首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider the formation of cometlike and larger bodies in the trans-Neptunian region of the protoplanetary gas–dust disk. Once the particles have reached 1–10 cm in size through mutual collisions, they compact and concentrate toward the midplane of the disk to form a dust subdisk there. We show that after the subdisk has reached a critical density, its inner, equatorial layer that, in contrast to the two subsurface layers, contains no shear turbulence can be gravitationally unstable. The layer breaks up into 1012-cm clumps whose small fragments (109 cm) can rapidly contract to form bodies 10 km in size. We consider the sunward drift of dust particles at a velocity that decreases with decreasing radial distance as the mechanism of radial contraction and compaction of the layer that contributes to its gravitational instability and the formation of larger (100 km) planetesimals. Given all of the above processes, it takes 106 yr for planetesimals to form, which is an order of magnitude shorter than the lifetime of the gas–dust protoplanetary disk. We discuss peculiarities of the structure of planetesimals.  相似文献   

2.
The pumping up of orbital inclinations of asteroids caused by sweeping secular resonances associated with depletion of a protoplanetary disk is discussed, focusing on the dependence on the disk inclinations and surface density distribution. The asteroids have large mean inclinations that cannot be explained by present planetary perturbations alone. It has been suggested that the sweeping secular resonances caused by disk depletion are responsible for these high inclinations. Nagasawa et al. (2000, Astron. J.119, 1480-1497) showed that the inclinations of asteroids are pumped up if the disk is depleted in an inside-out manner on a time scale longer than 3×105 years. Their assumed disk midplane is not on the invariant plane. However, it should be affected by the inclination of the disk plane. Here we investigate the dependence on the disk inclinations. We assume a disk depletion model in which the disk inside the jovian orbit has been removed and the residual outer disk is uniformly depleted. We calculate the locations of the secular resonances and the excitation magnitude of the inclinations with analytical methods. We found that the inclinations are pumped up to the observational level for a depletion time scale longer than 106 years in the case of the disk plane that coincides with the invariant plane. The required time scale is longest (3×106 years) if the disk plane coincides with the jovian orbital plane. However, it is still within the observationally inferred depletion time scale. We also studied dependence on a disk surface density gradient and found that the results do not change significantly as long as the inner disk depletion is faster than the outer disk one.  相似文献   

3.
4.
We consider gravitational instability of the dust layer in the midplane of a protoplanetary disk with turbulence and shear stresses between the gas in the disk and that in the dust layer. We solve a linearized system of hydrodynamic equations for perturbations of dust (monodisperse) and gas phases in the incompressible gas approximation. We take into account the gas drag of solid particles (dust aggregates), turbulent diffusion and the velocity dispersion of particles, and the perturbation of the azimuthal velocity of gas in the layer upon the transfer of angular momentum from solid particles to it and from this gas to the surrounding gas in the disk. We obtain and solve the dispersion equation for the layer with the ratio of surface densities of the dust phase and gas being well above unity. The following parameters of gravitational instability in the dust layer are calculated: the critical surface density of solid matter and the Stokes number of particles corresponding to the onset of instability, the wavelength range in which instability occurs, and the rate of its growth as a function of the perturbation wavelength in the circumsolar disk at radial distances of 1 and 10 AU. We show that at 10 AU, the maximum instability growth rate increases due to the transfer of angular momentum of gas in the layer to gas outside it, a new maximum emerges at a longer wavelength, a long-wavelength instability “tail” forms, and the critical surface density initiating instability decreases relative to that determined without the transfer of angular momentum to gas outside the layer. None of these effects are observed at 1 AU, since instability in this region probably develops faster than the transfer of angular momentum to the surrounding gаs of a protoplanetary disk occurs.  相似文献   

5.
We present three-dimensional numerical simulations on binary formation through fragmentation. The simulations follow gravitational collapse of a molecular cloud core up to growth of the first core by accretion. At the initial stage, the gravity is only slightly dominant over the gas pressure. We made various models by changing initial velocity distribution (rotation speed, rotation law, and bar-mode perturbation). The cloud fragments whenever the cloud rotates sufficiently slowly to allow collapse but faster enough to form a disk before first-core formation. The latter condition is equivalent to Ω0 t ff ? 0.05, where Ω0 and t ff f denote the initial central angular velocity and the freefall time measured from the central density, and the condition is independent of the initial rotation law and bar-mode perturbation. Fragmentation is classified into six types. When the initial cloud rotates rigidly the cloud collapses to form a adiabatic disk supported by rotation. When the bar-mode perturbation is very minor, the disk deforms to a rotating bar, and the bar fragments. Otherwise, the adiabatic disk evolves into a central core surrounded by a circumstellar disk, and the the circumstellar disk fragments. When the initial cloud rotates differentially, the cloud deforms to a ring or bar in the isothermal collapse phase. The ring fragments into free or more cores, while the bar fragments into only two cores. In the latter case, the core merges due to low orbital angular momentum and new satellite cores form in the later stages.  相似文献   

6.
Radial contraction of the dust layer in the midplane of a gas–dust protoplanetary disk that consists of large dust aggregates is modeled. Sizes of aggregates vary from centimeters to meters assuming the monodispersion of the layer. The highly nonlinear continuity equation for the solid phase of the dust layer is solved numerically. The purpose of the study is to identify the conditions under which the solid matter is accumulated in the layer, which contributes to the formation of planetesimals as a result of gravitational instability of the dust phase of the layer. We consider the collective interaction of the layer with the surrounding gas of the protoplanetary disk: shear stresses act on the gas in the dust layer that has a higher orbital velocity than the gas outside the layer, this leads to a loss of angular momentum and a radial drift of the layer. The stress magnitude is determined by the turbulent viscosity, which is represented as the sum of the α-viscosity associated with global turbulence in the disk and the viscosity associated with turbulence that is localized in a thin equatorial region comprising the dust layer and is caused by the Kelvin–Helmholtz instability. The evaporation of water ice and the continuity of the mass flux of the nonvolatile component on the ice line is also taken into account. It is shown that the accumulation of solid matter on either side of the ice line and in other regions of the disk is determined primarily by the ratio of the radii of dust aggregates on either side of the ice line. If after the ice evaporation the sizes (or density) of dust aggregates decrease by an order of magnitude or more, the density of the solid phase of the layer’s matter in the annular zone adjacent to the ice line from the inside increases sharply. If, however, the sizes of the aggregates on the inner side of the ice line are only a few times smaller than behind the ice line, then in the same zone there is a deficit of mass at the place of the modern asteroid belt. We have obtained constraints on the parameters at which the layer compaction is possible: the global turbulence viscosity parameter (α < 10?5), the initial radial distribution of the surface density of the dust layer, and the distribution of the gas surface density in the disk. Restrictions on the surface density depend on the size of dust aggregates. It is shown that the timescale of radial contraction of a dust layer consisting of meter-sized bodies is two orders of magnitude and that of decimeter ones, an order of magnitude greater than the timescale of the radial drift of individual particles if there is no dust layer.  相似文献   

7.
Solar System Research - Within the framework of Tsallis nonextensive statistics, the criteria for the Jeans gravitational instability are derived for a self-gravitating protoplanetary disk, whose...  相似文献   

8.
In this poster we will present preliminary results from our ongoing near-infrared survey of very young clusters, the majority of them still embedded in their parental molecular cloud. We will draw general conclusions on issues of the frequency and timescales for the initial stages of planet formation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
《Icarus》1999,142(1):238-248
The protoplanetary nebular analog to the planetary Rossby wave is developed. Linear dispersion relations are derived. It is found that the nebular Rossby wave propagates freely in the nebular azimuthal direction and slowly grows in the radial direction. Possible ramifications for the nebula are raised for the reverse transition of turbulence into Rossby waves and zonal jets via the Rhines mechanism (P. B. Rhines 1975, J. Fluid Mech.69, 417–443), specifically, the formation of long-lived vortices and the accretion of solid bodies.  相似文献   

10.
Abstract— Compositions and morphologies of dolomites, breunnerites, Ca-carbonates, Ca-sulfates and Mg, Ni, Na-sulfates, and their petrologic interrelations, in four CI chondrites are consistent with their having been formed by aqueous activity on the CI parent body. Radiochronometric data indicate that this activity took place very early in Solar-System history. No evidence for original (“primitive”) condensates seems to be present. However, alteration apparently took place without change in bulk meteorite composition.  相似文献   

11.
12.
Abstract— This is a report on 40Ar-39Ar studies of 7 low petrographic type L and H chondrites from Antarctica. From petrographic similarities it has been argued that the L3 chondrites ALHA77015, ?77167, ?77249, and ?77260 are pieces from a common fall (McKinley et al., 1981). Our results now confirm this supposition: The four meteorites have identical characteristic Ar-degassing patterns, very similar K, Ca, Cl, and 36Artrapped contents, and similar 40Ar-39Ar ages of <4 Ga which are rather unusual for ordinary chondrites and might be due to shock. The undulating age patterns could be due to weathering or to 39Ar recoil. The L4 chondrite ALHA77230 shows no age plateau and only a lower limit for the time of a severe degassing, 4.0 Ga, can be given. ALHA77226 and RKPA78002, two H4 chondrites, exhibit reasonably well defined age plateaus at about 4.3 and 4.4 Ga. Two individual chondrules from RKPA78002 have the same age as the whole rock sample.  相似文献   

13.

The sequence of evolution of the protoplanetary gas-and-dust disk around the parent star includes, according to modern concepts, its compression in the central plane and decay into separate dust condensations (clusters) due to the occurrence of various types of instabilities. The interaction of dust clusters of a fractal structure during their collisions is considered as a key mechanism for the formation and growth of primary solids, which serve as the basis for the subsequent formation of planetesimals and embryos of planets. Among the mechanisms contributing to the formation of planetesimals, an important place belongs, along with gravitational instability, hydrodynamic instabilities, in particular, the socalled streaming instability of the two-phase gas-dust layer due to its ability to concentrate dispersed particles in dense clots. In contrast to a number of existing models of streaming instability, in which dust particles are considered structurally compact and monodisperse, this paper proposes a more realistic model of polydisperse particles of fractal nature, forming dust clusters as a result of coagulation. The instability of the dust layer in the central plane of the protoplanetary disk under linear axisymmetric perturbations of its parameters is considered. A preliminary conclusion can be drawn that the proposed model of dust fractal aggregates of different scales increases the efficiency of linear growth of hydrodynamic instabilities, including the streaming instabilities associated with the difference between the velocities of the dust and gas phases.

  相似文献   

14.
本文根据吸秘盘理论与天文观测结果,给出一个恒星在星云盘中形成的模型.通过计算角动量方程,获得了质量定常分布ρ(r)~r_(-β)(β=0,1,2)时的一般性解.对1M恒星的数值解表明:恒星在转动磁化的星云盘中形成时,角动量确实发生了巨大转移;并且,β=2的解能较满意地解释太阳系的角动量奇异性.  相似文献   

15.
Correlations between stellar kinematics and chemical abundances are fossil evidence for evolutionary connections between Galactic structural components. Extensive stellar surveys show that the only tolerably clear distinction between galactic components appears in the distributions of specific angular momentum. Here the stellar metal-poor halo and the metal-rich bulge are indistinguishable from each other, as are the thick disk and the old disk. Each pair is very distinct from the other. This leads to an evolutionary model in which the metal-poor stellar halo evolves into the inner bulge, while the thick disk is a precursor to the thin disk. These evolutionary sequences are distinct. The galaxy is made of two discrete 'populations', one of low and one of high angular momentum. Some (minor?) complexity is added to this picture by the debris of late and continuing mergers, which will be especially important in the outer stellar halo.  相似文献   

16.
The effects that a hypothetical trans-Plutonian planet would produce on theorbital distribution of the Classical Edgeworth-Kuiper-Belt, has beensurveyed for different physical and orbital parameters of the hypotheticalbody in Melita et al. (2003a). The best fits were obtained by a moderatelyeccentric and inclined Earth-sized object with a semimajor axis of ~ 70AU. However the history of some objects in the `Extended Scattered disk’still represent a puzzle. One possibility is that they can be `extracted’from the Scattered disk by the planetoid. In this work we confirm that such anhypothesis would not explain the present orbit of 2000 CR105, given theconditions for a gap as observed to be formed in the Classical EKB.  相似文献   

17.
袁启荣  朱朝曦 《天文学报》2003,44(4):342-349
盘星系的内禀扁度对计算星系的空间倾角非常重要.对从LEDA数据库中选取的14988个盘星系进行内禀扁度的统计分析.研究表明,盘星系的内禀扁度与星系的形态密切相关.整体上说,透镜星系和不规则星系的内禀扁度qo大于旋涡星系,早型旋涡星系的内禀扁度qo大于晚型旋涡星系,其中Scd星系的内禀扁度qo最小.利用所得的qo-T关系,还对16个已知倾角的亮星系进行了倾角计算,发现与其他方法估计的空间倾角符合得较好.  相似文献   

18.
The Cassini-Huygens arrival into the Saturnian system brought a large amount of data about the satellites and rings. Two diffuse rings were found in the region between the A ring and Prometheus. R/2004 S1 is coorbital to Atlas and R/2004 S2 is close to Prometheus. In this work we analysed the closest approach between Prometheus and both rings. As a result we found that the satellite removes particles from R/2004 S2 ring. Long-term numerical simulations showed that some particles can cross the F ring region . The well known region of the F ring, where small satellites are present and particles are being taking from the ring, gains a new insight with the presence of particles from R/2004 S2 ring. The computation of the Lyapunov Characteristic Exponent reveled that the R/2004 S2 ring lies in a chaotic region while R/2004 S1 ring and Atlas are in a stable region. Atlas is responsible for the formation of three regimes in the R/2004 S1 ring, as expected for a satellite embedded in a ring.  相似文献   

19.
20.
The trans-Neptunian belt has been subject to a strong depletion that has reduced its primordial population by a factor of one hundred over the solar system's age. One by-product of such a depletion process is the existence of a scattered disk population in transit from the belt to other places, such as the Jupiter zone, the Oort cloud or interstellar space. We have integrated the orbits of the scattered disk objects (SDOs) so far discovered by 2500 Myr to study their dynamical time scales and the probability of falling in each of the end states mentioned above, paying special attention to their contribution to the Oort cloud. We found that their dynamical half-time is close to 2.5 Gyr and that about one third of the SDOs end up in the Oort cloud.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号