首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— We have determined initial 129I/127I ratios for mineral concentrates of four enstatite meteorites and a eucrite. In the case of the enstatite meteorites the inferred ages are associated with the pyroxene‐rich separates giving pyroxene closure ages relative to the Shallowater standard of Indarch (EH4, 0.04 ± 0.67 Ma), Khairpur (EL6, ?4.22 ± 0.67 Ma), Khor Temiki (aubrite, ?0.06 Ma), and Itqiy (enstatite achondrite, ?2.6 ± 2.6 Ma), negative ages indicate closure after Shallowater. No separate from the cumulate eucrite Asuka (A?) 881394 yielded a consistent ratio, though excess 129Xe was observed in a feldspar separate, suggesting disturbance by thermal metamorphism within 25 Ma of closure in Shallowater. Iodine‐129 ages are mapped to the absolute Pb‐Pb time scale using the calibration proposed by Gilmour et al. (2006) who place the closure age of Shallowater at 4563.3 ± 0.4 Ma. Comparison of the combined 129I‐Pb data with associated 53Mn ages, for objects that have been dated by both systems, indicates that all three chronometers evolved concordantly in the early solar system. The enstatite chondrites are offset from the linear array described by asteroid‐belt objects when 53Mn ages are plotted against combined 129I‐Pb data, supporting the suggestion that 53Mn was radially heterogeneous in the early solar system.  相似文献   

2.
Abstract— The I‐Xe system of three lodranites has been investigated. Samples of Gibson yielded no isochrons, and late model ages are attributed to late addition of iodine. Two metal and one silicate separate from the transitional lodranite Graves Nunataks (GRA) 95209 gave ages that are consistent with each other and with the literature I‐Xe age of Acapulco feldspar. These yield a mean closure age 4.19 ± 0.53 Ma after the Shallowater enstatite reference age (4562.3 ± 0.4 Ma). Such identical I‐Xe ages from distinct phases imply that the parent material underwent a period of rapid cooling, the absolute age of this event being 4558.1 ± 0.7 Ma. Such rapid cooling indicates an increase in the rate at which heat could be conducted away, requiring a significant modification of the parent body. We suggest the parent body was modified by an impact at or close to the time recorded by the I‐Xe system. An age of 10.4 ± 2.3 Ma after Shallowater has been determined for one whole‐rock sample of Lewis Cliff (LEW) 88280. Since the release pattern is similar to that of GRA 95209 this hints that the larger grain size of this sample may reflect slower cooling due to deeper post impact burial.  相似文献   

3.
Abstract— The iodine‐xenon system has been analyzed in samples of 7 chondrules from the CB chondrites Gujba and Hammadah al Hamra (HaH) 237. One sample from Gujba defined a high temperature iodine‐xenon isochron corresponding to closure 1.87 ± 0.4 Ma before closure of Shallowater enstatite. Motivated by this result, we employ outlier rejection to re‐evaluate the Shallowater age, leading to a modified value of 4562.3 ± 0.4 Ma (1s?). In this process, the datum obtained by combining our I‐Xe age for Gujba with the literature Pb‐Pb age is rejected as an outlier, indicating that in this sample the I‐Xe system closed earlier than the accepted Pb‐Pb age of chondrules from CB chondrites. The need for a formation environment distinct from that of chondrules from other meteorites is thus reduced.  相似文献   

4.
Abstract— We have studied the I‐Xe system in chondrules and clasts from ordinary chondrites. Cristobalite‐bearing clasts from Parnallee (LL3.6) closed to Xe loss 1–4 Ma after Bjurböle. Feline (a feldspar‐ and nepheline‐rich clast also from Parnallee) closed at 7.04 ± 0.15 Ma. Two out of three chondrules from Parnallee that yielded well‐defined initial I ratios gave ages identical to Bjurböle's within error. A clast from Barwell (L6) has a well‐defined initial I ratio corresponding to closure 3.62 ± 0.60 Ma before Bjurböle. Partial disturbance and complete obliteration of the I‐Xe system by shock are revealed in clasts from Julesburg (L3.6) and Quenggouk (H4), respectively. Partial disturbance by shock is capable of generating anomalously high initial I ratios. In some cases, these could be misinterpreted, yielding erroneous ages. A macrochondrule from Isoulane‐n‐Amahar contains concentrations of I similar to “ordinary” chondrules but, unlike most ordinary chondrules, contains no radiogenic 129Xe. This requires resetting 50 Ma or more later than most chondrules. The earliest chondrule ages in the I‐Xe, Mn‐Cr, and Al‐Mg systems are in reasonable agreement. This, and the frequent lack of evidence for metamorphism capable of resetting the I‐Xe chronometer, leads us to conclude that (at least) the earliest chondrule I‐Xe ages represent formation. If so, chondrule formation took place at a time when sizeable parent bodies were present in the solar system.  相似文献   

5.
Abstract— Iodine concentrations in small domains (~10 μm) of silicates and troilite (FeS) phases in three chondrules from the Semarkona (LL3) meteorite were determined by an ion microprobe. Independent determination of I content in some of these phases was accomplished by in situ laser probe mass spectrometric analysis of I-derived 128Xe in one of these neutron-irradiated chondrules. The ion microprobe data suggest low I content for olivines (20–45 ppb) and relatively higher values for pyroxene and glass (mesostasis) (40–160 ppb). The broad similarity in the measured I contents in pyroxenes in a porphyritic pyroxene chondrule by ion microprobe (42–138 ppb) and by laser probe (37–76 ppb) demonstrate the feasibility of in situ determination of I content in silicate phases via ion microprobe. The I contents in troilite measured by ion microprobe, however, are prone to uncertainty because of the lack of a sulfide standard. The ion microprobe data suggest I content of > 1 ppm in troilite, if the calibration from our silicate standard is used. However, the noble gas data suggest that the I content in troilite is comparable to that in silicates. We attribute this apparent discrepancy to an enhanced sputter ion yield of I from sulfides. Iodine-derived 129Xe excesses were observed in both pyroxene and troilite within this chondrule. The I-Xe model ages of these selected phases are consistent with the I-Xe studies of the bulk chondrule. The individual data points fall on or near the isochron obtained from the bulk chondrule, although all except the most radiogenic data point contain evidence of low-temperature uncorrelated iodine.  相似文献   

6.
Abstract— The thermal metamorphism grade of organic matter (OM) trapped in 6 unequilibrated ordinary chondrites (UOCs) (Semarkona [LL 3.0], Bishunpur [L/LL 3.1], Krymka [LL 3.1], Chainpur [LL 3.4], Inman [L/LL 3.4], and Tieschitz [H/L 3.6]) has been investigated with Raman spectroscopy in the region of the first‐order carbon bands. The carbonaceous chondrite Renazzo (CR2) was also investigated and used as a reference object for comparison, owing to the fact that previous studies pointed to the OM in this meteorite as being the most pristine among all chondrites. The results show that the OM thermal metamorphic grade: 1) follows the hierarchy Renazzo << Semarkona << other UOCs; 2) is well correlated to the petrographic type of the studied objects; and 3) is also well correlated with the isotopic enrichment δ15N. These results are strikingly consistent with earlier cosmochemical studies, in particular, the scenario proposed by Alexander et al. (1998). Thermal metamorphism in the parent body appears as the main evolution process of OM in UOCs, demonstrating that nebular heating was extremely weak and that OM burial results in the destabilization of an initial isotopic composition with high δD and δ15N. Furthermore, the clear discrimination between Renazzo, Semarkona, and other UOCs shows: 1) Semarkona is a very peculiar UOC—by far the most pristine; and 2) Raman spectroscopy is a valid and valuable tool for deriving petrographic sub‐types (especially the low ones) that should be used in the future to complement current techniques. We compare our results with other current techniques, namely, induced thermo‐luminescence and opaques petrography. Other results have been obtained. First, humic coals are not strictly valid standard materials for meteoritic OM but are helpful in the study of evolutionary trends due to thermal metamorphism. Second, terrestrial weathering has a huge effect on OM structure, particularly in Inman, which is a find. Finally, the earlier statement that fine‐grained chondrule rims and matrix in Semarkona could be the source of smectite‐rich IDPs is not valid, given the different degree of structural order of their OM.  相似文献   

7.
Abstract— We have studied the relationship between bulk chemical compositions and relative formation ages inferred from the initial 26Al/27Al ratios for sixteen ferromagnesian chondrules in least equilibrated ordinary chondrites, Semarkona (LL3.0) and Bishunpur (LL3.1). The initial 26Al/27Al ratios of these chondrules were obtained by Kita et al. (2000) and Mostefaoui et al. (2002), corresponding to relative ages from 0.7 ± 0.2 to 2.4 ?0.4/+0.7 Myr after calcium‐aluminum‐rich inclusions (CAIs), by assuming a homogeneous distribution of 26Al in the early solar system. The measured bulk compositions of the chondrules cover the compositional range of ferromagnesian chondrules reported in the literature and, thus, the chondrules in this study are regarded as representatives of ferromagnesian chondrules. The relative ages of the chondrules appear to correlate with bulk abundances of Si and the volatile elements (Na, K, Mn, and Cr), but there seems to exist no correlation of relative ages neither with Fe nor with refractory elements. Younger chondrules tend to be richer in Si and volatile elements. Our result supports the result of Mostefaoui et al. (2002) who suggested that pyroxene‐rich chondrules are younger than olivine‐rich ones. The correlation provides an important constraint on chondrule formation in the early solar system. It is explained by chondrule formation in an open system, where silicon and volatile elements evaporated from chondrule melts during chondrule formation and recondensed as chondrule precursors of the next generation.  相似文献   

8.
Abstract– Enstatite chondrites (ECs) were subjected to noble gas analyses using stepped crushing and pyrolysis extraction methods. ECs can be classified into subsolar gas‐carrying and subsolar gas‐free ECs based on the 36Ar/84Kr/132Xe ratios. For subsolar gas‐free ECs, elemental ratios, and Xe isotopic compositions indicate that Q gas is the dominant trapped component, the Q gas concentration can be correlated with the petrologic type, reasonably explained by gas release from a common EC parental material during subsequent heating. Atmospheric Xe with sub‐Q elemental ratios is found in Antarctic E3s at 600–800 °C and through crushing. The 132Xe released in these fractions accounts for 30–60% of the bulk concentrations. Hence, the sub‐Q signature is generally due to contamination of elementally fractionated atmosphere. Subsolar gas is mainly released (up to 78% of the bulk 36Ar) at 1300–1600 °C and through crushing, suggesting that enstatite and friable phases are the host phases. Subsolar gas is isotopically identical to solar gas, but elementally fractionated. These observations are consistent with a previous study, which suggested that subsolar gas could be fractionated solar wind having been implanted into chondrule precursors ( Okazaki et al. 2001 ). Unlike subsolar gas‐free ECs, the primordial gas concentrations of subsolar gas‐carrying ECs are not simply correlated with the petrologic type. It is inferred that subsolar gas‐rich chondrules were heterogeneously distributed in the solar nebula and accreted to form subsolar gas‐carrying ECs. Subsequent metamorphic and impact‐shock heating events have affected noble gas compositions to various degrees.  相似文献   

9.
Abstract— Chondrules are generally believed to have lost most or all of their trapped noble gases during their formation. We tested this assumption by measuring He, Ne, and Ar in chondrules of the carbonaceous chondrites Allende (CV3), Leoville (CV3), Renazzo (CR2), and the ordinary chondrites Semarkona (LL3.0), Bishunpur (LL3.1), and Krymka (LL3.1). Additionally, metalsulfide‐rich chondrule coatings were measured that probably formed from chondrule metal. Low primordial 20Ne concentrations are present in some chondrules, while even most of them contain small amounts of primordial 36Ar. Our preferred interpretation is that‐in contrast to CAIs‐the heating of the chondrule precursor during chondrule formation was not intense enough to expel primordial noble gases quantitatively. Those chondrules containing both primordial 20Ne and 36Ar show low presolar‐diamond‐like 36Ar/20Ne ratios. In contrast, the metal‐sulfide‐rich coatings generally show higher gas concentrations and Q‐like 36Ar/20Ne ratios. We propose that during metalsilicate fractionation in the course of chondrule formation, the Ar‐carrying phase Q became enriched in the metal‐sulfide‐rich chondrule coatings. In the silicate chondrule interior, only the most stable Ne‐carrying presolar diamonds survived the melting event leading to the low observed 36Ar/20Ne ratios. The chondrules studied here do not show evidence for substantial amounts of fractionated solar‐type noble gases from a strong solar wind irradiation of the chondrule precursor material as postulated by others for the chondrules of an enstatite chondrite.  相似文献   

10.
Abstract— Amoeboid olivine aggregates (AOAs) in the LL3.0 Semarkona chondrite have been studied by secondary ion mass spectrometry. The AOAs mainly consist of aggregates of olivine grains with interstitial Al‐Ti‐rich diopside and anorthite. Oxygen‐isotopic compositions of all phases are consistently enriched in 16O, with δ17,18O = ~?50‰. The initial 26Al/27Al ratios are calculated to be 5.6 ± 0.9 (2σ) × 10?5. These values are equivalent to those of AOAs and fine‐grained calcium‐aluminum‐rich inclusions (FGIs) from pristine carbonaceous chondrites. This suggests that AOAs in ordinary chondrites formed in the same 16O‐rich calcium‐aluminum‐rich inclusion (CAI)‐forming region of the solar nebula as AOAs and FGIs in carbonaceous chondrites, and subsequently moved to the accretion region of the ordinary chondrite parent body in the solar nebula.  相似文献   

11.
We report new data from Pesyanoe‐90,1 (dark lithology) on the isotopic signature of solar wind (SW) Xe as recorded in this enstatite achondrite which represents a soil‐breccia of an asteroidal regolith. The low temperature (≤800°C) steps define the Pesyanoe‐S xenon component, which is isotopically consistent with SW Xe reported for the lunar regolith. This implies that the SW Xe isotopic signature was the same at two distinct solar system locations and, importantly, also at different times of solar irradiation. Further, we compare the calculated average solar wind “SW‐Xe” signature to Chass‐S Xe, the indigenous Xe observed in SNC (Mars) meteorites. Again, a close agreement between these compositions is observed, which implies that a mass‐dependent differential fractionation of Xe between SW‐Xe and Chass‐S Xe is >1.5%o per amu. We also observe fractionated (Pesyanoe‐F) Xe and Ar components in higher temperature steps and we document a fission component due to extinct 244Pu. Interestingly, the Pesyanoe‐F Xe component is revealed only at the highest temperatures (>1200°C). The Pesyanoe‐F gas reveals Xe isotopic signatures that are consistent with lunar solar energetic particles (SEP) data and may indicate a distinct solar energetic particle radiation as was inferred for the moon. However, we cannot rule out fractionation processes due to parent body processes. We note that ratios 36Ar/38Ar≤5 are also consistent with SEP data. Calculated abundances of the fission component correlate well with radiogenic 40Ar concentrations, revealing rather constant 244Pu/K ratios in Pesyanoe, and separates thereof, and indicate that both components were retained. We identify a nitrogen component (δ15N = 44%o) of non‐solar origin with an isotopic signature distinct from indigenous N (δ15N = ?33%o). While large excesses at 128Xe and 129Xe are observed in the lunar regolith samples, these excesses in Pesyanoe are small. On the other hand, significant 126Xe isotopic excesses, comparable to relative excesses observed in lunar soils and breccias, are prominent in the intermediate temperature steps of Pesyanoe‐90,1.  相似文献   

12.
Abstract— The HF/HCI‐resistant residues of the chondrites CM2 Cold Bokkeveld, CV3 (ox.) Grosnaja, CO3.4 Lancé, CO3.7 Isna, LL3.4 Chainpur, and H3.7 Dimmitt have been measured by closed‐system stepped etching (CSSE) in order to better characterise the noble gases in “phase Q”, a major carrier of primordial noble gases. All isotopic ratios in phase Q of the different meteorites are quite uniform, except for (20Ne/22Ne)Q. As already suggested by precise earlier measurements (Schelhaas et al., 1990; Wieler et al., 1991, 1992), (20Ne/22Ne)Q is the least uniform isotopic ratio of the Q noble gases. The data cluster ~10.1 for Cold Bokkeveld and Lancé and 10.7 for Chainpur, Grosnaja, and Dimmitt, respectively. No correlation of (20Ne/22Ne)Q with the classification or the alteration history of the meteorites has been found. The Ar, Kr, and Xe isotopic ratios for all six samples are identical within their uncertainties and similar to earlier Q determinations as well as to Ar‐Xe in ureilites. Thus, an unknown process probably accounts for the alteration of the originally incorporated Ne‐Q. The noble gas elemental compositions provide evidence that Q consists of at least two carbonaceous carrier phases “Q1” and “Q2” with slightly distinct chemical properties. Ratios (Ar/Xe)Q and (Kr/Xe)Q reflect both thermal metamorphism and aqueous alteration. These parent‐body processes have led to larger depletions of Ar and Kr relative to Xe. In contrast, meteorites that suffered severe aqueous alteration, such as the CM chondrites, do not show depletions of He and Ne relative to Ar but rather the highest (He/Ar)Q and (Ne/Ar)Q ratios. This suggests that Q1 is less susceptible to aqueous alteration than Q2. Both subphases may well have incorporated noble gases from the same reservoir, as indicated by the nearly constant, though very large, depletion of the lighter noble gases relative to solar abundances. However, the elemental ratios show that Q1 and Q2 must have acquired (or lost) noble gases in slightly different element proportions. Cold Bokkeveld suggests that Q1 may be related to presolar graphite. Phases Q1 and Q2 might be related to the subphases that have been suggested by Gros and Anders (1977). The distribution of the 20Ne/22Ne ratios cannot be attributed to the carriers Q1 and Q2. The residues of Chainpur and Cold Bokkeveld contain significant amounts of Ne‐E(L), and the data confirm the suggestion of Huss (1997) that the 22Ne‐E(L) content, and thus the presolar graphite abundances, are correlated with the metamorphic history of the meteorites.  相似文献   

13.
Abstract— Whole‐chondrule Mn‐Cr isochrons are presented for chondrules separated from the Chainpur (LL3.4) and Bishunpur (LL3.1) meteorites. The chondrules were initially surveyed by instrumental neutron activation analysis. LL‐chondrite‐normalized Mn/Cr, Mn/Fe, and Sc/Fe served to identify chondrules with unusually high or low Mn/Cr ratios, and to correlate the abundances of other elements to Sc, the most refractory element measured. A subset of chondrules from each chondrite was chosen for analysis by a scanning electron microscope equipped with an energy dispersive x‐ray spectrometer prior to high‐precision Cr‐isotopic analyses. 53Cr/52Cr correlates with 55Mn/52Cr to give initial (53Mn/55Mn)I = (9.4 ± 1.7) × 10?6 for Chainpur chondrules and (53Mn/55Mn)I = (9.5 ± 3.1) × 10?6 for Bishunpur chondrules. The corresponding chondrule formation intervals are, respectively, ΔtLEW = ?10 ± 1 Ma for Chainpur and ?10 ± 2 Ma for Bishunpur relative to the time of igneous crystallization of the Lewis Cliff (LEW) 86010 angrite. Because Mn/Sc correlates positively with Mn/Cr for both the Chainpur and Bishunpur chondrules, indicating dependence of the Mn/Cr ratio on the relative volatility of the elements, we identify the event dated by the isochrons as volatility‐driven elemental fractionation for chondrule precursors in the solar nebula. Thus, our data suggest that the precursors to LL chondrules condensed from the nebula 5.8 ± 2.7 Ma after the time when initial (53Mn/55Mn)I = (2.8 ± 0.3) × 10?5 for calcium‐aluminum‐rich inclusions (CAIs), our preferred value, determined from data for (a) mineral separates of type B Allende CAI BR1, (b) spinels from Efremovka CAI E38, and (c) bulk chondrites. Mn‐Cr formation intervals for meteorites are presented relative to average I(Mn) = (53Mn/55Mn)Ch = 9.46 × 10?6 for chondrules. Mn/Cr ratios for radiogenic growth of 53Cr in the solar nebula and later reservoirs are calculated relative to average (I(Mn), ?(53Cr)I) = ((9.46 ± 0.08) × 10?6, ?0.23 ± 0.08) for chondrules. Inferred values of Mn/Cr lie within expected ranges. Thus, it appears that evolution of the Cr‐isotopic composition can be traced from condensation of CAIs via condensation of the ferromagnesian precursors of chondrules to basalt generation on differentiated asteroids. Measured values of ?(53Cr) for individual chondrules exhibit the entire range of values that has been observed as initial ?(53Cr) values for samples from various planetary objects, and which has been attributed to radial heterogeneity in initial 53Mn/55Mn in the early solar system. Estimated 55Mn/52Cr = 0.42 ± 0.05 for the bulk Earth, combined with ?(53Cr) = 0 for the Earth, plots very close to the chondrule isochrons, so that the Earth appears to have the Mn‐Cr systematics of a refractory chondrule. Thus, the Earth apparently formed from material that had been depleted in Mn relative to Cr contemporaneously with condensation of chondrule precursors. If, as seems likely, the Earth's core formed after complete decay of 53Mn, there must have been little differential partitioning of Mn and Cr at that time.  相似文献   

14.
Abstract— We studied the elemental and isotopic abundances of noble gases (He, Ne, Ar in most cases, and Kr, Xe also in some cases) in individual chondrules separated from six ordinary, two enstatite, and two carbonaceous chondrites. Most chondrules show detectable amounts of trapped 20Ne and 36Ar, and the ratio (36Ar/20Ne)t (from ordinary and carbonaceous chondrites) suggests that HL and Q are the two major trapped components. A different trend between (36Ar/20Ne)t and trapped 36Ar is observed for chondrules in enstatite chondrites indicating a different environment and/or mechanism for their formation compared to chondrules in ordinary and carbonaceous chondrites. We found that a chondrule from Dhajala chondrite (DH‐11) shows the presence of solar‐type noble gases, as suggested by the (36Ar/20Ne)t ratio, Ne‐isotopic composition, and excess of 4He. Cosmic‐ray exposure (CRE) ages of most chondrules are similar to their host chondrites. A few chondrules show higher CRE age compared to their host, suggesting that some chondrules and/or precursors of chondrules have received cosmic ray irradiation before accreting to their parent body. Among these chondrules, DH‐11 (with solar trapped gases) and a chondrule from Murray chondrite (MRY‐1) also have lower values of (21Ne/22Ne)c, indicative of SCR contribution. However, such evidences are sporadic and indicate that chondrule formation event may have erased such excess irradiation records by solar wind and SCR in most chondrules. These results support the nebular environment for chondrule formation.  相似文献   

15.
Abstract— Studies of several samples of the large Caddo County IAB iron meteorite reveal andesitic material enriched in Si, Na, Al, and Ca, which is essentially unique among meteorites. This material is believed to have formed from a chondritic source by partial melting and to have further segregated by grain coarsening. Such an origin implies extended metamorphism of the IAB parent body. New 39Ar‐40Ar ages for silicate from three different Caddo samples are consistent with a common age of 4.50‐4.51 Gyr. Less well‐defined Ar‐Ar degassing ages for inclusions from two other IABs, EET (Elephant Moraine) 83333 and Udei Station, are ?4.32 Gyr, whereas the age for Campo del Cielo varies considerably over about 3.23‐4.56 Gyr. New 129I‐129Xe ages for Caddo County and EET 83333 are 4557.9 ± 0.1 Myr and 4557–4560 Myr, respectively, relative to an age of 4562.3 Myr for Shallowater. Considering all reported Ar‐Ar degassing ages for IABs and related winonaites, the range is ?4.32‐4.53 Gyr, but several IABs give similar Ar ages of 4.50‐4.52 Gyr. We interpret these older Ar ages to represent cooling after the time of last significant metamorphism on the parent body and the younger ages to represent later 40Ar diffusion loss. The older Ar‐Ar ages for IABs are similar to Sm‐Nd and Rb‐Sr isochron ages reported in the literature for Caddo County. Considering the possibility that IAB parent body formation was followed by impact disruption, reassembly, and metamorphism (e.g., Benedix et al. 2000), the Ar‐Ar ages and IAB cooling rates deduced from Ni concentration profiles in IAB metal (Herpfer et al. 1994) are consistent if the time of the postassembly metamorphism was as late as about 4.53 Gyr ago. However, I‐Xe ages reported for some IABs define much older ages of about 4558–4566 Myr, which cannot easily be reconciled with the much younger Ar‐Ar and Sm‐Nd ages. An explanation for the difference in radiometric ages of IABs may reside in combinations of the following: a) I‐Xe ages have very high closure temperatures and were not reset during metamorphism about 4.53 Gyr ago; b) a bias exists in the 40K decay constants which makes these Ar‐Ar ages approximately 30 Myr too young; c) the reported Sm‐Nd and Rb‐Sr ages for Caddo are in error by amounts equal to or exceeding their reported 2‐sigma uncertainties; and d) about 30 Myr after the initial heating that produced differentiation of Caddo silicate and mixing of silicate and metal, a mild metamorphism of the IAB parent body reset the Ar‐Ar ages.  相似文献   

16.
Abstract– Compared with ordinary chondrites, there is a relative paucity of chronological and other data to define the early thermal histories of enstatite parent bodies. In this study, we report 39Ar‐40Ar dating results for five EL chondrites: Khairpur, Pillistfer, Hvittis, Blithfield, and Forrest; five EH chondrites: Parsa, Saint Marks, Indarch, Bethune, and Reckling Peak 80259; three igneous‐textured enstatite meteorites that represent impact melts on enstatite chondrite parent bodies: Zaklodzie, Queen Alexandra Range 97348, and Queen Alexandra Range 97289; and three aubrites, Norton County, Bishopville, and Cumberland Falls Several Ar‐Ar age spectra show unusual 39Ar recoil effects, possibly the result of some of the K residing in unusual sulfide minerals, such as djerfisherite and rodderite, and other age spectra show 40Ar diffusion loss. Few additional Ar‐Ar ages for enstatite meteorites are available in the literature. When all available Ar‐Ar data on enstatite meteorites are considered, preferred ages of nine chondrites and one aubrite show a range of 4.50–4.54 Ga, whereas five other meteorites show only lower age limits over 4.35–4.46 Ga. Ar‐Ar ages of several enstatite chondrites are as old or older as the oldest Ar‐Ar ages of ordinary chondrites, which suggests that enstatite chondrites may have derived from somewhat smaller parent bodies, or were metamorphosed to lower temperatures compared to other chondrite types. Many enstatite meteorites are brecciated and/or shocked, and some of the younger Ar‐Ar ages may record these impact events. Although impact heating of ordinary chondrites within the last 1 Ga is relatively common for ordinary chondrites, only Bethune gives any significant evidence for such a young event.  相似文献   

17.
Abstract— I‐Xe analyses were carried out for chondrules and refractory inclusions from the two CV3 carbonaceous chondrites Mokoia and Vigarano (representing the oxidized and reduced subgroups, respectively). Although some degree of disturbance to the I‐Xe system is evident in all of the samples, evidence is preserved of aqueous alteration of CAIs in Mokoia 1 Myr later than the I‐Xe age of the Shallowater standard and of the alteration of a chondrule (V3) from Vigarano ~0.7 Myr later than Shallowater. Other chondrules in Mokoia and Vigarano experienced disturbance of the I‐Xe system millions of years later and, in the case of one Vigarano chondrule (VS1), complete resetting of the I‐Xe system after decay of essentially all 129I, corresponding to an age more than 80 Myr after Shallowater. Our interpretation is that accretion and processing to form the Mokoia and Vigarano parent bodies must have continued for at least 4 Myr and 80 Myr, respectively. The late age of a chondrule that shows no evidence for any aqueous alteration or significant thermal processing after its formation leads us to postulate the existence of an energetic chondrule‐forming mechanism at a time when nebular processes are not expected to be important.  相似文献   

18.
Abstract– Neon was measured in 39 individual olivine (or olivine‐rich) grains separated from individual chondrules from Dhajala, Bjurböle, Chainpur, Murchison, and Parsa chondrites with spallation‐produced 21Ne the result of interaction of energetic particle irradiation. The apparent 21Ne cosmic ray exposure (CRE) ages of most grains are similar to those of the matrix with the exception of three grains from Dhajala and single grains from Bjurböle and Chainpur, which show excesses, reflecting exposure to energetic particles prior to final compaction of the object. Among these five grains, one from chondrule BJ2A5 of Bjurböle shows an apparent excess exposure age of approximately 20 Ma and the other four from Dhajala and Chainpur have apparent excesses, described as an “age,” from 2 to 17 Ma. The precompaction irradiation effects of grains from chondrules do not appear to be different from the effects seen in olivine grains extracted from the matrix of CM chondrites. As was the case for the matrix grains, there appears to be insufficient time for this precompaction irradiation by the contemporary particle sources. The apparent variations within single chondrules appear to constrain precompaction irradiation effects to irradiation by lower energy solar particles, rather than galactic cosmic rays, supporting the conclusion derived from the precompaction irradiation effects in CM matrix grains, but for totally different reasons. This observation is consistent with Chandra X‐Ray Observatory data for young low‐mass stars, which suggest that our own Sun may have been 105 times more active in an early naked T‐Tauri phase ( Feigelson et al. 2002 ).  相似文献   

19.
New Tl, Pb, and Cd concentration and Tl, Pb isotope data are presented for enstatite as well as L- and LL-type ordinary chondrites, with additional Cd stable isotope results for the former. All three chondrite suites have Tl and Cd contents that vary by more than 1–2 orders of magnitude but Pb concentrations are more uniform, as a result of terrestrial Pb contamination. Model calculations based on Pb isotope compositions indicate that for more than half of the samples, more than 50% of the measured Pb contents are due to addition of modern terrestrial Pb. In part, this is responsible for the relatively young and imprecise Pb-Pb ages determined for EH, L, and LL chondrites, which are hence only of limited chronological utility. In contrast, four particularly pristine EL chondrites define a precise Pb-Pb cooling age of 4559 ± 6 Ma. The enstatite chondrites (ECs) have highly variable ε114/110Cd of between about +3 and +70 due to stable isotope fractionation from thermal and shock metamorphism. Furthermore, nearly all enstatite meteorites display ε205Tl values from −3.3 to +0.8, while a single anomalous sample is highly fractionated in both Tl and Cd isotopes. The majority of the ECs thereby define a correlation of ε205Tl with ε114/110Cd, which suggests that at least some of the Tl isotope variability reflects stable isotope fractionation rather than radiogenic ingrowth of 205Tl from 205Pb decay. Considering L chondrites, most ε205Tl values range between −4 and +1, while two outliers with ε205Tl ≤ −10 are indicative of stable isotope fractionation. Considering only those L chondrites which are least likely to feature Pb contamination or stable Tl isotope effects, the results are in accord with the former presence of live 205Pb on the parent body, with an initial 205Pb/204Pb = (1.5 ± 1.4) × 10−4, which suggests late equilibration of the Pb-Tl system 26–113 Ma after carbonaceous chondrites (CCs). The LL chondrites display highly variable ε205Tl values from −12.5 to +14.9, also indicative of stable isotope effects. However, the data for three pristine LL3/LL4 chondrites display an excellent correlation between ε205Tl and 204Pb/203Tl. This defines an initial 205Pb/204Pb of (1.4 ± 0.3) × 10−4, equivalent to a 205Pb-205Tl cooling age of 55 + 12/−24 Ma (31–67 Ma) after CCs.  相似文献   

20.
Abstract— Iodine-xenon ages (based on 15.7 Ma 129I) of meteoritic samples are highly susceptible to secondary alteration processes, so they have the potential to determine both the timing, and in some cases the location, of those secondary processes. Iodine-xenon studies can determine the location in two cases. First, if the length of time required is greater than the lifetime of the nebula, then the process must have occurred on a parent body. Ages from sodalite in Allende, dark inclusions in Efremovka (CV3), and some samples from CM chondrites all suggest durations of several million years, in some cases marginally longer than the predicted duration of the nebula. Second, in some cases the evolution of the 129Xe/132Xe ratio can be used to determine the I/Xe elemental ratio of the reservoir in which the evolution occurred. For chondrules from the unequilibrated ordinary chondrites Chainpur and Tieschitz, the isotopic evolution is quantitatively consistent with evolution in a chondritic (parent body), rather than nebular, reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号