首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liszka  Ludwik 《Solar physics》1970,14(2):354-365
Measurements of line-of-sight velocities of quiescent and sunspot prominences on the limb made during the years 1966 and 1968 at Swedish Astrophysical Station in Anacapri, Italy are discussed. Several statistical properties of the velocity field, in particular its connection with close McMath plages are investigated. Results are interpreted in terms of oscillatory motion in prominences.  相似文献   

2.
Ballester  J. L.  Kleczek  J. 《Solar physics》1983,89(2):261-273
Two sequences of OSO-4 spectroheliograms in Mg x and Si xii obtained during October–November 1967 and covering the intervals of 83 and 22 hr, respectively, have been analyzed to reveal quasi-periodic oscillations of EUV flux from solar sources with a periodicity of 5–14 hr. The oscillation periods of the emission flux from local sources over sunspots and magnetic field enhancements in plages without spots have been investigated in correlation with characteristics of the respective AR and plages. The greatest periods (> 8 hr) are shown to be peculiar of small sunspots or sunspot groups at the initial or final stage of their development, whereas the smallest periods ( 5–6 hr) are observed in the case of large well-developed groups at the maximum stage of development. In quiet regions on the Sun and plages without spots, the oscillation periods are 6–8 hr. The surface areas in which the oscillations are synchronous and coincide in phase have typical dimensions of 1 in quiet and 1 to 5 in active regions. These areas form a spatial structure similar to the chromospheric network and supergranules. The characteristic lifetime of the structure elements is 1.5–2 days.  相似文献   

3.
Verma  V.K. 《Solar physics》2000,194(1):87-101
The paper presents the results of a study of the distribution and asymmetry of solar active prominences (SAP) for the period 1957–1998 (solar cycles 19–23). The east-west (E-W) distribution study shows that the frequency of SAP events in the 81–90° slice (in longitude) near the east and west limbs is up to 10 times greater than in the 1–10° slice near the central meridian of the Sun. The north-south (N-S) latitudinal distribution shows that the SAP events are most prolific in the 11–20° slice in the northern and southern hemispheres. Further, the E-W asymmetry of SAP events is not significant. The N-S asymmetry of SAP events is significant and it has no relation with the solar maximum year or solar minimum year during solar cycles. Further, the present study also shows that the N-S asymmetry for cycles 19–23 follows and confirms the trend of N-S asymmetry cycles as reported by Verma (1992).  相似文献   

4.
Summary Conclusion This colloquium on solar prominences - the first ever held - has shown that a major part of activity in prominence research in recent years concentrated on both observation and computation of the magnetic conditions which were found to play a crucial role for the development and the maintainance of prominences. Remarkable progress was made in fine-scale measurements of photospheric magnetic fields around filaments and in internal field measurements in prominences. In addition, important information on the structure of the magnetic fields in the chromosphere adjacent to the filaments may be derived from high resolution photographs of the H fine structure around filaments which have become available recently; unfortunately, an unambiguous determination of the vector field in the chromosphere is not yet possible.It is quite clear, now, that stable filaments extend along neutral lines which divide regions of opposite longitudinal magnetic fields. Different types of neutral lines are possible, depending on the history and relationship of the opposite field regions. There is convincing evidence that the magnetic field in the neighbouring chromosphere may run nearly parallel to the filament axis and that there are two field components in stable prominences: an axial field dominant in the lower parts and a transverse field dominant in the higher parts.Methods for the computation of possible prominence field configurations from measured longitudinal photospheric fields were developed in recent years. In a number of cases (e.g. for loop prominences) the observed configuration could be perfectly represented by a force-free or even a potential field; poor agreement was found between computed and measured field strengths in quiescent prominences. In order to reconcile both of them it is necessary to assume electric currents. Unambiguous solutions will not be found until measurements of the vector field in the photosphere and in the prominences are available.The two-dimensional Kippenhahn-Schlüter model is still considered a useful tool for the study of prominence support and stability. However, a more refined model taking into account both field components and considering also thermal stability conditions is available now. It was proposed that quiescent prominences may form in magnetically neutral sheets in the corona where fields of opposite directions meet.As for the problem of the origin of the dense prominence material there are still two opposite processes under discussion. The injection of material from below, which was mainly applied to loop prominences, has recently been considered also a possible mechanism for the formation of quiescent prominences. On the other hand, the main objections against the condensation mechanism could be removed: it was shown that (1) sufficient material is available in the surrounding corona, and that (2) coronal matter can be condensed to prominence densities and cooled to prominence temperatures in a sufficiently short time.The energy balance in prominences is largely dependent on their fine structure. It seems that a much better radiative loss function for optically thin matter is now available. The problem of the heat conduction can only be treated properly if the field configuration is known. Very little is known on the heating of the corona and the prominence in a complicated field configuration. For the optically thick prominences the energy balance becomes a complicated radiative transfer problem.Still little is known on the first days of prominence development and on the mechanism of first formation which, both, are crucial for the unterstanding of the prominence phenomenon. As a first important step, it was shown in high resolution H photographs that the chromospheric fine structure becomes aligned along the direction of the neutral line already before first filament appearance. More H studies and magnetic field measurements are badly needed.Recent studies have shown that even in stable prominences strong small-scale internal rotational or helical motions exist; they are not yet understood. On the other hand, no generally agreed interpretation of large-scale motions of prominences seems to exist. A first attempt to explain the ascendance of prominences, the Disparitions Brusques, as the result of a kink instability was made recently.New opportunities in prominence research are offered by the study of invisible radiations: X-rays and meterwaves provide important information, not available otherwise, on physical conditions in the coronal surroundings of prominences; EUV observations will provide data on the thin transition layer between the cool prominence and the hot coronal plasma.Mitt. aus dem Fraunhofer Institut No. 111.  相似文献   

5.
The preflare activity of a plage filament is analysed from H observations made with the Multichannel Subtractive Double Pass Spectrograph (MSDP) of the Meudon Solar Tower. The June 22, 1980 event is studied and interpreted in terms of preflare heating of a filament, connected to the rise of emerging flux, and the relative approach of pores of different magnetic polarity, prior to the onset of a two-ribbon flare.The region with enhanced magnetic field, around the filament, begins to brighten slowly 20 min before the triggering of the flare, in the center of H. Filament dark material begins to rise rapidly while the brightest point on one side drifts towards it, 6 min before the onset of the two-ribbon flare. Simultaneously the absorbing material separates from the remaining part of the filament.In the discussion, we suggest that most of the observed features may be the consequence of emergence of new magnetic flux and the related reconnection processes.  相似文献   

6.
Hirayama  Tadashi 《Solar physics》1985,100(1-2):415-434
We review observational studies of solar prominences with some reference to theoretical understandings. We lay emphasis on the following findings: (1) An important discovery was made by Leroy, Bommier, and Sahal-Bréchot concerning the direction of the magnetic field inside some high-altitude, high-latitude prominences, where the field vector points in the opposite direction from the one which would be expected from the potential field calculated from the observed photospheric magnetic field. (2) Landman suggests the possibility of a high total density of 10–11 g cm –3 for the main body of quiescent prominences, 50 times higher than the value hitherto believed. (3) Flow patterns, nearly parallel to the magnetic neutral lines, were detected in the 105 K plasma near and in prominences. (4) Coronal loop structures were found overlying prominences as viewed from X-ray photographs. We propose also an evolutionary scheme by taking the magnetic field topologies into account.The fundamental question why a prominence is present remains basically unanswered.  相似文献   

7.
The method of Goldberg and Unno for the determination of microturbulent velocities in a stellar atmosphere is only applicable if there are no macroturbulent or convective motions.If such motions occur, as in the solar photosphere, the derived results are false and may lead to misinterpretations such as an increase of the microturbulent velocity with depth or anisotropic microturbulence.  相似文献   

8.
Quiescent prominences occur as long-lasting cool sheets of matter in the surrounding hot corona at the base of coronal streamers. Seen on the disk they appear as dark filaments dividing regions of opposite magnetic polarity.In this paper a theoretical model is presented, which describes the general appearance of quiescent prominences.It is shown that the neutral sheet between two regions of oppositely directed magnetic fields is thermally unstable. This gives rise to compression and cooling of coronal material to prominence material in a characteristic time of the order of one day for a field strength of 0.5 gauss in the lower corona.It is assumed that due to the finite electrical resistivity of the plasma, filamentary structures are formed by the tearing-mode resistive plasma instability. These structures are thermally insulated from the hot surroundings by the newly formed closed azimuthal magnetic field configuration.It has been shown that for fine structures with a diameter of 300 km the growth rate of the tearing-mode instability is of the same order as the cooling time. The occurrence of fine structures within the prominence is of vital importance for their origin.On leave from the Observatory Sonnenborgh at Utrecht, The Netherlands.  相似文献   

9.
We use the polarimetric and intensity measurements of H and HeI D3 lines in solar prominences to derive the true geometrical thickness for several quiescent prominences. The electron densities, derived from the collisional depolarization in H by Bommier et al. (1994), are used to evaluate the thickness from the emission measure. The emission measure was obtained from the theoretical correlation with the H integrated intensity, according to Gouttebroze, Heinzel, and Vial (1993). Theoretical electron densities obtained by latter authors are also compared with those of Bommier et al. (1994) and we find a very good agreement between them. The prominence geometrical thickness exhibits a relatively large range of values from about 100 km up to a few 104 km. The plasma densities vary by almost two orders of magnitude in the observed structures, but the total column mass in the direction perpendicular to the prominence sheet seems to be fairly constant for the set of prominences studied.  相似文献   

10.
P. Heinzel  B. Rompolt 《Solar physics》1987,110(1):171-189
Brightness variations of the lines arising from a five-level hydrogen model atom, depending upon prominence velocities, have been investigated using a combination of two non-LTE techniques. The importance of the Doppler brightening and/or Doppler dimming effects is demonstrated for the lines of the Lyman and Balmer series.On leave from Wroclaw University Observatory, Poland.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

11.
The optical depth at the head of the Lyman continuum, H, is determined at a number of positions in three hedgerow prominences using spectroheliograms (5 × 5 resolution) of C III 977, LC 896, and O IV 554 observed with the Harvard experiment on Skylab. At heights greater than 10 above the limb the maximum value of H is 30 to 50, which occurs at the central part of the prominences. For one of the prominences the determination of H is found to be consistent with data from spectroheliograms of Mg X 625. The degree of ionization of hydrogen is estimated from the intensity of LC 896 at H 1. In the central part of a model prominence N P/N HI1.9 for a reasonable range of the electron densities, where N P and N HI are the proton density and the neutral hydrogen density, respectively.  相似文献   

12.
M. Waldmeier 《Solar physics》1973,28(2):389-398
The polar prominences are concentrated in a zone, which in the period between sunspot minimum and maximum is shifted from about 45° heliographic latitude towards the pole. Cycle No. 20 has shown an anomaly never observed before, as on the northern hemisphere two zones of polar prominences were formed, the second zone following the first one at an interval of 2.5 yrs. The activity in the polar zone is closely connected with that in the main zone. This connection is much tighter than for instance the one between the northern and the southern hemisphere. We therefore investigated whether the anomalous appearance of a second polar zone might be related to a corresponding anomaly in the main zone. Such an irregularity exists in the latitude variation in the main zone. Such a irregularity exists in the latitude variation of the sunspots. After a regular decrease in heliographic latitude up to mid-1969, the northern sunspot zone suddenly shifted by 2.5° towards higher latitudes in the second half of 1969. This jump of the spot zone coincides with the appearance of the secondary polar zone of prominences.Astronomische Mitteilungen der Eidgenössischen Sternwarte Zürich, Nr. 315.  相似文献   

13.
We assume the prominence (or flare) to be a rotating cylinder. For the two cases of the spin velocity being a constant and having a gradient, we calculate the profile of the Balmer lines and their variation from the centre of the prominence to the edge, and establish methods for finding the spin velocity from the inclination or shift of the lines and the velocity gradient from the curvature of the lines. These methods are then applied to the observed data of the ring flare of 1981 April 27.  相似文献   

14.
G. S. Choe  L. C. Lee 《Solar physics》1992,138(2):291-329
A numerical simulation is performed to investigate the prominence formation in a magnetic arcade by photospheric shearing motions. A two-and-a-half-dimensional magnetohydrodynamic (MHD) code is used, in which the gravitational force, radiative cooling, thermal conduction and a simplified form of coronal heating are included. It is found that a footpoint shear induces an expansion of the magnetic arcade and cooling of the plasma in it. Simultaneously the denser material from the lower part of the arcade is pulled up by the expanding field lines. A local enhancement of radiative cooling is thus effected, which leads to the onset of thermal instability and the condensation of coronal plasma. The condensed material grows vertically to form a sheet-like structure making dips on field lines, leading to the formation of the Kippenhahn- Schlüter type prominence. The mass of the prominence is found to be supplied not only by the condensation of the material in the vicinity but also by the siphon-type upflows. The upward growth of the vertical sheet-structure of the prominence is saturated at a certain stage and the newly condensed material is found to slide down from above the prominence along magnetic field lines. This drainage of material leads to the formation of an arc-shaped cavity of low density and low pressure around the prominence. The problem of force and heat balance is addressed and the prominence is found to be not in a static equilibrium but in a dynamic interaction with its environment.  相似文献   

15.
Fontenla  Juan Manuel  Rovira  Marta 《Solar physics》1983,85(1):141-156
Solar Physics - We present simplified models for the region where Lα is formed, in the boundary between prominences and corona. The models were calculated by solving the radiation transfer in...  相似文献   

16.
This paper presents the results of a study of the N-S asymmetry in sudden disappearances (SD) of solar prominences during solar cycles 18–21, obtained as a part of a more extensive research on SD and reappearances during years 1931–1985 (Ballester, 1984). As can be seen, the N-S SD asymmetry curve is not in phase with the solar cycle and peaks about the time of solar minimum, the asymmetry reverses in sign during the solar maximum, being, this change of sign, coincident with the reversal of the Sun's magnetic dipole. The SD asymmetry curve can be fitted by a sinusoidal function with a period of eleven years. On the other hand, the SD asymmetry curve shows a strong coincidence with the N-S asymmetries presented by other solar activity manifestations as studied by different authors.  相似文献   

17.
A normal-polarity prominence is modelled as a series of cool fibrils set in the hotter corona. Equations of magnetostatic equilibrium are solved and each fibril corresponds to a dip in the mgnetic field. The ratio of fibril width to interfibril spacing is dependent on the prominence-coronal temperature ratio and the ratio of plasma to magnetic pressure. The prominence mass is found to depend on the square of the magnetic field strength. When variations along the prominence are allowed in addition to those across the prominence, an apparently random pattern of fibrils results.  相似文献   

18.
A new method of analysing the emission spectrum of solar prominences is presented, in which the source function is allowed to vary with optical depth. Least-squares fitting of the observed profile determines simultaneously the optical depth τ0, the Doppler width ΔλD and the factor characterising the variation of the source function. This method is applied to the early Balmer lines in ten prominences of Ref. [1]. The results show that the source function of the self-reversed H line increases towards the centre of the prominence, the value at the centre is 1.2–2.5 times the value at the edge. Neglect of this variation will give too large values of τ0. The degree of attenuation by selfabsorption also depends on this variation. Discussion of the variation gives support to the view that the main exciting mechanism in solar prominences is the scattering of the incident radiation.  相似文献   

19.
Hildner  E. 《Solar physics》1974,35(1):123-136
We model the formation of solar quiescent prominences by solving numerically the non-linear, time-dependent, magnetohydrodynamic equations governing the condensation of the corona. A two-dimensional geometry is used. Gravitational and magnetic fields are included, but thermal conduction is neglected. The coronal fluid is assumed to cool by radiation and to be heated by the dissipation of mechanical energy carried by shock waves. A small, isobaric perturbation of the initial thermal and mechanical equilibrium is introduced and the fluid is allowed to relax. Because the corona with the given energy sources is thermally unstable, cooling and condensation result.When magnetic and gravitational fields are absent, condensation occurs isotropically with a strongly time-dependent growth rate, and achieves a density 18 times the initial density in 3.5 × 104 s. The rapidity of condensation is limited by hydrodynamical considerations, in contrast to the treatment of Raju (1968). When both magnetic and gravitational fields are included, the rate of condensation is inhibited and denser material falls.We conclude that: (1) condensation of coronal material due to thermal instability is possible if thermal conduction is inhibited; (2) hydrodynamical processes determine, in large part, the rate of condensation; (3) condensation can occur on a time scale compatible with the observed times of formation of quiescent prominences.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

20.
We have calculated the emission spectra of hydrogen and sodium atoms in the cool part of prominence models which satisfy simultaneously the constraints of radiative transfer, statistical equilibrium and charge-particle conservations.In the considered range of our model parameters, emission strengths of H and Nai D lines increase with the temperature and the total number density. Low-pressure models raise the ionization rate highly but yield very weak Nai D line intensities, since these model prominences contain small amounts of free electrons and sodium atoms which have a deep relation with the formation of sodium lines. We find that sodium D lines should be emitted in the high pressure region of prominences, and that their intensities are difficult to attain in the cool core of any model prominence with a temperature as low as 4000 K. In order to explain consistently the spectral emissions of H and Nai D lines observed in quiescent prominences, a total number density higher than 4 x 1011 cm-3 and a temperature over 5000 K are required at least in the cool part of prominences.Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 282.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号