首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The use of rare earth element (REE) partition coefficients is an increasingly common tool in metamorphic studies, linking the growth or modification of accessory mineral geochronometers to the bulk silicate mineral assemblage. The most commonly used mineral pair for the study of high‐grade metamorphic rocks is zircon and garnet. The link from U–Pb ages provided by zircon to the P–T information recorded by garnet can be interpreted in relation to experimental data. The simplistic approach of taking the average REE abundances for zircon and garnet and comparing them directly to experimentally derived partition coefficients is imperfect, in that it cannot represent the complexity of a natural rock system. This study describes a method that uses all the zircon analyses from a sample, and compares them to different garnet compositions in the same rock. Using the most important REE values, it is possible to define zircon–garnet equilibrium using an array rather than an average. The array plot describes partitioning between zircon and garnet using DYb and DYb/DGd as the defining features of the relationship. This approach provides far more sensitivity to mineral reactions and diffusional processes, enabling a more detailed interpretation of metamorphic history of the sample.  相似文献   

2.
Metamorphic rutile from granulite facies metapelitic rocks of the Archean Pikwitonei Granulite Domain (PGD; Manitoba, Canada) provides constraints on the systematics of trace elements in rutile during high‐temperature conditions and subsequent slow cooling. Compositional profiles and maps of the Zr concentrations in rutile grains (120–600 μm) from three metapelitic gneisses were acquired by electron probe micro‐analysis, using a spatial resolution of down to 2 μm. Simultaneously, profiles were analysed for Nb, Cr and V, which have significantly different diffusion characteristics in rutile. The profiles of all elements show relatively homogeneous concentrations within most grains, but significant inter‐grain differences even within a single thin section. Some rutile grains display a slight concentration decrease from a neighbouring garnet towards the matrix for all measured elements. The lack of diffusion profiles for all analysed elements shows that these are highly immobile in rutile and that distributions of these elements are primary and preserve prograde information. The Nb and Cr concentrations overlap with ranges that are ascribed to different provenances indicating that source discrimination based on these elements is not possible in all cases. High retentiveness for Zr implies that the Zr‐in‐rutile geothermometer is highly robust to diffusive re‐equilibration, even during very slow cooling (<2 °C Ma?1) from granulite facies conditions. Most grains have high Zr contents (3000–4600 ppm). Differences between high Zr contents suggest that during growth under vapour‐absent conditions there may not be saturation of Zr in rutile, even if zircon is present. Therefore, several rutile grains need to be analysed in a sample to obtain a useful minimum peak temperature. The highest Zr concentrations correspond to ~900 °C. This is significantly higher than previous peak temperature estimates of 820 °C based on two‐feldspar thermometry. On a regional scale this implies that part of the PGD was affected by ultra‐high temperature (UHT) metamorphism. It also implies that rutile is able to preserve primary compositions even to UHT conditions. This study shows that, if combined with textural information, Zr‐in‐rutile has the potential to be a very useful tool for estimating rutile crystallization temperatures and peak metamorphic conditions. For granulite facies rocks, Zr‐in‐rutile yields more reliable peak metamorphic temperatures than most other exchange geothermometers, which tend to partially re‐equilibrate by diffusion during cooling.  相似文献   

3.
麻粒岩相变质流体及麻粒岩相岩石成因   总被引:2,自引:0,他引:2  
余能  金巍  龙晓平 《世界地质》2004,23(4):321-325
流体在麻粒岩相地钵形成过程中所扮演的角色是有争议的。麻粒岩相变质流体目前的研究成果可归纳为碳变质模式、无流体变质模式和高盐度流体变质模式。碳变质模式强调幔源CO2在麻粒岩形成过程中起着非常重要的作用,这一模式在许多麻粒岩相地体得到了肯定。但碳、氧稳定同位素的不均一现象、峰期矿物组合热力学计算结果以及富CO2流体对硅酸盐的搬运能力低使碳变质受到了质疑。无流体变质模式强调部分熔融降低H2O活度的绝对重要性,但却无法解释普遍存在的麻粒岩相原生富CO2包裹体。而高盐度流体变质模式的确有潜在的优势,如低H2O活度、较强的碱金属、LILE及硅酸盐的搬运能力,但这一理论需要进一步证实。  相似文献   

4.
The trace elements characteristics of the migmatitic gneisses (biotite-garnetand hornblende-biotite), granulite facies rocks (charnockitic gneisses) and meta-peridotite in the area of Southwest Obudu Plateau indicate that the area exhibits a high degree of geochemical variability. Compatible trace elements (Ni and Cr) are comparatively high in the granulite facies rocks and meta-peridotite. Ni ranges from 28×10-6 to 266×10-6 whilst Cr ranges from 62×10-6 to 481×10-6 for the granulite facies rocks (charnocki...  相似文献   

5.
Trace element partitioning in plagioclase feldspar   总被引:4,自引:0,他引:4  
Compilation and interpretation of experimental and natural Nernst partition coefficient (plagioclase/meltD) data show that, with a few exceptions, increases in plagioclase/meltD correlate with decreasing anorthite-content of plagioclase. In contrast, increases of plagioclase/meltD for Ga, Sc, Cu, Zn, Zr, Hf and Ti, are better correlated against decreasing melt MgO or increasing melt SiO2 contents. plagioclase/meltD for Ti and the rare earth elements (REE) show little dependence on temperature, but increase as the melt water content increases. plagioclase/meltD for K and Sr are sensitive to pressure. Variations of D0 (the strain compensated partition coefficient), r0 (the size of the site into which REE substitute), and E (Young’s Modulus of this site) were parameterized against variations of melt SiO2, the An-content of plagioclase, and other combinations of variables, allowing plagioclase/meltDREE-Y to be calculated from a variety of input parameters. The interrelations of temperature, melt MgO and SiO2 content, and plagioclase anorthite-content for wet and dry systems were also parameterized to facilitate interpolation where such data are lacking. When combined, these semi-empirical parameterizations yield plagioclase/meltD results comparable to available experimental and natural data.  相似文献   

6.
We have determined the partition coefficients of a large number of trace elements between CaTiO3 perovskite and anhydrous silicate melts at atmospheric pressure and 3 GPa. Determination of the concentration limits of Henrys law behaviour in the CaO-Al2O3–SiO2–TiO2 system reveals that the incorporation of rare earth elements (REE) and tetravalent large ion lithophile elements (LILE4+ such as U and Th) at the Ca-site of CaTiO3 perovskite occurs with charge compensation through Ca-vacancy formation rather than by coupled substitution of Al for Ti. When melt composition is varied, we find that partition coefficients for REE and Th are strong functions of the CaO content of the melt. The observed trends are in excellent agreement with those predicted from the Ca-vacancy model. Given that they adopt the same crystal structure and have similar trace element partitioning behaviour, CaTiO3 perovskite and the deep mantle phase CaSiO3 perovskite can be considered analogous to one another. When the analogy is pursued in detail, we find that partitioning into both phases follows the composition-dependence predicted by the Ca-vacancy model. Thus, substitution of REE, U4+ and Th into CaSiO3 in the lower mantle also occurs with Ca-vacancy formation to balance charge. Furthermore when 2+, 3+ and 4+ partition coefficients for both phases are plotted as functions of CaO melt content, the trends for CaSiO3 and CaTiO3 appear to be continuous. This surprising result means that partitioning into Ca-perovskite is independent of pressure and temperature and also of whether or not the host is CaSiO3 or CaTiO3. One implication is that CaSiO3 crystallising from a peridotitic magma ocean may have partition coefficients for Th and U up to about 400. Crystallisation and sequestration of as little as 0.25 volume% of this phase in the lower mantle early in earth history would make a significant contribution to current mantle heat production.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

7.
 Mafic gneisses occur as lenses or thin layers in spatial association with tonalitic leucosomes in a granulite zone of the Quetico subprovince of the Superior Province, Ontario, Canada, and exhibit concentric zoning with a biotite-rich margin, orthopyroxene-rich outer zone, clinopyroxene-rich central zone, and, occasionally, patches of relict amphibolites within the clinopyroxene-rich zone. The granulites (biotite-, orthopyroxene- and clinopyroxene-rich zones) in the mafic gneisses are characterized by significant amounts of rare earth element (REE)-bearing fluorapatite (1–10 vol.%) and other REE-rich minerals (allanite, monazite and zircon). Fluorapatite shows an increase in modal abundance from the biotite- and orthopyroxene-rich zones to the clinopyroxene-rich zone, but is rare in the relict amphibolites. Textural evidence and element partitioning indicate that fluorapatite (and other REE-rich minerals) was part of the peak metamorphic assemblages. Whole-rock geochemical analyses confirm that the granulites in the mafic gneisses contain anomalously high contents of REE and high field strength elements (HFSE), whereas the relict amphibolites are geochemically typical of tholeiitic basalts. Mass-balance calculations reveal that REE and HFSE were introduced into the mafic gneisses during the prograde granulite facies metamorphism, pointing to REE mobility under granulite facies metamorphic conditions. The presence of high F contents in the REE-rich minerals and their associated minerals (e.g. biotite and hornblende) suggests that REE and HFSE may have been transported as fluoride complexes during the granulite facies metamorphism. This conclusion is supported by previously published results of hydrothermal experiments on the partitioning of REE between fluorapatite and F-rich fluids at 700°C and 2 kbar. Received: 2 May 1995 / Accepted: 28 September 1995  相似文献   

8.
Abstract Lewisian grey gneisses from Gruinard Bay, North-west Scotland retain mineralogical and geochemical evidence for Scourian horn-blende-granulite facies metamorphism, and they may be used to assess current models of elemental depletion at granulite grade. Their 'immobile'major and trace element geochemistry is indistinguishable from that of Lewisian amphibolite and pyroxene-granulite facies counterparts. The K, Rb, Th and U contents of the Gruinard Bay gneisses are depleted relative to amphibolite facies gneisses, but generally the abundances of these elements are above those of comparable pyroxene granulites. U and Th have reached an advanced stage of depletion, but allanite appears to be crucial in maintaining significantly higher U and Th abundances at Gruinard Bay than in pyroxene granulites. K and Rb loss is less extreme, and depends on the stability of the rock-forming minerals: K-feldspar; biotite; and, amphibole. Early removal of K and Rb has resulted in a small rise in K/Rb, but further preferential Rb loss would have been required to generate the characteristically high K/Rb ratios of Lewisian pyroxene granulites.
The residence of U and Th in the accessory minerals of granulite facies gneisses, which are often correlated with the residua of intracrustal partial melting, renders unlikely their extreme incompatibility required by such models. Even if such phases are ignored, high mineral-melt partition coefficients for silicic melts argue against partial fusion as an efficient depletion mechanism. On the other hand, the advanced stage of U and Th depletion reached in Gruinard Bay gneisses, which were still partly hydrous, severely restricts the role played by CO2-dominated fluids and a hydrous medium is preferred.  相似文献   

9.
Trace element partitioning between apatite and silicate melts   总被引:7,自引:0,他引:7  
We present new experimental apatite/melt trace element partition coefficients for a large number of trace elements (Cs, Rb, Ba, La, Ce, Pr, Sm, Gd, Lu, Y, Sr, Zr, Hf, Nb, Ta, U, Pb, and Th). The experiments were conducted at pressures of 1.0 GPa and temperatures of 1250 °C. The rare earth elements (La, Ce, Pr, Sm, Gd, and Lu), Y, and Sr are compatible in apatite, whereas the larger lithophile elements (Cs, Rb, and Ba) are strongly incompatible. Other trace elements such as U, Th, and Pb have partition coefficients close to unity. In all experiments we found DHf > DZr, DTa ≈ DNb, and DBa > DRb > DCs. The experiments reveal a strong influence of melt composition on REE partition coefficients. With increasing polymerisation of the melt, apatite/melt partition coefficients for the rare earth elements increase for about an order of magnitude. We also present some results in fluorine-rich and water-rich systems, respectively, but no significant influence of either H2O or F on the partitioning was found. Furthermore, we also present experimentally determined partition coefficients in close-to natural compositions which should be directly applicable to magmatic processes.  相似文献   

10.
The nickel–iron meteorite of Morasko shows isolated inclusions of troilite in the bulk mass of a Fe,Ni-alloy. During a segregation of the FeS phase chalcophile trace elements were collected from the melt. The solidification of the Fe,Ni-phase occurred probably later, incorporating thereby mainly siderophile trace elements. To prove this general assumption selected trace elements were determined and reveal in the two phases of the present meteorite a characteristic distribution pattern. The meteorite of Morasko is in close conformity to the iron meteorite group IAB with rounded dark FeS inclusions.  相似文献   

11.
12.
A geothermometric technique based on equilibria between coexisting plagioclase and alkali feldspar was applied to quartzo-feldspathic granulites from Salvador, BA, Brazil. The conditions of metamorphism were determined to be in the range 750 ° C–800 ° C, 4–8 Kb, by comparison with experimental data on the stabilities of sapphirine, phlogopite and other minerals occurring in the associated rocks. Selected feldspar data gives temperatures near, but slightly below, this range. Several variants of the Wood and Banno model, as well as an empirical two-pyroxene geothermometer, were also tested and found to give temperatures which were apparently 50 °–100 ° high. The solubility of Al2O3 in orthopyroxene indicates temperatures which are about 200 ° to high, suggesting that Fe in the natural assemblages significantly changes relationships observed experimentally in MgO-Al2O3-SiO2 systems.  相似文献   

13.
The major rock-forming mineral phases (pyroxenes, plagioclase, garnet, hornblende) of a suite of granulite-facies gneisses from the Scourian complex, NW Scotland, have been analyzed for their rare earth element (REE) content. Although host rock compositions range from felsic to ultramafic, REE abundances and patterns for each mineral group show only limited variation. The REEs exhibit regular and consistent distribution patterns for each mineral which suggest, together with major element and textural considerations, that the observed distribution coefficients approach equilibrium. Total REE content follows the sequence hornblende>clinopyroxene>garnet>plagioclase >orthopyroxene and mass balance calculations show that even in the felsic gneisses>60% of the REEs reside in the major rock-forming minerals. Comparisons of both relative REE abundances and distribution coefficients with those in other rock types reveal a striking resemblance with patterns observed in mineral-liquid pairs of dacitic rocks. These similarities may have arisen during a partial melting episode in which granite-granodiorite melts were generated and removed from the Scourian complex; leaving a residuum which is severely depleted in the incompatible elements, including the REEs.  相似文献   

14.
The pressure-temperature curve for the equilibrium anorthite+2enstatite=pyrope+diopside+quartz has been determined in the system CaO-MgO-Al2O2-SiO2 to be between 13.4 and 14.0 kbars at 900° C. The slope up to 1,240° C is 8.5 bar/K. The entropy change at 1,200 K is 20 kJ. These data, combined with data from the literature, lead to a geobarometer equation which, when applied to rocks from the Agto area (West Greenland), gives pressure estimates of 6–10 kbars at 800° C. The results are consistent for rocks of differing Fe/Mg ratios and are consistent with independent pressure estimates.  相似文献   

15.
Wood-and-Banno temperatures for the coexisting pyroxenes of equilibrated metamorphic rocks in the hornblende granulite subfaoies fall in the range 780–860° C. Minimum temperature estimates for granulites include 760–790 °C, from the dehydration of hornblende to an orthopyroxene assemblage, and about 800 °C, from other evidence. The pyroxene temperatures are generally consistent with these temperature estimates, and are certainly not too low or more than 50 ° too high. Pyroxene temperatures for the three subzones of Broken Hill granulites increase away from the orthopyroxene isograd and are sufficiently precise that the difference between the lowest and intermediate gubzones is statistically significant. Temperatures for pyroxenes in pyroxene-granulite subfacies rocks are greater than 860 °C. The internal consistency, precision and apparent accuracy of the Wood-and-Banno pyroxene geothermometer in the metamorphic temperature range make it an important tool.  相似文献   

16.
Phase equilibrium modelling of a conformable sequence of supracristal lithologies from the Bushmanland Subprovince of the Namaqua–Natal Metamorphic Complex (South Africa) reveals a disparity of some 60–70°C in estimated peak metamorphic temperature. Aluminous metapelites were equilibrated at ~770–790°C, whereas two‐pyroxene granulite and garnet–orthopyroxene–biotite gneiss record distinctly higher conditions of ~830–850°C. Semi‐pelite and Mg–Al‐rich gneisses yield poorly constrained estimates that span the range derived from other lithologies. All samples record peak pressure of ~5–6 kbar, and followed a roughly isobaric heating path from andalusite‐bearing greenschist/lower amphibolite facies conditions through a tight clockwise loop at near‐peak conditions, followed by near‐isobaric cooling. The disparity in peak temperatures appears to be robust, as the low‐variance assemblages in all samples reflect well‐known melting reactions that only occur over narrow temperature intervals. The stable coexistence of both products and reactants of these melting reactions indicates that they did not go to completion before metamorphism waned. Calculated pressure–enthalpy diagrams show that the melting reactions are strongly endothermic and therefore buffer temperature while heat is consumed by melting. Because the respective reactions occur at distinct PT conditions and have different reactant assemblages, individual lithologies are thermally buffered at different temperatures and to different degrees, depending on the occurrence and abundance of reactant minerals. Our calculations show that all lithologies received essentially the same suprasolidus heat budget of 19 ± 1 kJ/mol, which led to the manifestation of lower peak temperatures in the more fertile and strongly buffered aluminous metapelites compared with more refractory rock types. If little to no thermal communication is assumed, this implies that lithology exerts a first‐order control over the heating path and the peak temperature that can be attained for a specific heat budget. Our results caution that the metamorphic conditions derived from pelitic granulites should not be assumed or extrapolated to larger sections of an orogenic crust that consist of other, more refractory lithologies.  相似文献   

17.
A quartz-absent magnesian paragneiss layer from Mount Sones, in the Archaean Napier complex of Enderby Land, Antarctica, contains the stable divariant FMAS assemblage sapphirine (X Mg=78) — cordierite (X Mg=87) — garnet (X Mg=51) — sillimanite. Rare green spinel (X Mg=53.5, ZnO=2.65wt%) occurs as inclusions mainly within sapphirine, but also within sillimanite and garnet. Late thin coronas of cordierite (X Mg=90.5) mantle sapphirine in contact with extensively exsolved anorthoclase. The mineral textures are interpreted to indicate the former stability of a hypersthene-quartz absent assemblage followed by the development of the FMAS equilibrium assemblage sapphirine-cordierite-garnet-sillimanite (sp, hy, qz) and further divariant reaction involving the consumption of sapphirine. The (sp, hy, qz) assemblage uniquely defines the stable P-T reaction topology appropriate to granulites from the Napier Complex, as this paragenesis is allowed in the grids of Hensen (1971, 1986) but is not possible in other grids which assume the stability of a sapphirine-absent ([sa]) FMAS invariant point involving the phases spinel, garnet, hypersthene, cordierite, sillimanite and quartz. The observed mineral assemblages and textures are consistent with peak metamorphism between the [sp] and [hy] invariant points of Hensen (1971), at temperatures of 930–990° C, followed by cooling on a lower dP/dT trajectory towards the (sp, qz) univariant line. The initial spinel-bearing assemblage was stabilized by Zn and to a lesser extent by Ni and Cr, and hence does not require a marked decrease in temperature and increase in pressure to produce the (sp, hy, qz) assemblage. It is inferred that fO 2 conditions substantially lower than those used in the experiments of Annersten and Seifert (1981) prevailed in the high-grade metamorphism in the Napier Complex.  相似文献   

18.
Melt loss and the preservation of granulite facies mineral assemblages   总被引:29,自引:3,他引:29  
The loss of a metamorphic fluid via the partitioning of H2O into silicate melt at higher metamorphic grade implies that, in the absence of open system behaviour of melt, the amount of H2O contained within rocks remains constant at temperatures above the solidus. Thus, granulite facies rocks, composed of predominantly anhydrous minerals and a hydrous silicate melt should undergo considerable retrogression to hydrous upper amphibolite facies assemblages on cooling as the melt crystallizes and releases its H2O. The common occurrence of weakly retrogressed granulite facies assemblages is consistent with substantial melt loss from the majority of granulite facies rocks. Phase diagram modelling of the effects of melt loss in hypothetical aluminous and subaluminous metapelitic compositions shows that the amount of melt that has to be removed from a rock to preserve a granulite facies assemblage varies markedly with rock composition, the number of partial melt loss events and the P–T conditions at which melt loss occurs. In an aluminous metapelite, the removal of nearly all of the melt at temperatures above the breakdown of biotite is required for the preservation of the peak mineral assemblage. In contrast, the proportion of melt loss required to preserve peak assemblages in a subaluminous metapelite is close to half that required for the aluminous metapelite. Thus, if a given proportion of melt is removed from a sequence of metapelitic granulites of varying composition, the degree of preservation of the peak metamorphic assemblage may vary widely.  相似文献   

19.
Due to the retrograde cation exchange problems experienced by conventional geothermobarometers above their closure temperatures, petrogenetic grids are a potentially powerful alternative to unravelling the PT evolution of ultrahigh‐T granulite terranes. A new qualitative KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) petrogenetic grid for Mg–Al rich metapelites containing K‐feldspar, sillimanite and quartzofeldspathic melt that successfully accounts for the majority of assemblages composed of variations of sapphirine, spinel, garnet, orthopyroxene, cordierite, biotite and quartz is developed. Univariant reactions are predicted utilizing a newly derived ‘melt projection’ and these reactions are entirely consistent with algebraically calculated reaction coefficients obtained using a set of standard phase compositions. Based upon observations of commonly associated mineral assemblages in natural lithologies the [Spr, Spl], [Qtz, Spl], [Bt, Spl], [Opx, Spr], [Opx, Qtz] and [Bt, Opx] invariant points are assumed to be stable, whilst the [Grt, Spr], [Grt, Qtz], [Spr, Qtz] and [Crd, Qtz] are assumed to be metastable. Biotite‐bearing assemblages are confined to the lowest temperatures, and sapphirine + quartz to the highest temperatures. Orthopyroxene + sillimanite ± quartz assemblages are confined to the highest pressures, whilst spinel‐bearing assemblages are stabilized by lower pressures. The alternative choice of invariant point stability leads to significant differences between this grid and previously proposed topologies. Spinel cannot be stable along with the orthopyroxene and sillimanite assemblage as previously proposed. Further, more subtle differences in topology result from the treatment of H2O in the chemographic projection used to deduce univariant reactions, and projecting from a water‐bearing quartzofeldspathic melt does not yield the same reaction coefficients as projection from H2O. The new grid allows reinterpretation of previously proposed evolutionary P–T paths for Mg–Al rich granulites from the Napier Complex and Rauer Group, East Antarctica, and In Ouzzal, Algeria.  相似文献   

20.
对大别山黄土岭麻粒岩中的锆石进行了LA-ICPMS微区微量元素分析.结果表明,黄土岭麻粒岩中锆石的不同区域有不同的微量元素组成,麻粒岩相变质锆石的大多数微量元素含量明显低于岩浆锆石,表明麻粒岩相变质条件下形成的锆石具有较低的微量元素组成.锆石及其共生矿物的微量元素分析结果表明,该麻粒岩中变质锆石Eu负异常是变质锆石形成时长石稳定存在的结果.锆石与石榴子石之间微量元素分配特点表明,变质锆石与石榴子石之间到达了平衡.这些结果表明,该样品的变质锆石形成于麻粒岩相峰期变质阶段,这些变质锆石区域测定的年龄结果对应于麻粒岩相峰期变质作用时间.锆石和共生矿物的微量元素分析对锆石的成因及得到的年龄的解释具有重要的指示意义.锆石与石榴子石之间微量元素的分配特征,不但可以指示锆石与石榴子石之间是否达到平衡,而且可以通过石榴子石这一"桥梁",为锆石的U-Pb年龄提供合理的p-T条件限定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号