首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On-site analysis of trichloroethylene (TCE) in aqueous samples by head- space sample preparation and gas chromatography (HS/GC) provides for quick and precise concentration estimates. This analytical approach is well suited for the on-site determination of volatile organic compounds (VOCs) in a variety of sample matrices, including ground water and saturated and unsatured soils. For these reasons, HS/GC can be used to establish analyte concentrations on a near real time basis to help select appropriate casing material during monitoring well installation. This application and the collection of multiple well samples during sampling events facilitates the hydrogeological site interpretation and the formulation of remediation strategies.  相似文献   

2.
Multilevel piezometers are cost-effective monitoring devices for determining the three-dimensional distribution of solutes in ground water. Construction includes flexible tubing (plastic or Teflon®). Their sampling is subject to a number of'potential biases, particularly: (1) losses of volatile organic solutes via volatilization, (2) sorption onto the flexible tubing of the piezometers, (3) leaching of organics from this tubing, and (4) collection of unrepresentative samples due to inadequate piezometer flushing. It is shown that these biases are minimal or are easily controlled in most situations.
Another source of bias has been recognized. Organic solutes present in ground water above the screened level can penetrate the flexible plastic or Teflon tubing and contaminate the sampled water being drawn through this tubing. Laboratory tests and field results indicate this transmission causes low organic contaminant concentrations to be erroneously attributed to ground water which is free of such contaminants. The transmitted organics apparently desorb from the plastic tubing during flushing of even 40 piezometer volumes.
Recognition of this transmission problem provides for a better interpretation of existing organic contaminant distribution data. Caution is advised when considering the use of these monitoring devices in organic solute contaminant studies.  相似文献   

3.
The principal difficulties with determinations of volatile organic compounds (VOCs) in ground water are the reliability of sampling procedures and analytical methods. Two integrated methods have been developed for routine sampling, processing, and analysis of VOCs in ground water. These methods involve in situ collection of ground water using a modified syringe sampler from PVC piezometers or using dedicated glass syringes from stainless steel multilevel bores. The samples are processed in the syringe using purge and trap or microsolvent extraction and analyzed by GC/MSD.
The modified purge-and-trap method is time-consuming and limited to volatile organic compounds. However, it is extremely sensitive and flexible: the volume of sample used can be varied by the use of different-size glass syringes (sample volumes from 1 to 100 mL).
In cases where extremely low sensitivity (<10 mg 1−1) is not critical, the microextraction technique is a more cost-effective method, allowing twice as many samples to be analyzed in the same time as the purge-and-trap method. It enables less volatile compounds such as polynuclear aromatic hydrocarbons, phenol, and cresols to be analyzed in the same GC run. Also, the microextraction method can be used in the field to avoid delays associated with transportation of ground water samples to the laboratory.  相似文献   

4.
The reliability of ground water monitoring information can be assured by careful selection of sample handling and analytical procedures. Sampling mechanism selection has been studied far less than analytical methodologies (Scalf et al. 1981, Nacht 1983). This study has as its primary goal the identification of reliable sampling mechanisms for purgeable organic compounds and gas-sensitive chemical parameters in ground water. Carefully controlled sampling experiments were run to investigate the error contributed to chemical results due to sampling mechanism alone. Fourteen commercial sampling devices in five mechanistic categories were evaluated for their performance in sample collection for solution parameters, dissolved gases and purgeable organic compounds. Systematic errors related to sampling mechanism can reduce the accuracy of monitoring data by factors of two to three times that involved in analytical procedures.  相似文献   

5.
Field tests of organic solute transport behavior have often been monitored using small-diameter wells (miniwells). To determine if experimental results could be significantly biased by sorption to, desorption from, or diffusion through sampling lines, dissolved concentrations of tetrachloroethene and carbon tetrachloride were measured in ground water samples collected simultaneously from the same spatial location during a forced-gradient test in the Borden aquifer using polytetrafluoroethene (PTFE) and stainless steel miniwells (1/8-inch O.D.).
A semiautomated organic analytical system was used on-site to obtain real-time results, which avoided sample holding problems and permitted optimizing sampling times. The breakthrough curves (plots of concentration vs. time) for both organic compounds indicate that under the conditions of this experiment (low organic solute concentrations, short exposure time of sampling lines to the plume, adequate flushing of sampling lines) there is no significant difference between concentration histories (breakthrough curves) collected using a polytetrafluoroethene sampling line and those collected using a stainless steel sampling line. This suggests that organic solute tailing seen in this and also in a similar transport experiment previously conducted at the site is the result of transport processes in the aquifer rather than an artifact introduced by the PTFE miniwells.  相似文献   

6.
The presence of headspace and air bubbles in volatile organic analysis sampling vials lowers the actual aqueous concentration of these compounds due to the partitioning of solutes into the gaseous phase. This could make the sample invalid for analysis.
In this work, the effects of air bubbles and headspace on the aqueous concentration of 60 volatile organic compounds listed in U.S.Environmental Protection Agency (U.S. EPA) Method 8260 were evaluated experimentally and theoretically. The results showed that for air to water ratios of 1 to 20 and less, there was no significant effect on the aqueous concentrations of target organic solutes in the sampling vials. When the air to water ratio was increased to 1 to 10, the recovery rates of four organic compounds were lower than the control. Laboratory experiments on sampling vials showed that the presence of air bubbles or headspace with the volumetric air to water ratios of 1 to 20 and less do not produce any significant effect on the original concentrations for most targeted volatile organic compounds.
The experimental results also indicated that in 40 mL sampling vials with headspace range of 2 to 8 mL, the recovery rates of most volatile organic compounds with high values of Henry's law constant (> 0.01 Atm m3/mol. at 25°C) were larger than the calculated rates.  相似文献   

7.
Acquisition of Representative Ground Water Quality Samples for Metals   总被引:1,自引:0,他引:1  
R.S. Kerr Environmental Research Laboratory (RSKERL) personnel have evaluated sampling procedures for the collection of representative, accurate, and reproducible ground water quality samples for metals for the past four years. Intensive sampling research at three different field sites has shown that the method by which samples are collected has a greater impact on sample quality, accuracy, and reproducibility than whether the samples are filtered or not. In particular, sample collection practices that induce artificially high levels of turbidity have been shown to have the greatest negative impacts on sample quality. Results indicated the ineffectiveness of bailers for collection of representative metal samples. Inconsistent operator usage together with excessive purging generally resulted in excessive turbidity (>100 NTUs) and large differences in filtered and unfiltered metal samples. The use of low flow rate purging and sampling consistently produced filtered and unfiltered samples that showed no significant differences in concentrations. Turbidity levels were generally less than 5 NTUs, even in fine-textured glacial till. We recommend the use of low flow rates, during both purging and sampling, placement of the sampling intake at the desired sampling point, minimal disturbance of the stagnant water column above the screened interval, monitoring of water quality indicators during purging, minimization of atmospheric contact with samples, and collection of unfiltered samples for metal analyses to estimate total contaminant loading in the system. While additional time is spent due to use of low flow rates, this is compensated for by eliminating the need for filtration, decreased volume of contaminated purge water, and less resampling to address inconsistent data results.  相似文献   

8.
Positive-displacement piston pumps that minimize sample agitation have no apparent advantage over centrifugal submersible pumps when used to collect ground water samples for analysis of low concentrations of purge-able organic compounds. Analytical uncertainties inherent in laboratory environments appear to influence analytical results of low-concentration purgeable organic compound samples more than either pump type or sampling team. Centrifugal submersible pumps are at least equally efficient as positive-displacement piston pumps in the recovery of carbon tetrachloride, 1,1,1-trichloroethane, trichloroethylene, and chloroform after sampling and analytical influences are made constant.  相似文献   

9.
The screened auger is a laser-slotted, hollow-stem auger through which a representative sample of ground water is pumped from an aquifer and tested for water-quality parameters by appropriate field-screening methods. Screened auger sampling can be applied to ground water quality remedial investigations, providing:(1) a mechanism for determining a monitoring well's optimal screen placement in a contaminant plume; and (2) data to define the three-dimensional configuration of the contaminant plume.
Screened auger sampling has provided an efficient method for investigating hexavalent chromium and volatile organic compound contamination in two sandy aquifers in Cadillac, Michigan. The aquifers approach 200 feet in thickness and more than 1 square mile in area. A series of screened auger borings and monitoring wells was installed, and ground water was collected at 10-foot intervals as the boreholes were advanced to define the horizontal and vertical distribution of the contaminant plumes. The ability of the screened auger to obtain representative ground water samples was supported by the statistical comparison of field screening results and subsequent laboratory analysis of ground water from installed monitoring wells.  相似文献   

10.
Volatile organic compounds delected in ground water from wells at Test Area North (TAN) at the Idaho National Engineering Laboratory (INEL) prompted RCRA facility investigations in 1989 and 1990 and a CERCLA-driven RI/FS in 1992. In order to address ground water treatment feasibility, one of the main objectives, of the 1992 remedial investigation was to determine the vertical extent of ground water contamination, where the principle contaminant, of concern is trichloroethylene (TCE). It was hypothesized that a sedimentary interbed at depth in the fractured basalt aquifer could be inhibiting vertical migration of contaminants to lower aquifers. Due to the high cost of drilling and installation of ground water monitoring wells at this facility (greater than $100,000 per well), a real time method was proposed for obtaining and analyzing ground water samples during drilling to allow accurate placement of well screens in zones of predicted VOC contamination. This method utilized an inflatable pump packer pressure transducer system interfaced with a datalogger and PC at land surface. This arrangement allowed for real lime monitoring of hydraulic head above and below the packer to detect leakage around the packer during pumping and enabled collection of head data during pumping for estimating hydrologic properties. Analytical results were obtained in about an hour from an on-site mobile laboratory equipped with a gas chromalograplvmass spectrometer (GC/MS). With the hydrologic and analytical results in hand, a decision was made to either complete the well or continue drilling to the next test zone. In almost every case, analytical results of ground water samples taken from the newly installed wells closely replicated the water quality of ground water samples obtained through the pump packer system.  相似文献   

11.
A discrete point sampler has been developed that overcomes disadvantages inherent in several current small-volume samplers. It is designed to obtain ground water samples after a well has been purged with a pump. It consists of a sample chamber, two ports, and a stopcock for withdrawing sample aliquots. After lowering the sampler into a well, sampling is initiated by pulling on a line that sequentially removes the plugs in the lower and the upper level ports. The sample chamber fills from the bottom port and vents air from the top port. The device is suitable for sampling for volatile organic compounds in ground waters that are not subject to spontaneous bubble degassing. The upper port is sufficiently far above the lower port that none of the water that is sampled is exposed to the vented air. The sample chamber fills in such a way that the water that is taken from the chamber for analysis is not exposed to the headspace in the chamber.  相似文献   

12.
Ground water injection and sampling systems were developed for bacterial transport experiments in both homogenous and heterogeneous unconsolidated, surficial aquifers. Two types of injection systems, a large single tank and a dynamic mixing tank, were designed to deliver more than 800 L of amended ground water to the aquifer over 12 hours, without altering the ground water temperature, pH, Eh, or dissolved gas composition. Two types of multilevel samplers (MLSs) were designed and installed. Permanent MLSs performed well for the homogenous surficial aquifer, but their installation procedure promoted vertical mixing, which could obfuscate experimental data obtained from vertically stratified, heterogeneous aquifers. A novel, removable MLS was designed to fit in 2- and 4-inch wells. Expandable O-rings between each sampling port hydraulically isolated each port for sample collection when a nut was tightened at the land surface. A low-cost vacuum manifold system designed to work with both MLS designs used 50 mL centrifuge tubes to efficiently sample 12 MLS ports with one peristaltic pump head. The integrated system was developed and used during four field campaigns over a period of three years. During each campaign, more than 3000 ground water samples were collected in less than one week. This system should prove particularly useful for ground water tracer, injection, and push-pull experiments that require high-frequency and/or high-density sampling.  相似文献   

13.
Micropurge sampling of ground water wells has been suggested as a possible replacement to traditional purge and sample methods. To compare methods, duplicate ground water samples were collected at two field sites using iraditional and micropurge methods. Samples were analyzed for selected organic and inorganic constituents, and the results were compared statistically. Analysis of the data using the nonparametric sign test indicates that within a 95 percent confidence interval, there was no significant difference between the two methods for the site contaminants and the majority of analytes. These analytical results were supported by visual observations with the colloidal borescope, which demonstrated impacts on the flow system in the well when using traditional sampling methods. Under selected circumstances, the results suggest replacing traditional sampling with micropurging based on reliability, cost, and waste minimization.  相似文献   

14.
Volatile organic compounds (VOCs) are present in multiple water-bearing zones beneath and downgradient of Lawrence Livermore National Laboratory. This area is composed of interfingering unconsolidated alluvial sediments with hydraulic conductivities ranging over four orders of magnitude. The more permeable sediments exhibit moderate hydraulic interconnection horizontally and less interconnection vertically, and appear to consist largely of interconnected stream channel deposits. To optimize selection of monitoring well screened intervals in this complex environment, a technique that enables collection of saturated formation samples from each water-bearing zone without contamination from other VOC-containing zones was developed, tested, and implemented. The technique utilizes a wireline punch-coring system that allows the drill bit to be replaced with a core barrel without removing the drill rod from the borehole. To help ensure that a sample from one water-bearing zone is not contaminated by VOCs from another zone, the drilling fluid is replaced with new fluid before each sampling run. Overnight chemical analysis by gas chromatography enables field personnel to know the vertical distribution of VOCs as drilling proceeds. Since its first use in 1985, the technique has successfully characterized the presence or absence of VOCs in ground water in 123 of 140 wells, many with concentrations in ground water in the low parts-per-billion range. Our sampling technique is a cost-effective and rapid method of evaluating the vertical distribution of VOCs in ground water in a complex hydrogeologic environment.  相似文献   

15.
Soil-gas sampling and analysis is a common tool used in vapor intrusion assessments; however, sample collection becomes more difficult in fine-grained, low-permeability soils because of limitations on the flow rate that can be sustained during purging and sampling. This affects the time required to extract sufficient volume to satisfy purging and sampling requirements. The soil-gas probe tubing or pipe and sandpack around the probe screen should generally be purged prior to sampling. After purging, additional soil gas must be extracted for chemical analysis, which may include field screening, laboratory analysis, occasional duplicate samples, or analysis for more than one analytical method (e.g., volatile organic compounds and semivolatile organic compounds). At present, most regulatory guidance documents do not distinguish between soil-gas sampling methods that are appropriate for high- or low-permeability soils. This paper discusses permeability influences on soil-gas sample collection and reports data from a case study involving soil-gas sampling from silt and clay-rich soils with moderate to extremely low gas permeability to identify a sampling approach that yields reproducible samples with data quality appropriate for vapor intrusion investigations for a wide range of gas-permeability conditions.  相似文献   

16.
Gas Works Park, in Seattle, Washington, is located on the site of a coal and oil gasification plant that ceased operation in 1956. During operation, many types of wastes, including coal, tar, and oil, accumulated on-site. The park soil is currently (1986) contaminated with compounds such as polynuclear aromatic hydrocarbons, volatile organic compounds, trace metals, and cyanide. Analyses of water samples from a network of observation wells in the park indicate that these compounds are also present in the ground water.
Polynuclear aromatic hydrocarbons and volatile organic compounds were identified in ground water samples in concentrations as large as 200 mg/L. Concentrations of organic compounds were largest where ground water was in contact with a non-aqueous phase liquid in the soil. Where no non-aqueous phase liquid was present, concentrations were much smaller, even if the ground water was in contact with contaminated soils. This condition is attributed to weathering processes in which soluble, low-molecular-weight organic compounds are preferentially dissolved from the non-aqueous phase liquid into the ground water. Where no non-aqueous phase liquid is present, only stained soils containing relatively insoluble, high-molecular-weight compounds remain. Concentrations of organic contaminants in the soils may still remain large.  相似文献   

17.
This article provides actual site data that confirm that turbid ground water samples collected from within the smear zone at petroleum release sites can be significantly biased high by the inclusion of a nondissolved component that is an artifact of the sampling process. Side-by-side comparisons show that reducing sample turbidity can result in significant reductions of reported concentrations for the ground water samples and that the lower turbidity results are more representative of the petroleum actually dissolved in the ground water. Depending on site-specific factors, ground water sample turbidity can be reduced by four field-based and two laboratory-based methods. These methods should be used routinely at sites where turbid samples with a nondissolved component are being collected.  相似文献   

18.
19.
Ground water at the Norman Landfill Research Site is contaminated by a leachate plume emanating from a closed, unlined landfill formerly operated by the city of Norman, Oklahoma, Ground water contaminated by the leachate plume is known to be elevated in the concentration of many, organic and inorganic constituents. Specific conductance, alkalinity, chloride, dissolved organic carbon, boron, sodium, strontium, and deuterium in ground water are considered to be indicators of the leachate plume at this site.
Leaf samples of broad-leafed cottonwood, Populus deltoides , were collected from 57 sites around the closed landfill. Cottonwood, a phreatophyte or "well plant," functions as a & surrogate well and serves as a ground water quality sampler. The leaf samples were combusted to ash and analyzed by instrumental neutron activation for 35 elements and by prompt-gamma instrumental neutron activation, for boron. A monitoring well was located within a few meters of a sampled cottonwood tree at 15 of the 57 sites, and ground water samples were collected from these monitoring wells simultaneously with a leaf sample. The chemical analyses of the ground water and leaf samples from these 15 sites indicated that boron, bromine, sodium, and strontium concentrations in leaves were significantly correlated with leachate indicator constituents in ground water. A point-plot map of selected percentiles indicated high concentrations of boron, bromine, and sodium in leaf ash from sites downgradient of the most recent landfill and from older landfills nearby.
Data from leaf analysis greatly extended the known areal extent of the leachate plume previously determined from a network of monitoring wells and geophysical surveys. This phytosgeochemical study provided a cost-effective method for assessing the extent of a leachate plume from an old landfill. Such a method may be useful as a preliminary sampling tool to guide the design of hydrogeochemical and geophysical studies.  相似文献   

20.
Analysis of dissolved light hydrocarbon gas concentrations (primarily methane and ethane) in water supply wells is commonly used to establish conditions before and after drilling in areas of shale gas and oil extraction. Several methods are currently used to collect samples for dissolved gas analysis from water supply wells; however, the reliability of results obtained from these methods has not been quantified. This study compares dissolved methane and ethane concentrations measured in groundwater samples collected using three sampling methods employed in pre‐ and post‐drill sampling programs in the Appalachian Basin. These include an open‐system collection method where 40 mL volatile organic analysis (VOA) vials are filled directly while in contact with the atmosphere (Direct‐Fill VOA) and two alternative methods: (1) a semi‐closed system method whereby 40 mL VOA vials are filled while inverted under a head of water (Inverted VOA) and (2) a relatively new (2013) closed system method in which the sample is collected without direct contact with purge water or the atmosphere (IsoFlask®). This study reveals that, in the absence of effervescence, the difference in methane concentrations between the three sampling methods was relatively small. However, when methane concentrations equaled or exceeded 20 mg/L (the approximate concentration at which effervescence occurs in the study area), IsoFlask® (closed system) samples yielded significantly higher methane concentrations than Direct‐Fill VOA (open system) samples, and Inverted VOA (semi‐closed system) samples yielded lower concentrations. These results suggest that open and semi‐closed system sample collection methods are adequate for non‐effervescing samples. However, the use of a closed system collection method provides the most accurate means for the measurement of dissolved hydrocarbon gases under all conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号