首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Three extreme cold events invaded China during the early winter period between December 2020 to mid-January 2021 and caused drastic temperature drops,setting new low-temperature records at many stations during 6?8 January 2021.These cold events occurred under background conditions of low Arctic sea ice extent and a La Ni?a event.This is somewhat expected since the coupled effect of large Arctic sea ice loss in autumn and sea surface temperature cooling in the tropical Pacific usually favors cold event occurrences in Eurasia.Further diagnosis reveals that the first cold event is related to the southward movement of the polar vortex and the second one is related to a continent-wide ridge,while both the southward polar vortex and the Asian blocking are crucial for the third event.Here,we evaluate the forecast skill for these three events utilizing the operational forecasts from the ECMWF model.We find that the third event had the highest predictability since it achieves the best skill in forecasting the East Asian cooling among the three events.Therefore,the predictability of these cold events,as well as their relationships with the atmospheric initial conditions,Arctic sea ice,and La Ni?a deserve further investigation.  相似文献   

2.
In the first half of winter 2020/21,China has experienced an extremely cold period across both northern and southern regions,with record-breaking low temperatures set in many stations of China.Meanwhile,a moderate La Ni?a event which exceeded both oceanic and atmospheric thresholds began in August 2020 and in a few months developed into its mature phase,just prior to the 2020/21 winter.In this report,the mid?high-latitude large-scale atmospheric circulation anomalies in the Northern Hemisphere,which were forced by the negative phase of Arctic Oscillation,a strengthened Siberian High,an intensified Ural High and a deepened East Asian Trough,are considered to be the direct reason for the frequent cold surges in winter 2020/21.At the same time,the synergistic effect of the warm Arctic and the cold tropical Pacific(La Ni?a)provided an indispensable background,at a hemispheric scale,to intensify the atmospheric circulation anomalies in middle-to-high latitudes.In the end,a most recent La Ni?a prediction is provided and the on-coming evolution of climate is discussed for the remaining part of the 2020/21 winter for the purpose of future decision-making and early warning.  相似文献   

3.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

4.
Starting in mid-November,China was hit by several cold events during the early winter of 2020/21.The lowest temperature observed at Beijing station on 7 January reached?19.6°C.In this paper,we show that the outbreak of the record-breaking extreme cold event can be attributed to a huge merging Ural blocking(UB)ridge over the Eurasian region.The sea-ice cover in the Kara and East Siberia Seas(KESS)in autumn was at its lowest value since 1979,which could have served as a precursor signal.Further analysis shows that several successive UB episodes occurred from 1 September 2020 to 10 January 2021.The persistent UB that occurred in late September/early October 2020 may have made an important contribution to the October historical minimum of sea ice in the KESS region.Our results also show that,after each UB episode in winter,significant upward propagation of wave activity occurred around 60°E,which resulted in weakening the stratospheric vortex.Meanwhile,each UB episode also caused a significant reduction in sea-ice extent in KESS and a significant weakening of the westerly jet in mid-high-latitude Eurasia.Results suggest that the Arctic vortex,which is supposed to enhance seasonally,became weaker and more unstable than the climatic mean under the seasonal cumulative effects of UB episodes,KESS warming,and long-lasting negative-phase North Atlantic Oscillation(NAO-).Those seasonal cumulative effects,combined with the impact of La Ni?a winter,led to the frequent occurrence of extreme cold events.  相似文献   

5.
Three extreme cold events successively occurred across East Asia and North America in the 2020/21 winter.This study investigates the underlying mechanisms of these record-breaking persistent cold events from the isentropic mass circulation(IMC)perspective.Results show that the midlatitude cold surface temperature anomalies always co-occurred with the high-latitude warm anomalies,and this was closely related to the strengthening of the low-level equatorward cold air branch of the IMC,particularly along the climatological cold air routes over East Asia and North America.Specifically,the two cold surges over East Asia in early winter were results of intensification of cold air transport there,influenced by the Arctic sea ice loss in autumn.The weakened cold air transport over North America associated with warmer northeastern Pacific sea surface temperatures(SSTs)explained the concurrent anomalous warmth there.This enhanced a wavenumber-1 pattern and upward wave propagation,inducing a simultaneous and long-lasting stronger poleward warm air branch(WB)of the IMC in the stratosphere and hence a displacement-type Stratospheric Sudden Warming(SSW)event on 4 January.The WB-induced increase in the air mass transported into the polar stratosphere was followed by intensification of the equatorward cold branch,hence promoting the occurrence of two extreme cold events respectively over East Asia in the beginning of January and over North America in February.Results do not yield a robust direct linkage from La Ni?a to the SSW event,IMC changes,and cold events,though the extratropical warm SSTs are found to contribute to the February cold surge in North America.  相似文献   

6.
It has been suggested that a warm(cold)ENSO event in winter is mostly followed by a late(early)onset of the South China Sea(SCS)summer monsoon(SCSSM)in spring.Our results show this positive relationship,which is mainly determined by their phase correlation,has been broken under recent rapid global warming since 2011,due to the disturbance of cold tongue(CT)La Ni?a events.Different from its canonical counterpart,a CT La Ni?a event is characterized by surface meridional wind divergences in the central-eastern equatorial Pacific,which can delay the SCSSM onset by enhanced convections in the warming Indian Ocean and the western subtropical Pacific.Owing to the increased Indian?western Pacific warming and the prevalent CT La Ni?a events,empirical seasonal forecasting of SCSSM onset based on ENSO may be challenged in the future.  相似文献   

7.
Three striking and impactful extreme cold weather events successively occurred across East Asia and North America during the mid-winter of 2020/21.These events open a new window to detect possible underlying physical processes.The analysis here indicates that the occurrences of the three events resulted from integrated effects of a concurrence of anomalous thermal conditions in three oceans and interactive Arctic-lower latitude atmospheric circulation processes,which were linked and influenced by one major sudden stratospheric warming(SSW).The North Atlantic warm blob initiated an increased poleward transient eddy heat flux,reducing the Barents-Kara seas sea ice over a warmed ocean and disrupting the stratospheric polar vortex(SPV)to induce the major SSW.The Rossby wave trains excited by the North Atlantic warm blob and the tropical Pacific La Nina interacted with the Arctic tropospheric circulation anomalies or the tropospheric polar vortex to provide dynamic settings,steering cold polar air outbreaks.The long memory of the retreated sea ice with the underlying warm ocean and the amplified tropospheric blocking highs from the midlatitudes to the Arctic intermittently fueled the increased transient eddy heat flux to sustain the SSW over a long time period.The displaced or split SPV centers associated with the SSW played crucial roles in substantially intensifying the tropospheric circulation anomalies and moving the jet stream to the far south to cause cold air outbreaks to a rarely observed extreme state.The results have significant implications for increasing prediction skill and improving policy decision making to enhance resilience in“One Health,One Future”.  相似文献   

8.
Record ozone loss was observed in the Arctic stratosphere in spring 2020. This study aims to determine what caused the extreme Arctic ozone loss. Observations and simulation results are examined in order to show that the extreme Arctic ozone loss was likely caused by record-high sea surface temperatures(SSTs) in the North Pacific. It is found that the record Arctic ozone loss was associated with the extremely cold and persistent stratospheric polar vortex over February–April, and the extremely cold vortex was a result of anomalously weak planetary wave activity. Further analysis reveals that the weak wave activity can be traced to anomalously warm SSTs in the North Pacific. Both observations and simulations show that warm SST anomalies in the North Pacific could have caused the weakening of wavenumber-1 wave activity, colder Arctic vortex, and lower Arctic ozone. These results suggest that for the present-day level of ozone-depleting substances, severe Arctic ozone loss could form again, as long as certain dynamic conditions are satisfied.  相似文献   

9.
In this study, two possible persistent anomalies of the Madden-Julian Oscillation mode (MJO) are found in the summer season (persistently Pacific active and Indian Ocean active), and an index is set to define the intensity of the two modes. They are proved to have high statistical correlations to the later ENSO events in the autumn and winter seasons: When persistent anomaly of MJO happens in the Pacific Ocean in summer, El Ni?o events are often induced during the autumn and winter seasons of that year. However, during the other MJO mode when the summer persistent anomaly of MJO occurs in the Indian Ocean, La Ni?a events often follow instead. The analysis of the atmospheric circulation field indicates that persistent anomaly of MJO can probably affect the entire Equatorial Pacific circulation, and results in wind stress anomalies. The wind stress anomalies could excite warm or cold water masses which propagate eastwards at the subsurface ocean. The accumulation of warm or cold subsurface water in the Equatorial Eastern Pacific Ocean may eventually lead to the formation of an ENSO.  相似文献   

10.
This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea ice and the stratosphere, and between Arctic sea ice and cold winter temperatures over Eurasia. We present normalized regressions of Arctic sea-ice area against several atmospheric variables at extended lead and lag times. Statistically significant regressions are found at leads and lags, suggesting both atmospheric precursors of, and responses to, low sea ice; but generally, the regressions are stronger when the atmosphere leads sea ice, including a weaker polar stratospheric vortex indicated by positive polar cap height anomalies. Significant positive midlatitude eddy heat flux anomalies are also found to precede low sea ice. We argue that low sea ice and raised polar cap height are both a response to this enhanced midlatitude eddy heat flux. The so-called "warm Arctic, cold continents" anomaly pattern is present one to two months before low sea ice, but is absent in the months following low sea ice, suggesting that the Eurasian cooling and low sea ice are driven by similar processes. Lastly, our results suggest a dependence on the geographic region of low sea ice, with low Barents–Kara Sea ice correlated with a weakened polar stratospheric vortex, whilst low Sea of Okhotsk ice is correlated with a strengthened polar vortex. Overall, the results support a notion that the sea ice, polar stratospheric vortex and Eurasian surface temperatures collectively respond to large-scale changes in tropospheric circulation.  相似文献   

11.
The boreal spring Antarctic Oscillation(AAO) has a significant impact on the spring and summer climate in China. This study evaluates the capability of the NCEP's Climate Forecast System, version 2(CFSv2), in predicting the boreal spring AAO for the period 1983–2015. The results indicate that CFSv2 has poor skill in predicting the spring AAO, failing to predict the zonally symmetric spatial pattern of the AAO, with an insignificant correlation of 0.02 between the predicted and observed AAO Index(AAOI). Considering the interannual increment approach can amplify the prediction signals, we firstly establish a dynamical–statistical model to improve the interannual increment of the AAOI(DY AAOI), with two predictors of CFSv2-forecasted concurrent spring sea surface temperatures and observed preceding autumn sea ice. This dynamical–statistical model demonstrates good capability in predicting DY AAOI, with a significant correlation coefficient of 0.58 between the observation and prediction during 1983–2015 in the two-year-out cross-validation. Then, we obtain an improved AAOI by adding the improved DY AAOI to the preceding observed AAOI. The improved AAOI shows a significant correlation coefficient of 0.45 with the observed AAOI during 1983–2015. Moreover, the unrealistic atmospheric response to March–April–May sea ice in CFSv2 may be the possible cause for the failure of CFSv2 to predict the AAO. This study gives new clues regarding AAO prediction and short-term climate prediction.  相似文献   

12.
The western North Pacific anomalous anticyclone(WNPAC) is an important atmospheric circulation system that conveys El Ni?o impact on East Asian climate. In this review paper, various theories on the formation and maintenance of the WNPAC, including warm pool atmosphere–ocean interaction, Indian Ocean capacitor, a combination mode that emphasizes nonlinear interaction between ENSO and annual cycle, moist enthalpy advection/Rossby wave modulation, and central Pacific SST forcing, are discussed. It is concluded that local atmosphere–ocean interaction and moist enthalpy advection/Rossby wave modulation mechanisms are essential for the initial development and maintenance of the WNPAC during El Ni?o mature winter and subsequent spring. The Indian Ocean capacitor mechanism does not contribute to the earlier development but helps maintain the WNPAC in El Ni?o decaying summer.The cold SST anomaly in the western North Pacific, although damped in the summer, also plays a role. An interbasin atmosphere–ocean interaction across the Indo-Pacific warm pool emerges as a new mechanism in summer. In addition, the central Pacific cold SST anomaly may induce the WNPAC during rapid El Ni?o decaying/La Ni?a developing or La Ni?a persisting summer. The near-annual periods predicted by the combination mode theory are hardly detected from observations and thus do not contribute to the formation of the WNPAC. The tropical Atlantic may have a capacitor effect similar to the tropical Indian Ocean.  相似文献   

13.
The interannual atmosphere-ocean-sea ice interaction (AOSI) in high northern latitudes is studied with a global atmosphere-ocean-sea ice coupled model system, in which the model components of atmosphere and land surface are from China National Climate Center and that of ocean and sea ice are from LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. A daily flux anomaly correction scheme is employed to couple the atmosphere model and the ocean model with the effect of inhomogenity of sea ice in high latitudes is considered. The coupled model system has been run for 50 yr and the results of the last 30 years are analyzed. After the sea level pressure (SLP), surface air temperature (SAT), sea surface temperature (SST), sea ice concentration (SIC), and sea surface sensible heat flux (SHF) are filtered with a digital filter firstly, their normalized anomalies are used to perform the decomposition of combined complex empirical orthogonal function (CCEOF) and then they are reconstructed with the leading mode. The atmosphere-ocean-sea ice interactions in high northern latitudes during a periodical cycle (approximately 4 yr) are analyzed. It is shown that: (1) When the North Atlantic Oscillation (NAO) is in its positive phase, the southerly anomaly appears in the Greenland Sea, SAT increases, the sea loses less SHF, SST increases and SIC decreases accordingly; when the NAO is in its negative phase, the northerly anomaly appears in the Greenland Sea, SAT decreases, the sea loses more SHF, SST decreases and SIC increases accordingly. There are similar features in the Barents Sea, but the phase of evolution in the Barents Sea is different from that in the Greenland Sea. (2) For an average of multi-years, there is a cold center in the inner part of the Arctic Ocean near the North Pole. When there is an anomaly of low pressure, which is closer to the Pacific Ocean, in the inner part of the Arctic Ocean, anomalies of warm advection appear in the region near the Pacif  相似文献   

14.
State-of-the-art climate models have long-standing intrinsic biases that limit their simulation and projection capabilities.Significantly weak ENSO asymmetry and weakly nonlinear air–sea interaction over the tropical Pacific was found in CMIP5(Coupled Model Intercomparison Project, Phase 5) climate models compared with observation. The results suggest that a weak nonlinear air–sea interaction may play a role in the weak ENSO asymmetry. Moreover, a weak nonlinearity in air–sea interaction in the models may be associated with the biases in the mean climate—the cold biases in the equatorial central Pacific. The excessive cold tongue bias pushes the deep convection far west to the western Pacific warm pool region and suppresses its development in the central equatorial Pacific. The deep convection has difficulties in further moving to the eastern equatorial Pacific, especially during extreme El Ni o events, which confines the westerly wind anomaly to the western Pacific. This weakens the eastern Pacific El Ni o events, especially the extreme El Ni o events, and thus leads to the weakened ENSO asymmetry in climate models. An accurate mean state structure(especially a realistic cold tongue and deep convection) is critical to reproducing ENSO events in climate models. Our evaluation also revealed that ENSO statistics in CMIP5 climate models are slightly improved compared with those of CMIP3. The weak ENSO asymmetry in CMIP5 is closer to the observation. It is more evident in CMIP5 that strong ENSO activities are usually accompanied by strong ENSO asymmetry, and the diversity of ENSO amplitude is reduced.  相似文献   

15.
The role of the Indonesian Throughflow(ITF) in the influence of the Indian Ocean Dipole(IOD) on ENSO is investigated using version 2 of the Parallel Ocean Program(POP2) ocean general circulation model. We demonstrate the results through sensitivity experiments on both positive and negative IOD events from observations and coupled general circulation model simulations. By shutting down the atmospheric bridge while maintaining the tropical oceanic channel, the IOD forcing is shown to influence the ENSO event in the following year, and the role of the ITF is emphasized. During positive IOD events,negative sea surface height anomalies(SSHAs) occur in the eastern Indian Ocean, indicating the existence of upwelling.These upwelling anomalies pass through the Indonesian seas and enter the western tropical Pacific, resulting in cold anomalies there. These cold temperature anomalies further propagate to the eastern equatorial Pacific, and ultimately induce a La Nia-like mode in the following year. In contrast, during negative IOD events, positive SSHAs are established in the eastern Indian Ocean, leading to downwelling anomalies that can also propagate into the subsurface of the western Pacific Ocean and travel further eastward. These downwelling anomalies induce negative ITF transport anomalies, and an El Nio-like mode in the tropical eastern Pacific Ocean that persists into the following year. The effects of negative and positive IOD events on ENSO via the ITF are symmetric. Finally, we also estimate the contribution of IOD forcing in explaining the Pacific variability associated with ENSO via ITF.  相似文献   

16.
《大气和海洋科学快报》2009,(3):I0001-I0001
Vertical Mixing across Arctic Halocline Cold halocline layer (CHL) of the Arctic Ocean is the salinity-stratified layer with near-uniform cold temperature above the relatively warm Atlantic Water layer. The maintenance of the CHL is of crucial importance for the Arctic ice cover because it insulates the ice from the oce- anic heat provided by the Atlantic Water. Using early spring observations in the Amundsen Basin of the Arctic Ocean, Fer [148-152] shows evidence that in the absence of storm and eddy events the oceanic heat flux across the CHL is not significantly different from zero. He uses detailed microstructure profiles collected from drifting pack ice to determine the diapycnal eddy diffusivity,  相似文献   

17.
A set of numerical experiments designed to analyze the oceanic forcing in spring show that the combined forcing of cold (warm) El Ni(n)o (La Ni(n)a) phases in the Ni(n)o4 region and sea surface temperature anomalies (SSTA) in the westerly drifts region would result in abnormally enhanced NorthEast Cold Vortex (NECV) activities in early summer.In spring,the central equatorial Pacific El Ni(n)o phase and westerly drift SSTA forcing would lead to the retreat of non-adiabatic waves,inducing elliptic low-frequency anomalies of tropical air flows.This would enhance the anomalous cyclone-anticyclonecyclone-anticyclone low-frequency wave train that propagates from the tropics to the extratropics and further to the mid-high latitudes,constituting a major physical mechanism that contributes to the early summer circulation anomalies in the subtropics and in the North Pacific mid-high latitudes.The central equatorial Pacific La Ni(n)a forcing in the spring would,on the one hand,induce teleconnection anomalies of high pressure from the Sea of Okhotsk to the Sea of Japan in early summer,and on the other hand indirectly trigger a positive low-frequency East Asia-Pacific teleconnection (EAP) wave train in the lower troposphere.  相似文献   

18.
Snow depth over sea ice is an essential variable for understanding the Arctic energy budget.In this study,we evaluate snow depth over Arctic sea ice during 1993-2014 simulated by 31 models from phase 6 of the Coupled Model Intercomparison Project(CMIP6)against recent satellite retrievals.The CMIP6 models capture some aspects of the observed snow depth climatology and variability.The observed variability lies in the middle of the models’simulations.All the models show negative trends of snow depth during 1993-2014.However,substantial spatiotemporal discrepancies are identified.Compared to the observation,most models have late seasonal maximum snow depth(by two months),remarkably thinner snow for the seasonal minimum,an incorrect transition from the growth to decay period,and a greatly underestimated interannual variability and thinning trend of snow depth over areas with frequent occurrence of multi-year sea ice.Most models are unable to reproduce the observed snow depth gradient from the Canadian Arctic to the outer areas and the largest thinning rate in the central Arctic.Future projections suggest that snow depth in the Arctic will continue to decrease from 2015 to 2099.Under the SSP5-8.5 scenario,the Arctic will be almost snow-free during the summer and fall and the accumulation of snow starts from January.Further investigation into the possible causes of the issues for the simulated snow depth by some models based on the same family of models suggests that resolution,the inclusion of a hightop atmospheric model,and biogeochemistry processes are important factors for snow depth simulation.  相似文献   

19.
The Antarctic,including the continent of Antarctica and the Southern Ocean,is a critically important part of the Earth system.Research in Antarctic meteorology and climate has always been a challenging endeavor.Studying and predicting weather patterns in the Antarctic are important for understanding their role in local-to-global processes and facilitating field studies and logistical operations in the Antarctic(e.g.,Walsh et al.,2018).Studies of climate change in the Antarctic are comparatively neglected compared to those of the Arctic.However,significant climate changes have occurred in the Antarctic in the past several decades,i.e.,a strong warming over the Antarctic Peninsula even with a recent minor cooling,a deepening of the Amundsen Sea low,a rapid warming of the upper ocean north of the circumpolar current,an increase of Antarctic sea ice since the late 1970s followed by a recent rapid decrease,and an accelerated ice loss from the Antarctic ice shelf/sheet since the late 1970s(e.g.,Turner et al.,2005;Raphael et al.,2016;Sallée,2018;Parkinson,2019;Rignot et al.,2019).Investigating recent climate change in the Antarctic and the underlying mechanisms are important for predicting future climate change and providing information to policymakers.  相似文献   

20.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号