首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 76 毫秒
1.
Using the mesoscale eddy trajectory atlas product derived from satellite altimeter data from 1993 to 2016, this study analyzes statistical characteristics and seasonal variability of mesoscale eddies in the Banda Sea of the Indonesian seas. The results show that there were 147 mesoscale eddies that occurred in the Banda Sea, of which 137 eddies were locally generated and 10 originated from outside. The total numbers of cyclonic eddies (CEs, clockwise) and anticyclonic eddies (AEs, anticlockwise) are 76 and 71, respectively. Seasonally, the number of CEs (AEs) is twice larger than the number of AEs (CEs) in winter (summer). In winter, CEs are distributed in the southern and AEs in the northern basins, respectively, but the opposite thing occurs in summer, i.e., the polarities of mesoscale eddies observed at the same location reverse seasonally. The mechanisms of polarity distribution reversal (PDR) of mesoscale eddies are examined with reanalysis data of ocean currents and winds. The results indicate that the basin-scale vorticity, wind stress curl, and the meridional shear of zonal current reverse seasonally, which are favorable to the PDR of mesoscale eddies. The possible generation mechanisms of mesoscale eddies include direct wind forcing, barotropic and baroclinic instabilities, of which the direct wind forcing should play the dominant role.  相似文献   

2.
Eddy activity in the lee of the Hawaiian Islands   总被引:2,自引:0,他引:2  
Persistent northeasterly trade winds have a substantial impact on the oceanic circulation around the Hawaiian Islands. A regional ocean model is applied to understand the effect of different temporal and spatial resolutions of surface momentum forcing on the formation of strong mesoscale vortices and on the simulation of realistic levels of eddy kinetic energy. The higher spatial and temporal resolutions of wind forcing is shown to substantially affect the vorticity and deformation field in the immediate lee of the Hawaiian Islands and produce patterns of eddy kinetic energy similar to observations. This suggests that the surface eddy field in the region is mostly dominated by the local surface momentum forcing. Mesoscale cyclones and anticyclones formed in the lee of the Island of Hawaii are shown to have different propagation patterns. Mesoscale cyclones are more confined to the lee and are hence subject to interactions with the strong wind forcing and deformation field as well as smaller vortices formed in the wake of the other islands. Mesoscale anticyclones show not only a tendency to propagate further westward, but also to persist as coherent features as they propagate, even at relatively lower values of relative vorticity. The large strain rates that affect the propagation of the cyclones cause them to break down into filaments of positive vorticity. Rossby numbers of O(1) within vortices and filaments indicate that nonlinear interactions between the wind stress and the vertical component of the relative vorticity field is potentially important in producing large vertical velocities. Modeled cyclonic eddies show a good resemblance to observations both in terms of vertical structure and propagation patterns.  相似文献   

3.
On the general ocean circulation forced by the asymmetric wind stress curl, the role of the eddies which are detached from the western boundary current is studied using an eddy-resolving two-layered quasi-geostrophic numerical model with free-slip boundary condition. An ideal sinusoidal function is used as the wind stress curl, and amplitude is assumed to be larger over the southern basin than over the northern one. In contrast with the antisymmetric wind forcing, in the asymmetric wind stress case, the subtropical western boundary current overshoots to the north from the zero wind stress curl line. As the asymmetricity of the wind forcing becomes larger, the separation point of the time mean field is located further north. The eddies generated in the region of the subtropical recirculation are advected northward by the western boundary current and they are detached from subtropical gyre. The release of these eddies to the north basin leads to weaken the subtropical recirculation system. From the analysis of the potential vorticity budgets, in the asymmetric case, it is shown that detached eddies play an important role in transporting the negative vorticity which is excessively inputted into the southern basin, to the northern basin, in addition to the terms which transport vorticity in the antisymmetric case, i.e., the vorticity transport by the meander of the jet. Under the free-slip boundary, more than a quarter of that excess vorticity is transported by those detached eddies in some cases.  相似文献   

4.
Circulation and multiple-scale variability in the Southern California Bight   总被引:1,自引:0,他引:1  
The oceanic circulation in the Southern California Bight (SCB) is influenced by the large-scale California Current offshore, tropical remote forcing through the coastal wave guide alongshore, and local atmospheric forcing. The region is characterized by local complexity in the topography and coastline. All these factors engender variability in the circulation on interannual, seasonal, and intraseasonal time scales. This study applies the Regional Oceanic Modeling System (ROMS) to the SCB circulation and its multiple-scale variability. The model is configured in three levels of nested grids with the parent grid covering the whole US West Coast. The first child grid covers a large southern domain, and the third grid zooms in on the SCB region. The three horizontal grid resolutions are 20 km, 6.7 km, and 1 km, respectively. The external forcings are momentum, heat, and freshwater flux at the surface and adaptive nudging to gyre-scale SODA reanalysis fields at the boundaries. The momentum flux is from a three-hourly reanalysis mesoscale MM5 wind with a 6 km resolution for the finest grid in the SCB. The oceanic model starts in an equilibrium state from a multiple-year cyclical climatology run, and then it is integrated from years 1996 through 2003. In this paper, the 8-year simulation at the 1 km resolution is analyzed and assessed against extensive observational data: High-Frequency (HF) radar data, current meters, Acoustic Doppler Current Profilers (ADCP) data, hydrographic measurements, tide gauges, drifters, altimeters, and radiometers. The simulation shows that the domain-scale surface circulation in the SCB is characterized by the Southern California Cyclonic Gyre, comprised of the offshore equatorward California Current System and the onshore poleward Southern California Countercurrent. The simulation also exhibits three subdomain-scale, persistent (i.e., standing), cyclonic eddies related to the local topography and wind forcing: the Santa Barbara Channel Eddy, the Central-SCB Eddy, and the Catalina-Clemente Eddy. Comparisons with observational data reveal that ROMS reproduces a realistic mean state of the SCB oceanic circulation, as well as its interannual (mainly as a local manifestation of an ENSO event), seasonal, and intraseasonal (eddy-scale) variations. We find high correlations of the wind curl with both the alongshore pressure gradient (APG) and the eddy kinetic energy level in their variations on time scales of seasons and longer. The geostrophic currents are much stronger than the wind-driven Ekman flows at the surface. The model exhibits intrinsic eddy variability with strong topographically related heterogeneity, westward-propagating Rossby waves, and poleward-propagating coastally-trapped waves (albeit with smaller amplitude than observed due to missing high-frequency variations in the southern boundary conditions).  相似文献   

5.
本文使用基于热成风速度的涡旋识别拓展方法,通过海表面温度数据对黑潮延伸体区域50-100公里涡旋进行研究,发现50-100公里涡旋主要分布在黑潮延伸体流轴两侧,气旋涡和反气旋涡的寿命、半径分布具有一致性。气旋涡多出现在35°N以北,反气旋涡在35°N以南比较集中,与尺度较小的中尺度涡旋分布特征较为相似。冬夏两季涡旋地理分布存在一定差异,主要与不同季节该区域海表温度梯度及风应力旋度的变化有关。35°N以南50-100公里涡旋数量的季节性变化与风速大小的季节性变化存在明显的正相关性。35°N以南50-100公里涡旋三倍半径内风速异常和风应力旋度归一化表明,气旋涡对应风速负异常而反气旋涡对应风速正异常,反气旋涡的产生依赖于风应力负旋度,气旋涡的生成与风应力正旋度有关。  相似文献   

6.
台风和海洋涡旋相互作用,对台风路径和强度的预报和预警具有重要的意义。本文根据2016年第22号超强台风"海马"登陆前后在吕宋海峡附近海域的水文要素现场观测,结合卫星遥感资料,分析了台风过境前后位于吕宋海峡北部的中尺度暖涡内海洋物理要素的分布及其对台风的响应特征。结果表明,处于台风边缘的暖涡并没有因为台风过境产生的强冷抽吸作用而被削弱;反而因台风边缘产生的较强的负风应力旋度异常,导致此区域上层暖海水辐聚下沉、混合层厚度增加,从而增强了该暖涡。台风过境前后,暖涡内热含量的变化也证实了该涡旋的增强。而离台风中心较近的暖涡,则受到强的正风应力旋度产生的冷抽吸作用而被削弱。此次观测研究丰富了台风和涡旋的相互作用物理机制探索,为台风预测预警提供了现场观测数据支持。  相似文献   

7.
利用高度计海面高度异常数据和非线性1½层约化重力模式研究了南海东部中尺度涡的生成机制。模式结果表明,南海内区风场是南海东部中尺度涡生成的主要驱动力,且南海内区高频风场能解释约54%的南海东部中尺度涡。从西太平洋传来的信号同样有十分重要的作用,由西太区域高频风场大致能解释南海东部40%的中尺度涡。风驱动的赤道附近的海面异常信号能经过锡布图通道和民都洛海峡传播到吕宋岛西海岸,其中有部分能量会以罗斯贝波的形式往西传播。这种信号在西传的过程中会发生不稳定,可能形成孤立的涡旋。  相似文献   

8.
南海中尺度涡年际变化特征及动力机制分析   总被引:4,自引:0,他引:4  
基于Okubo-Weiss函数方法对20年高度计资料进行涡旋识别,分析了南海中尺度涡的时空分布,初步研究了中尺度涡旋活动的年际变化特征及其可能的动力机制。结果显示,南海中尺度涡旋活动具有较为显著的年际变化特征,通过对涡旋个数、涡区面积、涡动能计算分析表明涡旋活动与ENSO现象遥相关:南海中尺度涡活动在ElNio年较弱,在LaNia年较强。可用风场异常解释南海中尺度涡的年际变化与ENSO现象的负相关关系。ElNio期间南海年平均意义下的东北风场减弱,风应力旋度绝对值减小,从而导致了较弱的涡旋活动,相反LaNia期间强劲的风场导致了涡旋活动增强。  相似文献   

9.
A zonal-average model of the upper branch of the meridional overturning circulation of the southern ocean is constructed and used to discuss the processes – wind, buoyancy, eddy forcing and boundary conditions – that control its strength and sense of circulation. The geometry of the thermocline ‘wedge’, set by the mapping between the vertical spacing of buoyancy surfaces (the stratification) on the equatorial flank of the Antarctic Circumpolar Current and their outcrop at the sea surface, is seen to play a central role by setting the interior large-scale potential vorticity distribution. It is shown that the action of eddies mixing this potential vorticity field induces a residual flow in the meridional plane much as is observed, with upwelling of fluid around Antarctica, northward surface flow and subduction to form intermediate water. Along with this overturning circulation there is a concomitant air-sea buoyancy flux directed in to the ocean.  相似文献   

10.
《Ocean Modelling》2011,36(4):277-303
We investigate the influence of bottom topography on the formation and trapping of long upwelling filaments using a 2-layer shallow water model on the f-plane. A wind forced along-shore current, associated with coastal upwelling along a vertical wall, encounters a promontory of finite width and length, perpendicular to the coast.In the lower layer, topographic eddies form, which are shown to drive the formation of a filament on the front. Indeed, as the upwelling current and front develop along the coast, the along shore flow crosses the promontory, re-arranging the potential vorticity structure and generating intense vortical structures: water columns with high potential vorticity initially localized upon the promontory are advected into the deep ocean, forming cyclonic eddies, while water columns from the deep ocean with low potential vorticity climb on the topography forming a trapped anticyclonic circulation. These topographic eddies interact with the upper layer upwelling front and form an elongated, trapped and narrow filament.Sensitivity tests are then carried out and it is shown that:
  • •baroclinic instability of the front does not play a major role on the formation of long trapped filaments;
  • •increasing the duration of the wind forcing increases the upwelling current and limits the offshore growth of the filament;
  • •modifying the promontory characteristics (width, length, height and slopes) has strong impact on the filament evolution, sometimes leading to a multipolarisation of the potential vorticity anomaly structure which results in much more complicated patterns in the upper layer (numerous shorter and less coherent filaments). This shows that only specific promontory shapes can lead to the formation of well defined filaments;
  • •adding bottom friction introduces a slight generation of potential vorticity in the bottom layer over the promontory, but does not significantly alter significantly the formation of the filament along the outcropped front in the present configuration;
  • •modifying the stratification characteristics, in particular the density jump between the layers, has only a weak influence on the dynamics of topographic eddies and on filament formation;
  • •the influence of capes is also modest in our simulations, showing that topography plays the major role in the formation of long and trapped upwelling filaments.
  相似文献   

11.
钱思佳  于方杰  陈戈 《海洋科学》2021,45(11):10-19
本文使用基于热成风速度的涡旋识别拓展方法,通过海表面温度数据对黑潮延伸体区域50~100 km涡旋进行研究,发现50~100 km涡旋主要分布在黑潮延伸体流轴两侧,气旋涡和反气旋涡的寿命、半径分布具有一致性。气旋涡多出现在35°N以北,反气旋涡在35°N以南比较集中,与尺度较小的中尺度涡旋分布特征较为相似。冬夏两季涡旋地理分布存在一定差异,主要与不同季节该区域海表温度梯度及风应力旋度的变化有关。35°N以南50~100 km涡旋数量的季节性变化与风速大小的季节性变化存在明显的正相关性。35°N以南50~100 km涡旋三倍半径内风速异常和风应力旋度归一化表明,气旋涡对应风速负异常而反气旋涡对应风速正异常,反气旋涡的产生依赖于风应力负旋度,气旋涡的生成与风应力正旋度有关。  相似文献   

12.
Circulation     
Low-frequency current and temperature variability on the southeast US continental shelf during summer conditions of weak wind forcing and vertical stratification was found to be similar in many aspects to previous findings for winter, when stronger wind forcing and vertical homogeneity prevails. Subtidal variability in the outer shelf is dominated by the weekly occurrence of Gulf Stream frontal eddies and meanders. These baroclinic events strongly affect the balance of momentum in the outer shelf, but not at mid-shelf. A negative alongshore sea level slope of order −10−7 is required to balance mean along-shelf momentum at the shelf edge, similar to oceanic estimates, and can contribute to the observed northward mean flow over the shelf.Low-frequency flow at mid-shelf and coastal sea level fluctuations appear to occur as a forced wave response to local alongshore wind stress events that are coherent over the shelf domain. Momentum balances indicate a trapped wave response similar to the arrested topographic wave found in the mid-Atlantic Bight (CSANADY, 1978). Density driven currents from river discharge do not appear to be significant at mid-shelf. Cold, subsurface intrusions of deeper, nutrient rich Gulf Stream waters can occasionally penetrate to mid- and inner-shelf regions north of Cape Canaveral, causing strong phytoplankton and zooplankton responses. These events were observed following the simultaneous occurrence of upwellings from northward winds and Gulf Stream frontal eddies at the shelf break during periods when the Stream was in an onshore position. Subsurface Gulf Stream intrusions to mid-shelf occur only during the summer, when the shelf is vertically stratified and cross-shelf density gradients do not present a barrier as in winter.  相似文献   

13.
《Ocean Modelling》2008,20(3):240-251
Using new global satellite remote sensing data, we show that ignoring the ocean current dependence in the wind stress artificially increases global wind power input to the oceanic general circulation by about 32%, and more than doubles the input in the regions of strong ocean current systems. Scatterometer-derived wind stress naturally accounts for the moving ocean that is not included in traditional wind stress products. However, forcing an ocean model with a scatterometer-derived wind stress cannot actually account for the ocean current effect on the wind power input. The difference between the real and modeled surface eddy fields can reduce the damping associated with the ocean current dependence in wind stress, leading to a positive bias in global wind power input of about 23%. Most of this spurious energy flux goes directly to the fluctuation eddy field and is several times larger than the energy flux to real ocean eddies.  相似文献   

14.
基于南海东北部1998~2019年的多源卫星遥感数据和风场再分析数据, 较系统地分析了南海东北部涡旋内部叶绿素a浓度的分布特征, 通过量化统计和涡心坐标系参数合成等方法探究了中尺度涡对叶绿素a浓度变化的影响规律及潜在机制。结果表明: (1)南海东北部约有60%的中尺度涡旋内部存在叶绿素a浓度增加和减少的现象。(2)南海东北部中尺度涡内部叶绿素a扰动受到涡旋抽吸和涡致Ekman抽吸机制的共同调控, 其中约有38% (39%)的暖(冷)涡内涡旋抽吸的贡献更大, 21% (24%)的暖(冷)涡内涡致Ekman抽吸的贡献更大。(3)南海东北部中尺度涡生命周期内的海表叶绿素a浓度变化存在显著的阶段性差异, 在冷暖涡的生成期, 涡旋抽吸的作用更为显著, 而在冷暖涡的顶峰和消亡期, 涡致Ekman抽吸的作用更为明显。上述研究结果有助于理解南海东北部初级生产力对中尺度涡的响应过程与机理, 对认识海洋物理-生物耦合过程具有一定的参考价值和研究意义。  相似文献   

15.
The results of two oceanographic surveys designed to delineate the flow response near Cato Island (155°32′E, 23°15′S) in the Western Coral Sea are presented. The surveys were conducted in October 1992 and February 1993 and coincided with conditions of strong, steady incident currents and relatively weak, variable currents, respectively. For the strong inflow case study, a surface-intensified cyclonic eddy observed in the wake of the island was co-incident with a zone of strong upwelling. Isotherm displacements within the eddy were in excess of 90 m. The lee side response was strongly depth dependent, with recirculation confined to the upper 120 m. A dynamical systems approach incorporating ADCP data was used to compute Lagrangian trajectories numerically for particles released at various locations in the wake zone. There was no evidence of enhanced chlorophyll concentrations downstream of the island. Comparisons with other dynamically similar studies indicate that eddy shedding is likely during periods of steady incident currents. During the second survey, weaker incident currents resulted in a less pronounced flow disturbance. Small isothermal displacements were capped beneath the strong seasonal thermocline. Lee side currents were weak and variable, with recirculation confined to the upper 50 m. A strong biological response was observed downstream, with increased integrated chlorophyll content and zooplankton biomass in the lee providing evidence of the island mass effect.  相似文献   

16.
南海环流动力机制研究综述   总被引:40,自引:9,他引:31  
南海的环流复杂,但通过近20 a来的研究工作,国内外学者对此已取得了不少的成果.本文就南海环流框架性的问题,综述了有关的文献,认为对南海上层海洋三方面的环流分量的驱动机制已有了初步的认识.这三方面分别是:(1)准季节性风场;(2)黑潮向南海的净输运;(3)黑潮向南海的涡度平流输送.但是对这些驱动的时空变化仍相当不清楚.三者皆增强了南海北部的海盆尺度气旋式环流,其强化的西南向西边界流靠近东沙群岛,建议称为“东沙海流”.没有水文证据显示黑潮水是以分支形式进入南海,其向南海的输运也不可能主要通过中尺度涡过程,具体机制有待研究.每年在南海生成的中尺度涡平均约有10个,风场与沿岸地形所生成的强风应力旋度可能是其主要的驱动机制.作为框架性的认识,也有三方面的工作进行得较少,即:(1)吕宋海峡的上层水交换;(2)南海的中尺度涡生成机制,虽然强风应力旋度及前述的第三种环流驱动机制也有中尺度涡伴生;(3)自吕宋海峡进入的深层水对南海上层海洋环流的影响.  相似文献   

17.
Flow of winter-transformed Pacific water into the Western Arctic   总被引:1,自引:0,他引:1  
The dynamics of the flow of dense water through Barrow Canyon is investigated using data from a hydrographic survey in summer 2002. The focus is on the winter-transformed Bering water—the highest volumetric mode of winter water in the Chukchi Sea—which drains northward through the canyon in spring and summer. The transport of this water mass during the time of the survey was 0.2–0.3 Sv. As the layer flowed from the head of the canyon to the mouth, it sank, decelerated, and stretched. Strong cyclonic relative vorticity was generated on the seaward side of the jet, which compensated for the stretching. This adjustment was incomplete, however, in that it did not extend across the entire current, possibly because of internal mixing due to shear instabilities. The resulting vorticity structure of the flow at the canyon mouth was conducive for baroclinic instability and eddy formation. Multiple eddies of winter-transformed Bering water were observed along the Chukchi–Beaufort shelfbreak. Those to the west of Barrow Canyon were in the process of being spawned by the eastward-flowing shelfbreak current emanating from Herald Canyon, while the single eddy observed to the east originated from the Barrow Canyon outflow. It is argued that such an eddy formation is a major source of the ubiquitous cold-core anti-cyclones observed historically throughout the Canada Basin. Implications for the ventilation of the upper halocline of the Western Arctic are discussed.  相似文献   

18.
I~IOXSatellite infrared measurements are now accepted as an effeCtive way of mapping sea surfacetemperature (SST) distributions on global and regional scales. While regional SST maps are widely uest as background data for oceanographic experiments, they tend to be considered by oceanographers as at best qualitative tools. There is SCOPe for developing the use of satellite SST imagesac extensively for the study of mesoscale d~ical processes, as this paper seeks to demonstrate. As Part O…  相似文献   

19.
Time-longitude diagrams of monthly anomalies of TOPEX/Poseidon sea surface height (SSH), Levitus steric height, COADS wind stress curl, as well as meridional surface wind averaged over the northern South China Sea (SCS) from 18° to 22°N, exhibit a coherent westward phase propagation, with a westward propagation speed of about 5 cm s−1. The consistency between oceanic and atmospheric variables indicates that there is a forced Rossby wave in the northern SCS. The horizontal patterns of monthly SSH anomalies from observations and model sensitivity experiments show that the forced Rossby wave, originating to the northwest off Luzon Island, actually propagates west-northwestward towards the Guangdong coast because of zonal migration of the meridional surface wind. The winter Luzon Cold Eddy (LCE), which has been found from field observations, can be identified as a forced Rossby wave with a negative SSH anomaly in winter. It corresponds to strong upwelling and a negative temperature anomaly. Sensitivity experiments show that the wind forcing controls the generation of the LCE, while the Kuroshio is of minor importance.  相似文献   

20.
Observations of topographic Rossby waves (TRW), using moored current meters, bottom pressure gauges, and Lagrangian RAFOS floats, are investigated for the deep basin of the Gulf of Mexico. Recent extensive measurement programs in many parts of the deep gulf, which were inspired by oil and gas industry explorations into ever deeper water, allow more comprehensive analyses of the propagation and dissipation of these deep planetary waves. The Gulf of Mexico circulation can be divided into two layers with the ∼800-1200 m upper layer being dominated by the Loop Current (LC) pulsations and shedding of large (diameters ∼300-400 km) anticyclonic eddies in the east, and the translation of these LC eddies across the basin to the west. These processes spawn smaller eddies of both signs through instabilities, and interactions with topography and other eddies to produce energetic surface layer flows that have a rich spectrum of orbit periods and diameters. In contrast, current variability below 1000 m often has the characteristics of TRWs, with periods ranging from ∼10-100 days and wavelengths of ∼50-200 km, showing almost depth-independent or slightly bottom intensified currents through the weakly stratified lower water column. These fluctuations are largely uncorrelated with simultaneous upper-layer eddy flows. TRWs must be generated through energy transfer from the upper-layer eddies to the lower layer by potential vorticity adjustments to changing depths of the bottom and the interface between the layers. Therefore, the LC and LC eddies are prime candidates as has been suggested by some model studies. Model simulations have also indicated that deep lower-layer eddies may be generated by the LC and LC eddy shedding processes.In the eastern gulf, the highest observed lower-layer kinetic energy was north of the Campeche Bank under the LC in a region that models have identified as having strong baroclinic instabilities. Part of the 60-day TRW signal propagates towards the Sigsbee Escarpment (a steep slope at the base of the northern continental slope), and the rest into the southern part of the eastern basin. Higher energy is observed along the escarpment between 89°W and 92°W than either under the northern part of the LC or further south in the deep basin, because of radiating TRWs from the western side of the LC. In the northern part of the LC, evidence was found in the observations that 20-30-day TRWs were connected with the upper layer through coherent signals of relative vorticity. The ∼90° phase lead of the lower over the upper-layer relative vorticity was consistent with baroclinic instability. Along the Sigsbee Escarpment, the TRWs are refracted and reflected so that little energy reaches the lower continental slope and a substantial mean flow is generated above the steepest part of the escarpment. RAFOS float tracks show that this mean flow continues along the escarpment to the west and into Mexican waters. This seems to be a principal pathway for deepwater parcels to be transported westward. Away from the slope RAFOS floats tend to oscillate in the same general area as if primarily responding to the deep wave field. Little evidence of westward translating lower-layer eddies was found in both the float tracks and the moored currents. In the western gulf, the highest deep energy levels are much less than in the central gulf, and are found seaward of the base of the slope. Otherwise, the situation is similar with TRWs propagating towards the slope, probably generated by the local upper-layer complex eddy field, being reflected and forcing a southward mean flow along the base of the Mexican slope. Amplitudes of the lower-layer fluctuations decay from the northwest corner towards the south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号