首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《地学前缘(英文版)》2020,11(5):1727-1742
Identifying the crust-mantle interactions in association with the evolution of the Precambrian microcontinents provides critical constraints on the accretionary evolution in the Central Asian Orogenic Belt(CAOB).The Bainaimiao arc terrane(BAT) is one of the most important Precambrian microcontinents in southeastern CAOB,however,few studies have paid attention to the types and the evolving processes of the crust-mantle interactions that occurred before its final accretion onto the northern North China Craton.This study presents an integrated study of geochronology,zircon Hf isotope and whole-rock geochemistry on the latest Neoproterozoic diabases and the Early Paleozoic arc intrusions in the western BAT.The latest Neoproterozoic(ca.546 Ma) diabases display low SiO_2(46.52-49.24 wt.%) with high MgO(8.23-14.41 wt.%),Cr(66-542 ppm) and Ni(50-129 ppm),consisting with mantle origin.Their highly negative zircon ε_(Hf)(t)(-12.0 to-24.7) and high Fe/Mn ratios(62.1-81.7)further indicate a significantly enriched mantle source.Considering that the BAT maybe initially separated from the Tarim Craton with a thickened crustal root,we propose that these diabases were generated through partial melting of an enriched lithospheric mantle source that had been hybridized by lower-crustal eclogites during foundering of the BAT lower crust.The Early Paleozoic(ca.475-417 Ma) arc intrusions in western BAT can be divided into Periods Ⅰ and Ⅱ at approximately 450 Ma.The Period Ⅰ(450 Ma) intrusions contain abundant mafic minerals like hornblende and pyroxene,and show positive zircon ε_(Hf)(t)(+1.5 to+10.9).They are predominantly medium-K calc-alkaline with broad correlations of SiO2 versus various major and trace elements,which correlate well with the experimental melts produced by the fractional crystallization of primitive hydrous arc magmas at 7 kbar.We assume they were formed through mid-crustal differentiation of the mantle wedge-derived hydrous basaltic melts.By contrast,the Period Ⅱ(≤450 Ma) intrusions are characterized by variable zircon e_(Hf)(t)(-15.0 to+11.5) with irregular variations in most major and trace elements,which are more akin to the arc magmas generated in an open system.The general occurrence of elder inherited zircons,along with the relatively high Mg#(45) of some samples,call upon a derivation from the reworking of the previously subduction-modified BAT lower crust with the input of mantle-derived mafic components.In combination with the Early Paleozoic tectonic melanges flanking western BAT,we infer that the compositional transition from Period Ⅰ to Ⅱ can be attributed to the tectonic transition from south-dipping subduction of Solonker ocean to north-dipping subduction of South Bainaimiao ocean in southeastern CAOB.The above results shed light not only on the latest Neoproterozoic to Early Paleozoic multiple crust-mantle interactions in western BAT,but also on the associated crustal construction processes before the final arc-continent accretion.  相似文献   

2.
中亚造山带东段位于西伯利亚和华北克拉通之间,经历了多构造体系叠加和多旋回洋陆转换的复杂演化过程,目前大量研究均以构造带为核心来限定区域构造格局,但一直争议较大。本文以构造单元的构造属性及其形成过程为主线,结合区域构造带演化,重新厘定了中国东北地区基本构造格局,建立了中国东北山弯构造演化模型。研究表明,古生代时期中国东北地区的主要构造单元由两个具前寒武纪基底的古老地块——额尔古纳地块和佳木斯地块及其张广才岭陆缘弧与两个古生代增生地体——兴安增生地体和松辽增生地体组成,其间由古亚洲洋分支新林- 喜桂图洋、贺根山- 嫩江洋、龙凤山洋和索伦洋分割。早古生代,西部额尔古纳地块东南部为西太平洋型活动陆缘,发育有嘎仙- 吉峰- 环宇洋内弧和头道桥等洋岛,~500 Ma随着新林- 喜桂图洋的关闭,这些洋内弧和洋岛拼贴增生至额尔古纳地块东南缘。随后贺根山- 嫩江洋的俯冲和后撤形成了一系列沟- 弧- 盆体系,持续的俯冲导致弧陆碰撞和陆缘增生,形成兴安增生地体的主体。同时,东部佳木斯地块西侧发育有龙凤山洋的安第斯型俯冲活动陆缘,形成了张广才岭陆缘弧。伴随着各大洋的俯冲和陆缘增生,额尔古纳地块和佳木斯地块以及它们的陆缘增生带构成了一个早古生代近东西向展布的地块链。南部以锡林浩特- 龙江微地块为核心发生陆缘俯冲,形成松辽增生地体雏形。索伦洋发生双向俯冲,并通过弧陆碰撞产生陆缘增生。晚古生代,伴随着古亚洲洋的北向俯冲和后撤,早期形成的地块链逐渐发生向南弯曲。二叠纪末期—中三叠世古亚洲洋俯冲消减闭合以及西北部蒙古- 鄂霍茨克洋和东部泛大洋的俯冲挤压,导致地块链进一步弯曲,同时,早期的古老地块、增生地体、弧岩浆岩、沉积建造等发生汇聚,最终形成一个以额尔古纳地块和兴安增生地体为西翼,佳木斯地块和张广才岭陆缘弧为东翼,松辽增生地体为核心的大规模山弯构造——中国东北山弯构造。  相似文献   

3.
Revision of crustal architecture and evolution of the Central Asian Orogenic Supercollage (CAOS) between the breakup of Rodinia and assembly of Pangea shows that its internal pattern cannot be explained via a split of metamorphic terranes from and formation of juvenile magmatic arcs near the East European and Siberian cratons, followed by zone-parallel complex duplication and oroclinal bending of just one or two magmatic arcs/subduction zones against the rotating cratons. Also, it cannot be explained by breakup of multiple cratonic terranes and associated magmatic arcs from Gondwana and their drift across the Paleoasian Ocean towards Siberia. Instead, remnants of early Neoproterozoic oceanic lithosphere at the southern, western and northern periphery of the Siberian craton, as well as Neoproterozoic arc magmatism in terranes, now located in the middle of the CAOS, suggest oceanic spreading and subduction between Eastern Europe and Siberia even before the breakup of Rodinia at 740–720 Ma. Some Precambrian terranes in the western CAOS and Alai-Tarim-North China might have acted as a bridge between Eastern Europe and Siberia.The CAOS evolution can be rather explained by multiple regroupings of old and juvenile crust in eastern Rodinia in response to: 1) 1000–740 Ma propagation of the Taimyr-Paleoasian oceanic spreading centres between Siberian and East European cratons towards Alai-Tarim-North China; 2) 665–540 Ma opening and expansion of the Mongol-Okhotsk Ocean, collision of Siberian and East European cratons with formation of the Timanides and tectonic isolation of the Paleoasian Ocean; 3) 520–450 Ma propagation of the Dzhalair-Naiman and then Transurals-Turkestan oceanic spreading centres, possibly from the Paleotethys Ocean, between Eastern Europe and Alai-Tarim, essentially rearranging all CAOS terranes into a more or less present layout; and 4) middle to late Paleozoic expansion of the Paleotethys Ocean and collision of Alai-Tarim-North China cratons with CAOS terranes and Siberian craton to form the North Asian Paleoplate prior to its collision with Eastern Europe along the Urals to form Laurasia. Two to five subduction zones, some stable long-term and some short-living or radically reorganized in time, can be restored in the CAOS during different phases of its evolution.  相似文献   

4.
The timing and thermal effects of granitoid intrusions into accreted sedimentary rocks are important for understanding the growth process of continental crust. In this study, the petrology and geochronology of pelitic gneisses in the Tseel area of the Tseel terrane, SW Mongolia, are examined to understand the relationship between igneous activity and metamorphism during crustal evolution in the Central Asian Orogenic Belt (CAOB). Four mineral zones are recognized on the basis of progressive changes in the mineral assemblages in the pelitic gneisses, namely: the garnet, staurolite, sillimanite and cordierite zones. The gneisses with high metamorphic grades (i.e. sillimanite and cordierite zones) occur in the central part of the Tseel area, where granitoids are abundant. To the north and south of these granitoids, the metamorphic grade shows a gradual decrease. The composition of garnet in the pelitic gneisses varies systematically across the mineral zones, from grossular‐rich garnet in the garnet zone to zoned garnet with grossular‐rich cores and pyrope‐rich rims in the staurolite zone, and pyrope‐rich garnet in the sillimanite and cordierite zones. Thermobarometric analyses of individual garnet crystals reveal two main stages of metamorphism: (i) a high‐P and low‐T stage (as recorded by garnet in the garnet zone and garnet cores in the staurolite zone) at 520–580 °C and 4.5–7 kbar in the kyanite stability field and (ii) a low‐P and high‐T stage (garnet rims in the staurolite zone and garnet in the sillimanite and cordierite zones) at 570–680 °C and 3.0–6.0 kbar in the sillimanite stability field. The earlier high‐P metamorphism resulted in the growth of kyanite in quartz veins within the staurolite and sillimanite zones. The U–Pb zircon ages of pelitic gneisses and granitoids reveal that (i) the protolith (igneous) age of the pelitic gneisses is c. 510 Ma; (ii) the low‐P and high‐T metamorphism occurred at 377 ± 30 Ma; and (iii) this metamorphic stage was coeval with granitoid intrusion at 385 ± 7 Ma. The age of the earlier low‐T and high‐P metamorphism is not clearly recorded in the zircon, but probably corresponds to small age peaks at 450–400 Ma. The low‐P and high‐T metamorphism continued for c. 100 Ma, which is longer than the active period of a single granitoid body. These findings indicate that an elevation of geotherm and a transition from high‐P and low‐T to low‐P and high‐T metamorphism occurred, associated with continuous emplacement of several granitoids, during the crustal evolution in the Devonian CAOB.  相似文献   

5.
中国东北地区蛇绿岩   总被引:2,自引:10,他引:2  
我国东北地区位于中亚造山带的东段,经历了复杂的增生造山过程,其所属微陆块的基底属性及拼贴位置、洋-陆转换一直是地学界研究的热点。根据近年来的研究进展,我们将东北地区微陆块划分为额尔古纳地块、兴安增生地体、松嫩-锡林浩特地块和佳木斯地块。同时综述了东北地区蛇绿岩/蛇绿混杂岩带的时空分布、年代学及地球化学的新资料,讨论了其构造背景及俯冲-增生过程。东北地区增生造山不仅涉及古亚洲洋和古太平洋,还可能与泛大洋有关,包括早奥陶世-晚三叠世古亚洲洋主洋盆及古亚洲洋分支——新元古代-晚寒武世新林-喜桂图洋、早寒武世-晚石炭世嫩江洋、新元古代-晚志留世黑龙江洋和晚二叠世-中侏罗世牡丹江洋的演化。早石炭世末-晚石炭世初,东北地区古亚洲洋分支洋盆全部闭合,所有微陆块完成聚合形成统一的东北陆块群。晚二叠世-早三叠世时期,古亚洲洋主洋盆沿索伦-西拉木伦-长春-延吉缝合带自西向东从早到晚以剪刀式最终闭合,完成东北陆块群与华北板块的拼接。晚三叠世-早侏罗世时期古太平洋板块俯冲启动,东北地区进入古太平洋俯冲增生构造体系。  相似文献   

6.
The Central Asian Orogenic Belt (CAOB) was produced as a consequence of the successive closure of the Paleoasian Ocean and the accretion of structures formed within it (island arcs, oceanic islands, and backarc basins) to the Siberian continent. The belt started developing in the latest Late Neoproterozoic, and this process terminated in the latest Permian in response to the collision of the Siberian and North China continents that resulted in closure of the Paleoasian ocean (Metcalfe, 2006; Li et al., 2014; Liu et al., 2009; Xiao et al., 2010; Didenko et al., 2010). Throughout the whole evolutionary history of this Orogenic Belt, a leading role in its evolution was played by convergent processes. Along with these processes, an important contribution to the evolution of the composition and structure of the crust in the belt was made by deep geodynamic processes related to the activity of mantle plumes.Indicator complexes of the activity of mantle plumes are identified, and their major distribution patterns in CAOB structures are determined. A number of epochs and areas of intraplate magmatism are distinguished, including the Neoproterozoic one (Rodinia breakup and the origin of alkaline rock belt in the marginal part of the Siberian craton); Neoproterozoic–Early Cambrian (origin of oceanic islands in the Paleoasian Ocean); Late Cambrian–Early Ordovician (origin of LIP within the region of Early Caledonian structures in CAOB); Middle Paleozoic (origin of LIP in the Altai–Sayan rift system); Late Paleozoic–Early Mesozoic (origin of the Tarim flood-basalt province, Central Asian rift system, and a number of related zonal magmatic areas); Late Mesozoic–Cenozoic (origin of continental volcanic areas in Central Asia).Geochemical and isotopic characteristics are determined for magmatic complexes that are indicator complexes for areas of intraplate magmatism of various age, and their major evolutionary trends are discussed. Available data indicate that mantle plumes practically did not cease to affect crustal growth and transformations in CAOB in relation to the migration of the Siberian continent throughout the whole time span when the belt was formed above a cluster of hotspots, which is compared with the African superplume.  相似文献   

7.
《China Geology》2022,5(4):555-578
The eastern Central Asian Orogenic Belt (CAOB) in NE China is a key area for investigating continental growth. However, the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood. NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts. The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities, respectively. In contrast, the Xing ’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes. These blocks and terranes were separated by the Xinlin-Xiguitu, Heilongjiang, Nenjiang, and Solonker oceans from north to south, and these oceans closed during the Cambrian (ca. 500 Ma), Late Silurian (ca. 420 Ma), early Late Carboniferous (ca. 320 Ma), and Late Permian to Middle Triassic (260 –240 Ma), respectively, forming the Xinlin-Xiguitu, Mudanjiang-Yilan, Hegenshan-Heihe, Solonker-Linxi, and Changchun-Yanji suture zones. Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean (PAO), namely, the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans. The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west. The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south. The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner. A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO, which led to “soft collision” of tectonic units on each side, forming huge accretionary orogenic belts in central Asia.©2022 China Geology Editorial Office.  相似文献   

8.
The Olkhon terrane is a part of the Early Palaeozoic accretionary-collisional system in the northern Central Asian Orogenic Belt (CAOB). The terrane was produced by an Ordovician collision as a collage of numerous chaotically mixed tectonic units composed of rock complexes of different ages originated in different tectonic settings. The pre-collisional history of the terrane is deciphered using new data on zircon ages and chemistry of rocks from several complexes. The oldest Olkhon rocks are the 1.87–1.83 Ga granulite and gneissic granites of the Kaltygey complex, which is an exotic Palaeoproterozoic tectonic slice. The next age group consists of the Ust-Zunduk orthogneisses (807 ± 9 Ma) and the Orso amphibolites and gneisses (792 ± 10 and 844 ± 6 Ma). Samples of both complexes have negative εNd(t) values. The Ust-Zunduk and Orso complexes can have formed in active margins of continents or in crustal blocks other than southern Siberia. The Ediacaran subduction-related rocks of the Olkhon complex may have formed in an island arc setting within the Palаeo-Asian Ocean (PAO). The protolith of schists after volcanic rocks has an age of 637 ± 4 Ma and shows positive ɛNd(t) values. The Ediacaran/Cambrian Tonta mafic granulites (ca.545 Ma), with OIB affinity and slightly positive ɛNd(t), were derived from an enriched mantle source and may represent a fragment of an oceanic island. The Cambrian Shebarta gneisses after continental-arc greywackes with negative ɛNd(t) values were deposited in a back-arc basin of a microcontinent within the PAO, between 530 and 500 Ма. The Cambrian Birkhin metamorphics after PAO mature island-arc rocks have U-Pb ages of ca. 500–490 Ma and positive ɛNd(t) values. All pre-collisional complexes in the Olkhon terrane have their analogues among the rocks formed during main events in the northern CAOB history. Thus the reconstructed milestones in the Olkhon terrane history appear to be an echo of events in the CAOB northern segment.  相似文献   

9.
10.
The Yili Block is one of the Precambrian microcontinents dispersed in the Central Asian Orogenic Belt (CAOB). Detrital zircon U–Pb ages and Hf isotopic data of Neoproterozoic meta-sedimentary rocks (the Wenquan Group) are presented to constrain the tectonic affinity and early history of the Yili Block. The dating of detrital zircons indicates that both the lower and upper Wenquan Groups have two major populations with ages at 950–880 Ma and 1600–1370 Ma. Moreover, the upper Wenquan Group has two minor populations at ~ 1100 Ma and 1850–1720 Ma. According to the youngest age peaks of meta-sedimentary rocks and the ages of related granitoids, the lower Wenquan Group is considered to have been deposited during the early Neoproterozoic (900–845 Ma), whereas the upper Wenquan Group was deposited at 880–857 Ma. The zircon εHf (t) values suggest that the 1.85–1.72 Ga source rocks for the upper Wenquan Group were dominated by juvenile crustal material, whereas those for the lower Wenquan Group involved more ancient crustal material. For the 1.60–1.37 Ga source rocks, however, juvenile material was a significant input into both the upper and lower Wenquan Groups. Therefore, two synchronous crustal growth and reworking events were identified in the northern Yili Block at ca. 1.8–1.7 Ga and 1.6–1.3 Ga, respectively. After the last growth and reworking event, continuous crustal reworking took place in the northern Yili Block until the early Neoproterozoic. Comparing the age patterns and Hf isotopic compositions of detrital zircons from the Yili Block and the surrounding tectonic units indicates that the Yili Block has a close tectonic affinity to the Chinese Central Tianshan Block in the Precambrian. The Precambrian crustal evolution of the Yili Block is distinct from that of the Siberian, North China and Tarim Cratons. Such difference therefore suggests that the Yili Block and the Chinese Central Tianshan Block may have been united in an isolated Precambrian microcontinent within the CAOB rather than representing two different blocks rifted from old cratons on both sides of the Paleo-Asian Ocean.  相似文献   

11.
The Qinling Orogenic Belt (QOB) located between the North China Craton (NCC) and the Yangtze Craton (YZC) is composed of the North Qinling Belt (NQB), the South Qinling Belt (SQB) and the northern margin of the YZC. Detailed geological and geochronological investigations have revealed distinct Neoproterozoic blocks of various scales in the middle and western segments of the SQB, including the Madao block (MDB), Mihunzhen intrusion (MHI), Zhenggou block (ZGB), and Lengshuigou block (LSB) which constitute an east-west trending Neoproterozoic uplift zone of the basement continental blocks. These blocks are mainly composed of four lithological groups. Group #1 consists mainly of diorites in the LSB, the zircons from which yield a weighted mean 206Pb/ 238U age of ca. 941 Ma. Group #2 is chiefly composed of hornblende gabbros and diorites in the MHI and LSB, which were formed at ca. 885 Ma. Group #3 comprises massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites in the MDB, MHI, ZGB and LSB, which were emplaced during ca. 785–740 Ma. Group #4 is composed of hornblende gabbros with an emplacement age of ca. 667 Ma in the ZGB.Detailed whole-rock geochemical and zircon Hf isotopic studies reveal the following: (1) The diorites of Group #1 were produced by partial melting of depleted mantle which was enriched by slab-derived melts, with the parental magmas contaminated by crustal materials. (2) The gabbros of Group #2 were derived from the partial melting of depleted mantle enriched by slab-derived melts and the diorites are the fractional crystallization products of the gabbroic magmas. (3) Group #3 which can be further sub-divided based on lithological assemblages and zircon Hf isotopic features into two subgroups, one representing massive diorites, quartz diorite, tonalites, granodiorites, and monzogranites (DTGMs) and the other composed of gneissic quartz diorites and granodiorites. Among these, the DTGMs were derived through magma mixing between melts derived from the depleted mantle wedge altered by slab-derived fluids and melts from juvenile sources, which subsequently underwent amphibole-dominated fractionation, whereas the gneissic granitoids formed through partial melting of thickened lower crust contaminated by depleted mantle melts. (4) The gabbros of Group #4 originated from a depleted lithospheric mantle that was enriched by slab-derived melts and fluids with contribution of asthenospheric mantle-derived materials. In conjunction with data from previous studies on the Neoproterozoic blocks in the SQB and basement blocks in the northern margin of the YZC, our new geological, geochronological and geochemical data suggest a large Neoproterozoic uplift zone in the SQB, which was destructed by Paleozoic to Mesozoic magmatism and deformation. The Neoproterozoic uplift zone of the SQB might have been separated from the northern margin of the YZC during the formation of the Mianlue Ocean, and might have evolved under an active continental margin setting and subsequent continental rift setting accompanied by significant crustal growth. The magmatism also resulted in the formation of important Neoproterozoic ore deposits and supplied the material sources for some of the major Mesozoic ore deposits.  相似文献   

12.
Although the Phanerozoic geology of the Central Asian Orogenic Belt is extensively studied, there is still much to reveal about the initiation and early stages of tectonism. The Gargan block of the Tuva-Mongolia terranes at the Mongolian-Russian border is one of the Archean-Proterozoic continental crustal fragments that record the earliest evolutionary history of the belt. To better constrain the age of its basement, extent, and provenance in regional tectonic framework, we present new zircon UPb geochronologic data from previously undated basement gneisses and the overlying Neoproterozoic meta-sedimentary rocks of southern part of the Gargan block. Comparison of available basement ages and Precambrian detrital zircon spectra from nearby Archean-Proterozoic continental crustal fragments show complex relationship amongst them. We propose that the Gargan block travelled by itself in most of the Proterozoic or was derived from an unknown continental block. Obtained age confirms the existence of Neoarchean-Neoproterozoic basement in the region; however, for the first time, the 2749–814 Ma Salig Complex reveals multiple stages of Neoproterozoic metamorphic events within the Central Asian Orogenic Belt. Older of which, at ∼1 Ga, may relate to an assembly of several of the pre-existing continental crustal fragments in Mongolia.  相似文献   

13.
《Gondwana Research》2014,25(1):103-125
We argue that the production of mantle-derived or juvenile continental crust during the accretionary history of the Central Asian Orogenic Belt (CAOB) has been grossly overestimated. This is because previous assessments only considered the Palaeozoic evolution of the belt, whereas its accretionary history already began in the latest Mesoproterozoic. Furthermore, much of the juvenile growth in Central Asia occurred in late Permian and Mesozoic times, after completion of CAOB evolution, and perhaps related to major plume activity. We demonstrate from zircon ages and Nd–Hf isotopic systematics from selected terranes within the CAOB that many Neoproterozoic to Palaeozoic granitoids in the accreted terranes of the belt are derived from melting of heterogeneous Precambrian crust or through mixing of old continental crust with juvenile or short-lived material, most likely in continental arc settings. At the same time, juvenile growth in the CAOB occurred during the latest Neoproterozoic to Palaeozoic in oceanic island arc settings and during accretion of oceanic, island arc, and Precambrian terranes. However, taking together, our data do not support unusually high crust-production rates during evolution of the CAOB. Significant variations in zircon εHf values at a given magmatic age suggest that granitoid magmas were assembled from small batches of melt that seem to mirror the isotopic characteristics of compositionally and chronologically heterogeneous crustal sources. We reiterate that the chemical characteristics of crustally-derived granitoids are inherited from their source(s) and cannot be used to reconstruct tectonic settings, and thus many tectonic models solely based on chemical data may need re-evaluation. Crustal evolution in the CAOB involved both juvenile material and abundant reworking of older crust with varying proportions throughout its accretionary history, and we see many similarities with the evolution of the SW Pacific and the Tasmanides of eastern Australia.  相似文献   

14.
秦岭造山带中两条新元古代岩浆岩带   总被引:36,自引:6,他引:36  
秦岭造山带中的新元古代岩浆岩带分为南、北两带,北带主要发育于秦岭岩群分布区,由新元古代早期花岗质岩石组成,由于受到强烈变质、变形,构成了NW向花岗片麻岩体群。岩石总体化学特征反映一种挤压性的动力学背景,其形成时代集中在95 5~84 4 Ma。南带分布于陡岭岩群分布区、南秦岭及“勉略构造带”以南的汉南一带,由双峰式火山岩、基性辉长岩侵入体及板内花岗质侵入岩组成。与北带花岗质岩石所受到的强烈变质、变形形成鲜明对比,除邻近构造带的岩体外,它们变质、变形程度较弱,以弱片麻状至块状构造为主,形成时代介于810~710 Ma之间,反映大陆地壳处于减薄的伸展机制。这条岩浆岩带的发育,显示秦岭造山带南部曾存在一条新元古代中期裂谷带,它是劳伦、澳大利亚和塔里木—扬子等大陆初始裂解的产物,也是古太平洋形成的前兆。  相似文献   

15.
NW-SE trending paleotectonics are recognized from the WNW-ESE trending Qinling complex in the core of the Qinling belt. They consist of trending stratum, boundary shear zones, deformed linear plutons and ophiolite. The field relationships and ages of the deformation, magmatism and metamorphism suggest that the paleotectonics formed in Neoproterozoic. The ages of deformed and undeformed plutons approximately constrain the peak deformation during 958-889 Ma. Both the two trending tectonics constitute an orogen-scale tectonic replacement by S2 (Phanerozoic WNW-ESE tectonics) of S1 (NNW-SSE trending Neoproterozoic), similar to structural replacement in outcrop. The strong contractional deformation, (high-pressure) metamorphism, and granitic magmatism that evolved from syn-collisional (S-type), to post-collisional (I-type) and to post-collisional (A-type), as well as regional extension at 885-700 Ma in Qinling, display a cycle of a collisional orogeny. Thus, the NW-SE trending paleotectonics could be remnants of a collisional orogenic belt. The belt originally could trend NNW-SSE, if reworking and modification of Paleozoic and/or Mesozoic NNE-SSW contractional deformation are eliminated. Accordingly, assemblage and breakup of some continental blocks occurred in Neoproterozoic in Qinling, which seems to correspond to assemblage and breakup of Rodinia supercontinent in the world. This study provides new insight into the evolution of the Qinling orogenic belt and the reconstruction of Proterozoic supercontinent of China, and also presents a case study of recognition of an old orogen from a young orogen.  相似文献   

16.
Mineralogical, petrographic, and geochemical studies of mafic granulites of the South Muya Block (Central Asian Orogenic Belt) have been carried out. The granulite protoliths were olivine- and plagioclase- rich cumulates of ultramafic–mafic magmas with geochemical affinities of suprasubduction rocks. The isotope–geochemical characteristics of the granulites indicate the enriched nature of their source, associated with recycling into the mantle of either ancient crust or oceanic sediments, or intracrustal contamination of melts at the basement of the ensialic arc. Formation of garnet-bearing parageneses has occurred during high-pressure granulite metamorphism associated with accretion in the eastern part of the Baikal–Muya composite terrane.  相似文献   

17.
Relative to the North China Craton, the subcontinental lithospheric mantle (SCLM) beneath the Central Asian Orogenic Belt is little known. Mantle-derived peridotite xenoliths from the Cenozoic basalts in the Xilinhot region, Inner Mongolia, provide samples of the lithospheric mantle beneath the eastern part of the belt. The xenoliths are predominantly lherzolites with minor harzburgites, and can be subdivided into three groups, based on the REE patterns of clinopyroxenes. Group 1 peridotites (LREE-enriched), with low modal Cpx (3–7%), high Mg# in olivine (> 90.6) and Cr# in spinel (> 43.8), low whole-rock CaO + Al2O3 contents (1.62–3.22 wt.%) and estimated temperatures of 1043–1126 °C, represent moderately refractory SCLM that has experienced carbonatite-related metasomatism. Group 2 peridotites (LREE-depleted), with high modal Cpx (9–13%), low Mg# in olivine (< 90.6) and Cr# in spinel (< 20.0), high whole-rock CaO + Al2O3 contents (4.93–6.37 wt.%) and estimated temperatures of 814–970 °C, show affinity with Phanerozoic fertile SCLM that has undergone silicate-related metasomatism. Group 3 peridotites (convex-upward REE patterns), show wide ranges of olivine-Mg# (88.4–90.6), spinel-Cr# (11.5–47.6), and modal Cpx (3–14%) that overlap Groups 1 and 2. Their spinels have high TiO2 contents (> 0.41 wt.%), implying involvement of reactions between melt and peridotites. The estimated temperatures of Group 3 (1033–1156 °C) are similar to those of Group 1. We suggest that the pre-existing moderately refractory lithospheric mantle (i.e., Group 1) beneath the eastern part of the Central Asian Orogenic Belt was strongly penetrated by upwelling asthenospheric material, and the cooling of this material produced fertile lithospheric mantle (i.e., Group 2). The present lithospheric mantle of this area consists of interspersed volumes of younger fertile and older more refractory lithosphere, with the fertile type dominating the shallower levels of the mantle.  相似文献   

18.
Cobalt Deposits in the Central China Orogenic Belt   总被引:2,自引:0,他引:2  
Cobalt mostly occurs as an associated metal in Cu-Ni sulphide deposits, skarn Fe-Cu-Pb-Zn deposits and volcanic-hosted massive sulphide (VHMS) or sedex deposits. There are different types of cobalt deposits in the Central China orogenic belt. In the Tamu-Kalangu Mississippi-valley type Pb-Zn deposits, many cobalt-nickel sulphide minerals were found. The cobalt content of the ore is 0.064%-0.46% in sedex-type Kendekeke Fe-Pb-Zn-Au deposits, and cobalt sulphide veins with Co contents of 4%-9% have also been found. About 28000 tons of cobalt reserves were delineated in the Dur'ngoi Cu-Co-Zn deposit of VHMS type in the A'nyemaqen Mountains. It is considered that the exploration potential for cobalt is attractive in this district, especially in sedex-type deposits and Co-rich sulphide veins in sedex-type Fe, Cu and Pb-Zn deposits and their surroundings.  相似文献   

19.
The Central Asian Orogenic Belt contains many Precambrian crustal fragments whose origin is unknown, and previous speculations suggested these to be derived from either Siberia, Tarim or northern Gondwana. We present an age pattern for detrital and xenocrystic zircons from Neoproterozoic to Palaeozoic arc and microcontinental terranes in Mongolia and compare this with patterns for Precambrian rocks in southern Siberia, the North China craton, the Tarim craton and northeastern Gondwana in order to define the most likely source region for the Mongolian zircons. Our data were obtained by SHRIMP II, LA-ICP-MS and single zircon evaporation and predominantly represent arc-related low-grade volcanic rocks and clastic sediments but also accretionary wedges and ophiolitic environments.The Mongolian pattern is dominated by zircons in the age range ca. 350–600 and 700–1020 Ma as well as minor peaks between ca. 1240 and 2570 Ma. The youngest group reflects cannibalistic reworking of the Palaeozoic arc terranes, whereas the Neoproterozoic to late Mesoproterozoic peak reflects both reworking of the arc terranes as well as Neoproterozoic rifting and a Grenville-age crust-formation event.The 700–1020 Ma peak does not exist in the age spectra of the Siberian and North China cratons and thus effectively rules out these basement blocks as potential source areas for the Mongolian zircons. The best agreement is with the Tarim craton where a major Grenville-age orogenic event and early Neoproterozoic rifting have been identified. The age spectra also do not entirely exclude northeastern Gondwana as a source for the Mongolian zircons, but here the Neoproterozoic age peak is related to the Pan-African orogeny, and a minor Grenville-age peak may reflect a controversial orogenic event in NW India.Our Mongolian detrital and xenocrystic age spectrum suggests that the Tarim craton was the main source, and we favour a tectonic scenario similar to the present southwestern Pacific where fragments of Australia are rifted off and become incorporated into the Indonesian arc and microcontinent amalgamation that will evolve into a future orogenic belt.  相似文献   

20.
Studies of supercontinental cycle are mainly concentrated on the assembly, breakup and dispersal of supercontinents, and studies of continental crustal growth largely on the growth and loss (recycling) of the crust. These two problems have long been studied separately from each other. The Paleozoic–Mesozoic granites in the Central Asian Orogenic Belt have commonly positive Nd values, implying large-scale continental crustal growth in the Phanerozoic. They coincided temporally and spatially with the Phanerozoic Pangea supercontinental cycle, and overlapped in space with the P-wave high-V anomalies and calculated positions of subducted slabs for the last 180 Ma, all this suggests that the Phanerozoic Laurasia supercontinental assembly was accompanied by large-scale continental crustal growth in central Asia. Based on these observations, this paper proposes that there may be close and original correlations between a supercontinental cycle, continental crustal growth and catastrophic slab avalanches in the mantle. In this model we suggest that rapid continental crustal growth occurred during supercontinent assembly, whereas during supercontinental breakup and dispersal new additions of the crust were balanced by losses, resulting in a steady state system. Supercontinental cycle and continental crustal growth are both governed by changing patterns of mantle convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号