首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using data from ground-based ionospheric sounding stations, we studied the morphologic features of the disturbance pattern of the electron concentration at the midlatitude F2-layer maximum (NmF2) in the period of a magnetic superstorm, which began on July 15, 2000. In the Southern (winter) Hemisphere in the latitudinal sector, where the main storm phase began after sunrise, negative NmF disturbances were observed at quite high midlatitudes both day and night; whereas large positive NmF disturbances took place at lower midlatitudes in nighttime hours. In the Northern (summer) Hemisphere at latitudes where the main storm phase occurred in the local evening, only long-term negative disturbances were observed in daytime and nighttime hours; whereas at latitudes where the main storm phase began in the afternoon, NmF2 experienced both negative and positive disturbances. Based on analysis of data of KOMPSAT-l, ROCSAT-1, DMSP F13, F14, and F15 satellites, we present clear arguments for the viewpoint of many authors that it is just the enhancement of the eastward electric field in the evening sector that led to formation of the large-scale trough in the nighttime low-latitude upper ionosphere. This field enhancement was due to penetration of the magnetospheric electric field to low latitudes, not to the dynamo action of the disturbed neutral wind. It is also shown that, due to equatorward expansion of the magnetospheric convection system during the main storm phase, the plasmapause and the main ionospheric trough were shifted to a magnetic latitude of 40° (L ∼ 1.7).  相似文献   

2.
Current theories of F-layer storms are discussed using numerical simulations with the Upper Atmosphere Model, a global self-consistent, time dependent numerical model of the thermosphere-ionosphere-plasmasphere-magnetosphere system including electrodynamical coupling effects. A case study of a moderate geomagnetic storm at low solar activity during the northern winter solstice exemplifies the complex storm phenomena. The study focuses on positive ionospheric storm effects in relation to thermospheric disturbances in general and thermospheric composition changes in particular. It investigates the dynamical effects of both neutral meridional winds and electric fields caused by the disturbance dynamo effect. The penetration of short-time electric fields of magnetospheric origin during storm intensification phases is shown for the first time in this model study. Comparisons of the calculated thermospheric composition changes with satellite observations of AE-C and ESRO-4 during storm time show a good agreement. The empirical MSISE90 model, however, is less consistent with the simulations. It does not show the equatorward propagation of the disturbances and predicts that they have a gentler latitudinal gradient. Both theoretical and experimental data reveal that although the ratio of [O]/[N2] at high latitudes decreases significantly during the magnetic storm compared with the quiet time level, at mid to low latitudes it does not increase (at fixed altitudes) above the quiet reference level. Meanwhile, the ionospheric storm is positive there. We conclude that the positive phase of the ionospheric storm is mainly due to uplifting of ionospheric F2-region plasma at mid latitudes and its equatorward movement at low latitudes along geomagnetic field lines caused by large-scale neutral wind circulation and the passage of travelling atmospheric disturbances (TADs). The calculated zonal electric field disturbances also help to create the positive ionospheric disturbances both at middle and low latitudes. Minor contributions arise from the general density enhancement of all constituents during geomagnetic storms, which favours ion production processes above ion losses at fixed height under day-light conditions.  相似文献   

3.
The paper presents the results of studying anomalous variations in the total electron content (TEC) of the ionosphere as probable precursors of strong seismic events. The vertical drift of the F2 layer’s ionospheric plasma under the effect of seismically generated zonal electric field is considered as a likely reason for the observed variations in the TEC. An estimation of this drift effects is made by mathematical simulation utilizing the global numerical model of the Earth’s upper atmosphere (UAM). Midlatitude ionospheric effects were simulated. Two types of seismogenerated electric fields (dipole and monopole) were used with various magnitudes and spatial configurations. The derived results were compared with the TEC data of GPS observations from the IGS for the Kitira earthquake in southern Greece (January 8, 2006; M 6.8). It was shown that variations generated by additional sources of the dipole type are consistent with the observed data; monopole-type sources did not reproduce some typical peculiarities of these observations and systematically underestimated the deviation value.  相似文献   

4.
Substantial increases of the F2 region peak electron density several hours to a day before the geomagnetic storm onset, the so-called pre-storm enhancements, belong to still not clear and hardly predictable features of the ionospheric disturbances. This paper presents analysis of the pre-storm enhancements observed at middle latitudes for 15 storms out of 65 strong-to-severe geomagnetic storms of the period 1995–2005. All 15 events were accompanied by significant (>20%) increases of foF2 before the storm onset over European area. We focus on the longitudinal extent and height profile of the pre-storm enhancements, particularly on their effects on the F1 and E regions of the ionosphere. Possible origin of such enhancements is also partly discussed. We observe no systematic effect of pre-storm enhancements of foF2 in electron density profiles in the F1 region. The E region (foE) appears to be insensitive to pre-storm enhancements. We find the pre-storm enhancements to be confined to the F2 region. The longitudinal extent of the pre-storm enhancements seems to be 120–240° based on comparison of simultaneous foF2 measurements in Europe, northern USA, and Eastern Asia.  相似文献   

5.
An investigation of the response of the mid-high, mid and low latitude critical frequency foF2 to the geomagnetic storm of 15 July 2000 is made. Ground-based hourly foF2 values (proportional to square root of peak electron density of F2-layer) from four chains of ionospheric stations located in the geographic longitude ranges 10°W–35°E, 60°E–120°E, 130°E–170°E, 250°E–295°E are used. Relative deviations of foF2 are considered. The main ionospheric effects for the considered storm are: long-duration negative disturbances at mid-high latitudes in summer hemisphere in sectors where the storm onset occurred in the afternoon/night-time hours; short-duration positive disturbances in the summer hemisphere at mid-high latitudes in the pre-sunset hours during the end of main phase-first stage of the recovery; small and irregular negative disturbances in the low latitude winter hemisphere which predominate during the main phase and first part of the recovery, and positive disturbances in both hemispheres at mid-high and mid latitudes prior to the storm onset irrespective of the local time. In addition, the validity of some physical mechanisms proposed to explain the F2 region behaviour during disturbed conditions is considered. gus-mansilla@hotmail.com  相似文献   

6.
We consider data obtained when the parameters of the ionospheric Es and F2 layers and the vertical gradient of the electric potential in the surface atmosphere were simultaneously measured during the preparatory period of crustal earthquakes with M = 5.0–6.2 in the Kamchatka region. The appearance of anomalously high Es, accompanied by an increase in frequency parameters of the sporadic layer and the regular F2 layer, was detected on days when possible earthquake precursors, as determined earlier, occurred in atmospheric electric fields. The presumed earthquake precursors in the ionosphere are divided into two groups with different earthquake lead times ranging from several hours to two weeks. Empirical dependences are presented that connect the lead time of an earthquake (from the moment of the appropriate anomaly’s occurrence in the ionosphere or in the atmospheric electric field to the moment of the shock) and the epicentral distance to the observation point with the earthquake magnitude. These dependences are different for the two groups of presumed earthquake precursors, but they are close inside each group of possible precursors selected on the basis of quasistatic electric field measurements and revealed in ionospheric parameter variations.  相似文献   

7.
暴时低纬电离层不规则体响应特征的多手段观测   总被引:4,自引:2,他引:2       下载免费PDF全文
2010年10月11日发生了一次中等强度的磁暴.本文利用三亚(18.4°N,109.6°E)数字测高仪、VHF雷达和GPS TEC/闪烁监测仪数据以及120°E子午线附近我国漠河(53.5°N,122.4°E)、北京(40.3°N,116.2°E)和武汉(30.6°N,114.4°E)的数字测高仪和GPS TEC/闪烁监测仪数据,分析了磁暴期间我国中低纬地区电离层不规则体的响应特征.结果表明:这次磁暴触发了10月11日午夜前后两个时段低纬(三亚)电离层不规则体事件,而在较高的纬度地区(武汉及以北),并没有观测到电离层不规则体与闪烁.在午夜前,电离层不规则体的发生受磁暴主相期间快速穿透电场激发;在午夜后,电离层不规则体受磁暴恢复相的扰动发电机电场触发,该时段伴随行星际磁场北向翻转的过屏蔽穿透电场也可能是扰动源之一.此外,磁暴期间不同尺度的电离层不规则体会伴随发生.  相似文献   

8.
Variations in the geomagnetic and electric fields and variations of the total electron content (TEC) of the ionosphere recorded in the Baikal Rift Zone (BRZ) during the expeditions in 2009 and 2010 are analyzed. Synchronous bursts in the geomagnetic field on the ground and in the ionosphere, which are caused by propagation of electromagnetic disturbances (spherics) generated by the remote lightning discharges, are revealed. The analysis of the occurrence frequency of the electromagnetic disturbances at an altitude of ∼700 km shows that there is a preferred region of predominant propagation of these disturbances from the Earth-ionosphere waveguide to the upper ionosphere. When the ionospheric penetration point moves through this preferred region, the frequency spectrum of TEC variations changes, and the northern boundary of the region of spectral alteration is located at ∼54°N. The bursts in TEC that map on the zones of the main faults in the Tunka valley are identified. The results probably suggest a relation between the electromagnetic phenomena in the ionosphere and the structures in the lithosphere.  相似文献   

9.
Regular measurements of the atmospheric electric field made at Vostok Station (φ=78.45°S; λ=106.87°E, elevation 3500 m) in Antarctica demonstrate that extremely intense electric fields (1000–5000 V/m) can be observed during snow storms. Usually the measured value of the atmospheric electric field at Vostok is about 100–250 V/m during periods with “fair weather” conditions. Actual relation between near-surface electric fields and ionospheric electric fields remain to be a controversial problem. Some people claimed that these intense electric fields produced by snowstorms or appearing before strong earthquakes can re-distribute electric potential in the ionosphere at the heights up to 300 km. We investigated interrelation between the atmospheric and ionospheric electric fields by both experimental and theoretical methods. Our conclusion is that increased near-surface atmospheric electric fields do not contribute notably to distribution of ionospheric electric potential.  相似文献   

10.
The synchronous observations of strong electric fields and large-scale undulations observed on December 12, 2004, in the evening sector of the diffuse auroral zone 0900-1000 UT (~1700-1800 MLT) have been analyzed. The appearance of strong northward electric field at ~0900 UT was almost simultaneously registered at Tixie Bay ionospheric station (71.6° N, 128.9° E, L =, 5.6) and on the DMSP F15 satellite. At 0910-1000 UT, the all-sky TV camera at Tixie Bay and the DMSP satellites (F13, F14, and F15) registered eight undulations propagating westward at a velocity of 0.7—0.8 km/s. The undulation parameters registered during the TV observations agree with the satellite measurements. The distinctive feature of the analyzed event consists in that an intense electric field and undulations were localized within the diffuse zone in the region of increased precipitation of keV electrons. A comparison of the ground-based and satellite measurements made it possible to draw the conclusion on the necessary conditions for formation of diffuse undulations.  相似文献   

11.
An exceptionally long total solar eclipse occurred over the Yangtze River Basin in the mid-latitudes of China on 22 July 2009. The moon’s umbral shadow crossed through the ionospheric equatorial anomaly region. During the solar eclipse, new ionospheric behaviors were observed using a multi-station sounding approach. These new phenomena include: (1) visible Doppler spreading of F layer echoes at multiple group distances during the solar eclipse period, (2) strong ionospheric response near the peak of the northern equatorial anomaly crest and (3) synchronous oscillations in the Es and F layer during the recovery phase of the solar eclipse.  相似文献   

12.
A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V × Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.  相似文献   

13.
不同地磁扰动事件期间全球电离层的扰动形态分析   总被引:4,自引:4,他引:4       下载免费PDF全文
利用全球电离层台站提供的观测数据,分析 了5次不 同类型磁暴事件期间全球电离层F2层f0F2和hmF2的扰动变化. 主要结果 表明:对于延迟型主相磁暴S(C)和S(E),中高纬电离层首先会出现明显的正相扰动,随 后是明显延迟的负相扰动,负相扰动覆盖范围广,甚至扩展到低纬区, 且持续时间很长, 恢 复及其缓慢,其中S(C)型的扰动更为明显; 对于非延迟型主相磁暴S(A)、S(B)和 S(D ),高纬电离层正相扰动持续时间较短甚至不出现,中高纬电离层负相扰动的出现、发展和 恢复也相对较快; 磁暴主相强度的大小会对电离层负相扰动的强度、发展和持续时间产生一 定的影响; 高纬电离层扰动在非延迟型主相磁暴恢复相期间会出现明显的地方时效应,地方 时效应随纬度的降低而增强,并且会明显影响到中低纬电离层的扰动;电离层扰动从高纬到 低纬的变化趋势为:f0F2的扰动由负相向正相转化,hmF2的增加由全天出现趋向于只存在于夜间,反映了不同扰动物理机制的作用.  相似文献   

14.
The relationship between electric fields, height-integrated conductivities and electric currents in the high-latitude nightside electrojet region is known to be complex. The tristatic nature of the EISCAT UHF radar facility provides an excellent means of exploring this interrelationship as it enables simultaneous estimates to be made of the full electric field vector and the ionospheric Hall and Pedersen conductances, further allowing the determination of both field-perpendicular electric current components. Over 1300 h of common programme observations by the UHF radar system provide the basis of a statistical study of electric fields, conductances and currents in the high-latitude ionosphere, from which preliminary results are presented. Times at which there is significant solar contribution to the ionospheric conductances have been excluded by limiting the observations according to solar zenith angle. Initial results indicate that, in general, the times of peak conductance, identified from the entire set of EISCAT observations, do not correspond to the times of the largest electric field values; the relative contribution of ionospheric conductance and electric field to the electrojet currents therefore depends critically on local time, a conclusion which corroborates work by previous authors. Simultaneous measurements confirm a tendency for a decrease in both Hall and Pedersen conductances to be accompanied by an increase in the electric field, at least for moderate and large electric field value, a tendency which is also identified to some extent in the ratio of the conductances, which acts as an indicator of the energy of precipitating particles.  相似文献   

15.
An updated version of the equivalent circuit model for simulating the ionospheric dynamo process is described. The contributions of the E and F regions to the flux tube integrated conductivities are compared. The results confirm that the ionospheric electric process is controlled by the E region during daytime but by the F region during nighttime. The F region has a larger effect on the dynamo processes during solar maximum than at solar minimum, and during equinox than in solstice.  相似文献   

16.
Narrow jets of rapid westward ion drifts were registered near the plasmapause projection at the F-region altitudes on the Cosmoc-184 satellite and were called “a polarization jet.” In this work, the effect of this polarization jet on the ionospheric structure has been studied, using a three-dimensional model of the high-latitude ionosphere, when strong local magnetospheric electric fields were originated. The calculations indicated that a narrow trough in the latitudinal variations in the electron density at the F-region maximum was formed in the zone where the electric field was switched on. This trough was more pronounced in the early evening hours, when the electron background density was still high, and was less distinct at low back-ground levels during premidnight hours. A comparison of the calculations and experimental data indicated that they were in good agreement with one another, which made it possible to state that the polarization jet was the main mechanism by which narrow electron density troughs were formed in the subauroral ionosphere.  相似文献   

17.
电离层电场的半年变化对F2区峰值电子浓度的影响   总被引:4,自引:2,他引:2       下载免费PDF全文
利用一个电离层理论模式,模拟了太阳活动低年、地磁宁静情况下,中低纬和赤道地区电离层F2区峰值电子浓度(NmF2)的半年变化规律,重点讨论了电离层电场对NmF2半年变化的影响.模拟结果表明,当输入的电场没有周年和半年变化时,磁赤道地区电离层NmF2本身就具有一定的半年变化特征,而在稍高的纬度上,NmF2半年变化的强度较弱.当输入的电场具有一定的半年变化时,电离层NmF2的半年变化强度有明显的改变,且这种改变随地方时和地磁纬度不同有明显的差别.在地磁赤道附近的电离层赤道槽地区,从上午到午夜的时间内,具有半年变化的电场对电离层NmF2半年变化的强度是减弱的作用,在其他的时间内,电场对电离层NmF2半年变化强度是加强的作用.而在稍高纬度的电离层驼峰地区,情况明显不同.从上午一直到翌日日出前,具有半年变化的电场对电离层NmF2半年变化的幅度都是加强的作用.在其他的时间内,电场对电离层NmF2半年变化的幅度是减弱的作用.同时,研究表明电离层电场对NmF2半年变化的作用和“赤道喷泉”现象强烈相关.  相似文献   

18.
An investigation involving nonlinear numerical simulation has been undertaken based on the observations of two events involving the reversal of nighttime zonal electric field to eastward direction over equatorial region due to the overshielding effect associated with interplanetary electric field. In one of the events, the ionospheric alterations brought forth by the prompt penetration event lead to the triggering of an equatorial spread F (ESF) event around 2040 IST and a plume structure during pre-midnight hours due to overshielding effect. In another observation, the ESF was found to be absent. The two-dimensional modeling investigation revealed that the storm-induced eastward electric field during nighttime over equatorial region is a necessary but not a sufficient condition for the development of the pre-midnight plume structure in the lower F-region altitude. The large scale size (240 km) perturbation amplitude of 5% is found to be insufficient for the development of late night plume event within 2000 s. A pre-seed in varying degrees in a localized altitude region depending upon the background ionospheric conditions, is found to be required for the development of the pre-midnight plume event. The confined ESF irregularities developed in the post-evening hours in a limited altitude range are suggested to provide such seed perturbation. The importance of the pre-seeded structure for the development of pre-midnight plume event is brought out from this investigation. The roles of the electron density scale length and the peak height of the F layer in deciding the required amplitudes of perturbation are also evaluated. This, in turn, can throw light on the night-to-night variability of storm-time ESF when a typical eastward perturbation electric field is operative during pre-midnight hours. The role of off-equatorial E region conductivity is also discussed.  相似文献   

19.
2006年4月13~17日西太平洋地区电离层暴时特性研究   总被引:2,自引:0,他引:2       下载免费PDF全文
本文利用西太平洋地区的15个电离层台站的测高仪数据和国际GPS服务中心IGS 36个站提供的TEC数据,以及由美国喷气推进动力学实验室提供的Jason 1 TEC数据对2006年4月13~17日间一次由冕洞高速流所引发的磁暴所造成的电离层效应进行了分析.分析结果表明这次电离层暴呈现出显著的纬度效应,foF2和TEC等参量显示在磁暴主相期间对称分布的强正暴效应中心在磁纬±30°~±40°,且持续时间超过12 h.负暴效应被限制在中高纬地区,在磁暴进入恢复相时,开始向低纬渗透,且具有明显的地方时效应.TIMIED卫星测量的Σ[O/N2]显示磁暴发生后,暴时环流使得中低纬地区的Σ[O/N2]有大幅增加,而中高纬地区则显著下降.通过对hmF2的分析发现磁暴主相期间,有磁层电场向中低纬地区穿透,且持续时间较长为1~3 h.因此这次强正暴效应可能是由风场、电场和化学成分这三个因素的共同作用造成的.这次磁暴造成的电离层暴响应非常复杂,对造成各种正负暴的物理和化学机制还需要进一步的研究.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号