)0.81. Measurements were made up to 5% above water saturation and activated both deposition and condensation-freezing nuclei. The average concentration of condensation-freezing nuclei was 0.25 e−0.15 T(°C). Sample residence time in the chamber was probably too small to detect contact nuclei, unless the nucleating aerosols are extremely small. There was large variability in nucleus concentrations, as much as two orders of magnitude at −15°C. Comparisons are made between these ice nuclei measurements and aircraft observations of ice crystal concentrations in winter orographic clouds.  相似文献   

19.
Numerical studies have been made of the importance of cloud saturation to the sign of charge transfer during graupel/ice crystal interactions in thunderstorms. Previous laboratory studies led to the idea that the diffusional growth rates of the interacting ice surfaces may influence the sign of the charge transferred during brief collisional contact. The ice crystals grow by vapour diffusion in a supersaturated environment while the graupel surface grows by diffusion under low accretion rate conditions, but will sublimate when heated sufficiently by riming. The graupel surface is also influenced, even under net sublimation conditions, by the vapour released to it from droplets freezing on its surface. In a cloud, the diffusional growth rates are also affected by ventilation when the supercooled droplets and their local environment flow past the riming surface.The diffusional growth rates of ice crystals and riming graupel particles are calculated for various cloud saturation ratios, then the sign of electric charge transferred during crystal/graupel collisions is determined according to the concept of the relative vapour diffusional growth rates, according to Baker et al., 1987 [Baker, B., Baker, M.B., Jayaratne, E.J., Latham, J., Saunders, C.P.R., 1987. The influence of diffusional growth rates on the charge transfer accompanying rebounding collisions between ice crystals and soft hailstones. Quart. J. Roy. Met. Soc. 113, 1193–1215]. It is found necessary, in order to account for the observation of positive charging of riming graupel at high accretion rates, to modify the assumptions of Baker et al. in order to increase the flux of vapour to the graupel surface. The variable growth parameters available may be adjusted to represent the environmental saturation conditions in various laboratory experiments, including the mixing of clouds from regions having different growth conditions, and are used to determine charge sign sensitivity to cloud saturation ratio, temperature and accretion as measured by the cloud effective liquid water content.  相似文献   

20.
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m− 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m− 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day− 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号