首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Intergovernmental Panel on Climate Change (IPCC) commissioned a special report on emissions scenarios in 2000 so as to forecast global carbon dioxide (CO2) emissions for a variety of assumptions. These scenarios have been subjected to a multitude of criticisms, alleging overoptimistic predictions for fossil fuel production rates. Intrigued by this controversy, this paper employs the Hubbert linearization technique to solve for ultimately recoverable resources (URR) of fossil fuels for six significant IPCC scenarios. The predictions are substantially higher than geological URR estimates found in recent literature, ranging from 19 to over 200% higher for oil, 16 to over 500% for coal, and 171 to over 500% for natural gas, depending on the scenario. Subsequently, the atmospheric CO2 concentrations resulting from full consumption of URR related to IPCC data, as well as literature-based URR, are determined with a simple model. The former concentrations range from 640 to over 1,300 ppm. In comparison, the peak-based URR in the literature yield 463–577 ppm. All of these figures are higher than the 450 ppm ‘threshold’ which some see as critical. Therefore, despite peaking fossil fuels, concern over climate change is still warranted. At the same time, the fossil fuel production inputs to the IPCC’s CO2 emissions models appear predominantly overoptimistic, which calls into question the accuracy of the climate change assessment outputs. Moving forward, the IPCC is encouraged to re-assess its fossil fuel forecasts, incorporating more reasonable scenarios for peak production of fossil fuels.  相似文献   

2.
 利用1961─2008年宁夏气温、降水资料,计算水资源各分量,并结合PRECIS模式模拟结果,对气候基准时段(1961─1990年)和1991─2008年各量的模拟值和观测值进行对比检验,并着重分析了SRES A2和B2情景下21世纪各量的变化。对比检验结果表明,虽然量值上有一定的模拟偏差,但模式对各量的基本气候态和局地特征模拟的较为准确。各量的变化表明,21世纪宁夏区域年平均蒸发增加趋势较降水更明显,可利用降水的减少主要来自于夏季南部山区;与气候基准时段相比,夏季可利用降水的增加主要在21世纪前半叶,引黄灌区增幅最大达120%左右,21世纪后半叶南部山区减少最明显为20%~60%;相较2011—2040年,2070—2100年夏季可利用降水呈全域性减少;温室气体含量的变化没有改变各量的分布型,但对量级的影响较大,且可利用降水的变化远大于降水的变化;A2情景下各量的变化较B2情景更明显。随着温室气体排放量的持续增加宁夏水资源短缺的状况将进一步加剧,尤其是南部山区。  相似文献   

3.
气候变化对甘肃定西、安徽合肥小麦生产影响研究   总被引:5,自引:0,他引:5  
由于大气中温室气体的不断增加, 全球气候发生了巨大变化。据最新气候模式模拟研究表 明未来全球气候将发生更为剧烈的变化, 这必将对很多部门产生显著的影响特别是对气候变化 十分敏感的农业。尤其对于中国这样的人口大国, 农业作为社会最基本也是最重要生产部门之 一, 气候变化将对中国的农业生产带来巨大的影响。小麦是中国的第二大作物, 其中冬小麦占全 国小麦总产量近90%, 因此评价气候变化对中国小麦生产影响是十分必要的。为了分析在未来气 候变化情景下中国小麦生产可能遇到的风险, 以15 年ECMWF 再分析实验数据(1979~1993)作为 边界条件驱动PRECIS 区域气候模式模拟产生作物模型所需要的气候资料并输入CERES-Wheat 模型, 验证CERES-Wheat 模型与区域气候模式PRECIS 结合的模拟能力。在以上验证工作的基 础上, 将区域气候模式PRECIS 的模拟结果与作物模型CERES-Wheat 相连接, 同时考虑到CO2 对小麦的直接施肥作用, 模拟了两个小麦站点(定西和合肥)在IPCC SRES A2 和B2 情景下雨养 和灌溉小麦的变化趋势。得到如下结论: 无论是在A2 情景还是B2 情景, 定西和合肥的小麦产量 都会有所增加, 但增加的幅度相差很大。A2 情景的增产效应一般要大于B2 情景的增产效应, 灌 溉小麦比雨养小麦更加受益于气候变化, 冬小麦(合肥) 产量的增长幅度要大于春小麦(定西) 增 长幅度。CO2 对小麦生长的肥效作用十分明显, 产量增幅很大。以上结果说明未来气候变化可能 会对我国的小麦生产带来益处, 但由于未来气候情景模拟的不确定性以及CO2 肥效作用通常是 在作物过程中的水肥条件完全满足的情况下才充分体现, 这都给研究结果带来了不确定性, 但本 项研究为评价未来气候变化对中国小麦生产影响提供了一种全面的评价方法。  相似文献   

4.
In this paper, an analysis, with the simulation of PRECIS(Providing Regional Climate for Impact Studies), was made for future precipitation extremes, under SRES(Special Report on Emission Scenarios) A2 and B2 in IPCC(Intergovernmental Panel on Climate Change) AR4. The precipitation extremes were calculated and analyzed by ETCCDI(Climate Change Detection and Indices). The results show that:(1) In Present Scenario(1961–1900), PRECIS could capture the spatial pattern of precipitation in Xinjiang.(2) The simulated annual precipitation and seasonal precipitation in Xinjiang had a significantly positive trend and its variability had been deeply impacted by terrain. There was a strong association between increasing trend and the extreme precipitation's increase in frequency and intensity during 1961–2008. Under SRES A2 and B2, extreme precipitation indicated an increasing tendency at the end of the 21 st century. The extreme summer precipitation increased prominently in a year.(3) PRECIS's simulation under SRES A2 and B2 indicated increased frequency of heavy precipitation events and also enhancement in their intensity towards the end of the 21 st century. Both A2 and B2 scenarios show similar patterns of projected changes in precipitation extremes towards the end of the 21 st century. However, the magnitude of changes in B2 scenario was on the lower side. In case of extreme precipitation, variation between models can exceed both internal variability and variability of different SRES.  相似文献   

5.
化石能源(FF)CO2排放是全球人为温室气体排放的主体,作为衔接国家排放清单和大气反演验证途径的关键环节,2019年联合国政府间气候变化专门委员会(IPCC)对《国家温室气体清单指南》进行修订,势必将推动高分辨率FFCO2排放清单的进一步规范发展。本文结合修订版指南中对于高分辨率排放清单的具体要求,从全球尺度、国家及以下尺度两个层面对高时空分辨率FFCO2排放清单的构建方法进行梳理和归纳,并对其研究趋势进行展望。① IPCC方法学的进一步修订与完善,将有助于进一步提高FFCO2排放清单的时空分辨率和精度;而构建包含间接排放的高分辨率FFCO2排放清单正在兴起。② 作为大气反演模型的先验数据,采用自下而上的部门方法,直接获取排放统计数据,是编制高分辨率FFCO2排放清单的首要途径;而通过替代变量及建模途径进行排放总量的时空分配,也是编制高分辨率FFCO2排放清单的必要手段。③ 清单的不确定性分析中,需要考虑时空分配所带来的不确定性信息;基于大气观测的反演验证途径将作为独立于排放清单的一种客观核算手段,将在清单的质量保证/质量控制与验证中发挥重要作用。  相似文献   

6.
Impacts of climatic change on agriculture and adaptation are of key concern of scientific research. However, vast uncertainties exist among global climates model output, emission scenarios, scale transformation and crop model parameterization. In order to reduce these uncertainties, we integrate output results of four IPCC emission scenarios of A1FI, A2, B1 and B2, and five global climatic patterns of HadCM3, PCM, CGCM2, CSIRO2 and ECHAM4 in this study. Based on 20 databases of future climatic change scenarios from the Climatic Research Unit (CRU) , the scenario data of the climatic daily median values are generated on research sites with the global mean temperature increase of 1 ℃(GMT+1D), 2 ℃ (GMT+2D) and 3 ℃(GMT+3D). The impact of CO2 fertilization effect on wheat biomass for GMT+1D, GMT+2D and GMT+3D in China’s wheat-producing areas is studied in the process model, CERES-Wheat and probabilistic forecasting method. The research results show the CO2 fertilization effect can compensate reduction of wheat biomass with warming temperature in a strong compensating effect. Under the CO2 fertilization effect, the rain-fed and irrigated wheat biomasses increase respectively, and the increment of biomass goes up with temperature rising. The rain-fed wheat biomass increase is greater than the irrigated wheat biomass. Without consideration of CO2 fertilization effect, both irrigated and rain-fed wheat biomasses reduce, and there is a higher probability for the irrigated wheat biomass than that of the rain-fed wheat biomass.  相似文献   

7.
全球气候模型(GCM)提供了有效的方法来评估全球气候变化的过程,并可预估包括人类活动因素驱动在内的未来气候变化情景。然而其较低的分辨率并不能捕捉到那些地表特性复杂区域的气候变化特性。因此,使用包括区域气候模型(RcM)、偏差校正法和统计方法等方法在内的降尺度方法来处理GCM的原始数据以达到评估区域的气候变化的目的。本研究应用使用偏差校正法中的delta方法将24个GCM在IPCC三种气候变化情景下的月尺度数据水平分辨率降尺度到0.5℃,进而用于分析新疆未来气候变化格局。基于降尺度后的计算结果与GCM模型原始数据比较表明:降尺度方法可以改善复杂地表和地形的区域气候变化预估特征,并降低GCM生成的气候数据在新疆地区的不确定性。结果表明:AIB、A2和B1三种情景模式下年均气温和年降水量在21世纪早期具有相似的空间格局与变化趋势,到21世纪中期会产生波动变化。年平均气温在A1B,A2和B1三种情景下到21世纪末将分别达到10℃,11.1℃和8.5℃;与此同时,年降水量将会有波动性的增加趋势。在2020—2070年间,AIB情景下区域年平均气温大于其他两个情景。A1B情景下的年降水量在2020-2040年间也大于其他两个情景。然而,在不同的情境下年平均气温与年降水存在很大的不确定性。不同情景下年平均气温的差异达6℃,而年平均降水差异大约200mm。在区域气候变化格局方面,到21世纪末,在天山中部、伊犁河流域、天山南部和塔里木河下游的年平均气温的增长要比准噶尔盆地、帕米尔高原和昆仑上北坡的小。年降水量在南疆西部呈现出轻微的下降趋势,但是在昌吉,吐鲁番,哈密和阿尔金山北部呈现出增长趋势。  相似文献   

8.
A critical examination of Hubbert’s model proves that it does not account for several factors that have significantly influenced the production of petroleum and other fossil fuels. The effect of these factors comes into the price of the fossil fuels, and the latter has a significant influence on the demand and rate of production of energy resources as well as on the long-term rate of production growth at both the regional and global levels. Based on several observations of historical production data, a simple mathematical model is constructed and presented in this paper for the lifetime of a fossil fuel resource. The recent data of global petroleum and natural gas production show that a very important period in the life of energy resources is a period when the demand of these resources increases almost linearly. The linear part of the production curve makes the entire lifetime production of the resource asymmetric. Information on the total available quantity of a resource at any time and of the average slope during this linear period yields an estimate of the timescale, T 2, when peak production is reached and depletion follows. The total available quantity of the energy resource is laden with significant uncertainty, which propagates in the estimates of the timescale of the peak production in any resource model. The time asymmetry of the current model leads to a delay of the timescale, when the onset of the resource production commences (e.g., peak oil). However, the rate of the resource production decline is significantly higher than that predicted by other models that use a symmetrical curve-fitting method.  相似文献   

9.
本文采用IPCC推荐的表观消费量法计算了中国大陆30省区1991到2010年化石能源消费产生的CO2排放,发现:(1)排放总量由 2293.01Mt 增长到 7467.77Mt;(2)煤炭消费的排放比重最高达到79.98%;(3)人均排放量由 1.98t 增长至 5.57t;(4)CO2排放强度显著降低,由6.66 kg USD-1降至1.07kg USD-1,近年来趋于稳定;(5)区域发展不平衡始终存在,根据省际数据,在一些落后地区经济增长过度依赖于化石能源消费。关于CO2高排放,中国已经做出承诺并采取了行动。基于对可持续发展和全球气候变化不确定性的综合考虑,健康的产业结构、化石能源集约利用,以及区域发展平衡应更加受到重视。  相似文献   

10.
Using the snow cover fraction (SNC) output from eight WCRP CMIP3 climate models under SRES A2, A1B, and B1 scenarios, the future trend of SNC over East Asia is analyzed. Results show that SNC is likely to decrease in East Asia, with the fastest decrease in spring, then winter and autumn, and the slowest in summer. In spring and winter the SNC decreases faster in the Qinghai-Xizang Plateau than in northern East Asia, while in autumn there is little difference between them. Among the various scenarios, SRES A2 has the largest decrease trend, then A1B, and B1 has the smallest trend. The decrease in SNC is mainly caused by the changes in surface air temperature and snowfall, which contribute differently to the SNC trends in different regions and seasons.  相似文献   

11.
朱潜挺  吴静  王铮 《地理研究》2012,31(9):1547-1558
碳交易是未来全球应对气候变化的重要组成部分之一。基于Agent建模技术,开发了一个包含中国、美国、日本、欧盟、前苏联地区以及世界其他地区的全球碳交易模拟系统,并且根据人均累积排放权均等和减排目标控制原则,设置了"丁标准"情景和"2℃目标"情景,对全球碳交易行为展开了模拟研究。研究发现:(1)随着碳排放权的逐年减少,未来碳交易价格将呈上升趋势;(2)碳交易将有助于资金从发达国家向发展中国家转移;(3)由于碳交易允许配额缺口区域向配额盈余区域购买碳排放权,未来发达国家的人均碳排放量仍将高于发展中国家;(4)虽然碳交易能提高全球累计拉姆齐效用,但无论从中国在未来碳市场中的收支情况,还是全球福利水平的改善程度来看,"2℃目标"情景均将优于"丁标准"情景。  相似文献   

12.
The geological coal resource of the U.S. is abundant and proved coal reserves are listed as the world’s largest. However, the reserves are unevenly distributed and located in a small number of states, giving them major influence over future production. A long history of coal mining provides detailed time series of production and reserve estimates, which can be used to identify historical trends. In reviewing the historical evolution of coal reserves, one can state that the trend here does not point toward any major increases in available recoverable reserves; rather the opposite is true due to restrictions and increased focus on environmental impacts from coal extraction. Future coal production will not be entirely determined by what is geologically available, but rather by the fraction of that amount that is practically recoverable. Consequently, the historical trend toward reduced recoverable amounts is likely to continue into the future, with even stricter regulations imposed by increased environmental concern. Long-term outlooks can be created in many ways, but ultimately the production must be limited by recoverable volumes since coal is a finite resource. The geologic amounts of coal are of much less importance to future production than the practically recoverable volumes. The geological coal supply might be vast, but the important question is how large the share that can be extracted under present restrictions are and how those restrictions will develop in the future. Production limitations might therefore appear much sooner than previously expected.  相似文献   

13.
Descriptive and Predictive Growth Curves in Energy System Analysis   总被引:1,自引:0,他引:1  
This study reviews a variety of growth curve models and the theoretical frameworks that lay behind them. In many systems, growth patterns are, or must, ultimately be subjected to some form of limitation. A number of curve models have been developed to describe and predict such behaviours. Symmetric growth curves have frequently been used for forecasting fossil fuel production, but others have expressed a need for more flexible and asymmetric models. A number of examples show differences and applications of various growth curve models. It is concluded that these growth curve models can be utilised as forecasting tools, but they do not necessarily provide better predictions than any other method. Consequently, growth curve models and other forecasting methods should be used together to provide a triangulated forecast. Furthermore, the growth curve methodology offers a simple tool for resource management to determine what might happen to future production if resource availability poses a problem. In the light of peak oil and the awareness of natural resources being considered as a basis for the continued well-being of the society and the mankind, resource management should be treated as an important factor in future social planning.  相似文献   

14.
With the possibility of future fresh water shortages increasing, a methodology that incorporates climatic and anthropogenic factors is needed. This research estimates future water availability in the Lower Cape Fear basin using changes in climate, land use, and population growth. The USGS Thornthwaite monthly water balance model is used with estimates of climate change and land use change parameters to assess future water resources based on predicted monthly fluxes of the water balance.The southern United States is a rapidly growing region. Trends present in the population data are used to produce future estimates of population for the basin. Precipitation and temperature estimates based on Intergovernmental Panel on Climate Change (IPCC) predictions and current climatology are inputs to the model. Projected increases in impervious surface cover due to population growth and urbanization are incorporated through the model runoff factor. Water stress indicators are used to categorize the sub-watersheds as water rich, water stressed, or water scarce. Scenarios incorporating regional predictions of climate change indicate a decrease in summer soil moisture minima and increases in summer water deficits. Ensemble runs indicate a shift toward water stress in the Lower Cape Fear River basin, due to a warming climate as well as increased demand. While climate change has a significant impact on water resources, population growth was found to have the most substantial impact. The methods and findings have application to water managers at local and regional levels.  相似文献   

15.
以甘肃省平凉市崆峒区生态农业系统为例,基于农业产业链的物质、能量流动机理,运用Vensim软件建立生态农业系统动力学分析模型(EA-SD)。量化分析和模拟了生态农业发展的综合效益及其演变趋势。经模拟,按照现在的发展模式不变,系统不但存在牛粪尿污染等负效应,而且随着肉牛年屠宰量的快速上涨,未来崆峒区可能出现肉牛数量锐减,制沼产业、有机农业衰落,整个系统难以持续发展的情况。根据模拟结果,论文制定了系统优化调控政策,并模拟了优化后系统的发展情景。结果显示,优化能够消除系统缺陷和负效应,提升综合正效应,增强系统的可持续发展能力。本研究的模型及调控过程能够为类似的生态经济系统优化研究提供借鉴和参考。  相似文献   

16.
In this study, the spatial distribution and changing trends of agricultural heat and precipitation resources in Northeast China were analyzed to explore the impacts of future climate changes on agroclimatic resources in the region. This research is based on the output meteorological data from the regional climate model system for Northeast China from 2005 to 2099, under low and high radiative forcing scenarios RCP4.5 (low emission scenario) and RCP8.5 (high emission scenario) as proposed in IPCC AR5. Model outputs under the baseline scenario, and RCP4.5 and RCP8.5 scenarios were assimilated with observed data from 91 meteorological stations in Northeast China from 1961 to 2010 to perform the analyses. The results indicate that: (1) The spatial distribution of temperature decreases from south to north, and the temperature is projected to increase in all regions, especially under a high emission scenario. The average annual temperature under the baseline scenario is 7.70°C, and the average annual temperatures under RCP4.5 and RCP8.5 are 9.67°C and 10.66°C, respectively. Other agricultural heat resources change in accordance with temperature changes. Specifically, the first day with temperatures ≥10°C arrives 3 to 4 d earlier, the first frost date is delayed by 2 to 6 d, and the duration of the growing season is lengthened by 4 to 10 d, and the accumulated temperature increases by 400 to 700°C·d. Water resources exhibit slight but not significant increases. (2) While the historical temperature increase rate is 0.35°C/10a, the rate of future temperature increase is the highest under the RCP8.5 scenario at 0.48°C/10a, compared to 0.19°C/10a under the RCP4.5 scenario. In the later part of this century, the trend of temperature increase is significantly faster under the RCP8.5 scenario than under the RCP4.5 scenario, with faster increases in the northern region. Other agricultural heat resources exhibit similar trends as temperature, but with different specific spatial distributions. Precipitation in the growing season generally shows an increasing but insignificant trend in the future, with relatively large yearly fluctuations. Precipitation in the eastern region is projected to increase, while a decrease is expected in the western region. The future climate in Northeast China will change towards higher temperature and humidity. The heat resource will increase globally, however its disparity with the change in precipitation may negatively affect agricultural activities.  相似文献   

17.
Growth Rates of Global Energy Systems and Future Outlooks   总被引:1,自引:0,他引:1  
The world is interconnected and powered by a number of global energy systems using fossil, nuclear, or renewable energy. This study reviews historical time series of energy production and growth for various energy sources. It compiles a theoretical and empirical foundation for understanding the behaviour underlying global energy systems’ growth. The most extreme growth rates are found in fossil fuels. The presence of scaling behaviour, i.e. proportionality between growth rate and size, is established. The findings are used to investigate the consistency of several long-range scenarios expecting rapid growth for future energy systems. The validity of such projections is questioned, based on past experience. Finally, it is found that even if new energy systems undergo a rapid ‘oil boom’-development—i.e. they mimic the most extreme historical events—their contribution to global energy supply by 2050 will be marginal.  相似文献   

18.
陆地生态系统碳循环研究进展   总被引:51,自引:7,他引:51  
近年来,碳循环问题日益成为全球变化与地球科学研究领域的前沿与热点问题,其中陆地生态系统碳循环又是全球碳循环中最复杂、受人类活动影响最大的部分。本文结合IGBP和IPCC中有关碳循环的最新报告,介绍了全球碳循环中大气、海洋和陆地生态系统等几个主要碳库的大小及特点,并重点介绍了陆地生态系统碳循环及其基本过程。总结了当前陆地生态系统碳循环研究的四种主要方法:清单方法、反演模拟、涡度相关技术和陆地碳循环模式,介绍了它们的各自特点以及存在的问题,并对陆地碳过程中的不确定性进行了详细分析。此外,还简要叙述了当前碳循环研究中待解决的问题和今后的发展趋势。  相似文献   

19.
This paper examines the implications of statements by Australia’s Minister of… Resources that Australia’s exports of coal are growing rapidly and that Australia’s coal will last “110 years at current rates of production.” If one assumes that coal production P(t), follows a Gaussian curve (similar to a Hubbert curve) one can construct a family of Gaussian curves showing possible future paths of P(t) which are consistent with the cited “110 years.” Each curve reaches a maximum after which P(t) declines toward zero. Knowledge of the present value of dP/dt allows one member of the family to be identified as the most probable future path of P(t). Families of curves and tabular data are presented for resource quantities that would last 50, 100 and 200 years “at current rates of production.” If, instead, Australia’s P(t) follows a declining exponential curve (exp(−kt)) with k = (1/110) per year, the stated quantity of coal will allow production to continue forever, with P(t) declining with a half life of 76 y. This and more rapidly declining exponential paths are the only paths that can be said to be sustainable. The envelope of the family of Gaussian curves divides the (P, t) plane into “allowed” and “forbidden” areas. The declining exponential curve divides the “allowed” area into an upper area that is “terminal” and a lower area that is “sustainable.” These facts, coupled with Australia’s expectations of rapid growth of its population, suggest that Australia’s present resource policies are “anti-sustainable” and that the people of Australia need to rethink their present policy of rapidly exporting their fossil fuels.  相似文献   

20.
A vital and indisputable link exists between phosphate rock and world food supply. Phosphate rock is the source of phosphorus used to make phosphatic fertilizers, essential for growing the food needed by humans in the world today and in the future. We modeled the depletion of the known reserves and reserve base (which includes reserves) of phosphate rock based on various scenarios for increasing population and future demand for phosphate. Using these scenarios, the presently known reserves will be depleted within about 50 years, and the remainder of the reserve base will be depleted within the next 100 years. For this model, we used rates of growth of demand for phosphate rock of between 1 and 1.7 percent annually. We also examined demand rates that decrease over time toward demand stasis. Growthrate scenarios that stabilize demand at the year 2100 are little different from unconstrained growth. Demand stabilization by 2025 extends the reserve base by only about 50 years. Additional considerations could affect these depletion scenarios, causing them to be substantially too high or too low. Nonetheless, the incluctable conclusion in a world of continuing phosphate demand is that society, to extend phosphate rock reserves and reserve base beyond the approximate 100 year depletion date, must find additional reserves and/ or reduce the rate of growth of phosphate demand in the future. Society must: 91) increase the efficiency of use of known resources of easily minable phosphate rock; (2) discover new, economically-minable resources; or (3) develop the technology to economically mine the vast but currently uneconomic resources of phosphate rock that exist in the world. Otherwise, the future availability of present-cost phosphate, and the cost or availability of world food will be compromised, perhaps substantially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号