首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
E. Haugen 《Solar physics》1969,9(1):88-101
The wavelength shifts of approximately 8000 absorption elements in the H-line from spectra of 66 different sunspot regions have been measured.The average velocity field in the chromosphere close to sunspots is determined. Inside 15000 km from the spot's penumbral rim the average velocity vector is directed towards the spot and downwards in the chromosphere; the angle with the horizontal direction is on the average equal to 20°. The magnitude of the average velocity vector shows a maximum of 6.8 ± 1.2 km/sec just outside the penumbral rim and decreases quickly with increasing distance from the spot. Outside 15000 km from the penumbral rim the average velocity vector is small (-0.7 km/sec) and directed nearly vertically outwards from the sun. No significant tangential component of the average velocity field is found.The deviations of the individual elements from the average velocity field are on the average larger than the value of the average velocity. The total rms deviation in the line of sight velocity is equal to 6.8 km/sec. Thus, a large number of elements, as used in this investigation, is required to give significant values of the average velocity vector.We have also observed velocities in the penumbra. The average velocity vector is here probably small and its direction uncertain. The rms deviation in the line of sight velocities observed in the penumbra is equal to 7.5 km/sec.  相似文献   

2.
The role of binary progenitors of neutron stars (NSs) in the apparent distribution of space velocities and spin–velocity alignment observed in young pulsars is studied. We performed a Monte Carlo synthesis of pulsar populations originated from single and binary stars with different assumptions about the NS natal kick (kick–spin alignment, kick amplitude and kick reduction in electron-capture supernovae in binary progenitors with initial main-sequence masses from the range  8–11 M  which experienced mass exchange due to Roche lobe overflow). The calculated spin–velocity alignment in pulsars is compared with data inferred from radio polarization measurements. The observed space velocity of pulsars is found to be mostly affected by the natal kick velocity form and its amplitude; the fraction of binaries is not important here for reasonably large kicks. The natal kick–spin alignment is found to strongly affect the spin–velocity correlation of pulsars. Comparison with the observed pulsar spin–velocity angles favours a sizeable fraction of binary progenitors and kick–spin angles  ∼5°–20°  .  相似文献   

3.
The fine structure of the Evershed effect was studied using spectrograms obtained on 3 July 1969 at the Pulkovo Observatory. The results of the study of Fei and Cai lines show that the outward motion in the penumbra is concentrated only in dark filaments. It is supposed that interfilamentary spaces are parts of the photosphere not covered by dark filaments. The velocity variation along a few dark filaments shows that maximum velocity is at a distance 0.8 Rs from the center of the sunspot. The mean velocity in the interfilamentary elements is of the same order as that in the photosphere directly adjoining the penumbra. The results of measurement in Ti ii, Fe ii and CH lines show that in the colder upper part of the penumbra (CH) the velocity is greater than the velocity measured in the deeper layers (Feii and Tiii). The mean velocity at the outer boundaries of the dark filaments (Tii) is 1.5–2.0 km/s.  相似文献   

4.
We present high angular resolution spectra taken along the jets from L1551 IRS 5 and DG Tau obtained with the Subaru Telescope. The position-velocity diagrams of the [Fe II] λ 1.644 μmemission line revealed remarkably similar characteristics for the two sources, showing two distinct velocity components separated from each other in both velocity and space with the entire emission range blueshifted with respect to the stellar velocity. The high velocity component (HVC) has a velocity of –200 ––300 km s-1 with a narrow line width, while the low velocity component (LVC) is around –100 km s-1 exhibitinig a broad line width. The HVC is located farther away from the origin and is more extended than the LVC. Our results suggest that the HVC is a well-collimated jet originating from the region close to the star, while the LVC is a widely-opened wind accelerated in the region near the inner edge of the accretion disk.  相似文献   

5.
We measured the velocity distributions of impact ejecta with velocities higher than ∼100 m s−1 (high-velocity ejecta) for impacts at variable impact angle α into unconsolidated targets of small soda-lime glass spheres. Polycarbonate projectiles with mass of 0.49 g were accelerated to ∼250 m s−1 by a single-stage light-gas gun. The impact ejecta are detected by thin aluminum foils placed around the targets. We analyzed the holes on the aluminum foils to derive the total number and volume of ejecta that penetrated the aluminum foils. Using the minimum velocity of the ejecta for penetration, determined experimentally, the velocity distributions of the high-velocity ejecta were obtained at α=15°, 30°, 45°, 60°, and 90°. The velocity distribution of the high-velocity ejecta is shown to depend on impact angle. The quantity of the high-velocity ejecta for vertical impact (α=90°) is considerably lower than derived from a power-law relation for the velocity distribution on the low-velocity ejecta (less than 10 m s−1). On the other hand, in oblique impacts, the quantity of the high-velocity ejecta increases with decreasing impact angle, and becomes comparable to those derived from the power-law relation. We attempt to scale the high-velocity ejecta for oblique impacts to a new scaling law, in which the velocity distribution is scaled by the cube of projectile radius (scaled volume) and a horizontal component of impactor velocity (scaled ejection velocity), respectively. The high-velocity ejecta data shows a good correlation between the scaled volume and the scaled ejection velocity.  相似文献   

6.
The equilibrium structure of differentially rotating polytropic cylinders is determined numerically. We setn=3 and use a quadratic function for the law of differential rotation. We construct different models by varying the angular velocity at the axis and the ratio of the angular velocity at the surface to the angular velocity at the axis. By taking a decreasing function for the rotation law we are able to treat models with an angular velocity at the axis greater than the break-up velocity of uniformly rotating cylinders. We also determine whether a Richardson-like criterion for stability is violated in the models.  相似文献   

7.
The stability of a velocity shear in the presence of a parallel but non-uniform magnetic field is considered in general terms. Two special cases are then investigated; (i) the well known case of a plane interface at which a discontinuity in the magnetic field coincides with the velocity shear; (ii) an axially symmetric flow in which discontinuities in the magnetic and velocity fields occur at a cylindrical surface whose axis is parallel to the flow. In the first case the flow is stabilized if the rms Alfvén velocity of the magnetic field exceeds the shear velocity; a result consistent with that obtained by other writers. In the second case it is shown that the discontinuity in the magnetic field increases the stability of the system. The significance of this result for the stability of the flux ropes associated with sunspots in the solar convection zone is considered.  相似文献   

8.
The VLBA has been used over a period of four years to study the internal motions within a sample of quasars and AGN. In most sources, features appear to propagate away from the central engine along a well collimated radio jet with apparent transverse velocities between zero and 10c, with some evidence for apparent accelerations and decelerations. The distribution of apparent velocity is not consistent with any simple ballistic model and appears to require either a spread in intrinsic velocity or a difference between the bulk velocity and pattern velocity. The dependence of apparent angular velocity with redshift is consistent with standard Friedmann world models. Further observations of a larger source sample, especially at large redshift may lead to meaningful constraints on world models.  相似文献   

9.
The photospheric velocity field was observed in an active region which was prolific in moustaches. It is shown that the moustaches occur at the locations where the sign of the line-of-sight velocity changes, and that the extension of the velocity field is large (≈104 km) compared with the dimension of moustaches.  相似文献   

10.
We give a statistical method which will estimate the true rotational velocity V of a Be star from its observed apparent velocity U = Vsini. We show that Be stars do not rotate with the critical velocity and that the ratio between their real velocity and the critical velocity is about 0.7.  相似文献   

11.
Spectral lines formed in a rotating and expanding atmosphere have been computed in the frame of the observer at infinity. Two kinds of velocity laws are employed: (i) a uniform radial velocity of the gas and (ii) velocity increasing with radius (i.e. velocity gradients). The atmosphere has been assumed to be rotating with constant velocity. We have considered maximum radial and rotational velocities to be 10 and 3 mean thermal units respectively in an atmosphere whose geometrical thickness is 10 times the stellar radius. The total radial optical depth at line centre is taken to be about 100. In all cases, Doppler profile and a source function which is varying as 1/r 2 have been used. Generally, the lines are broadened when rotation is introduced. However, when radial motion is also present, broadening becomes asymmetric and the red emission and blue absorption are enhanced.  相似文献   

12.
《Icarus》1986,68(1):87-98
The impact of a large extraterrestrial body onto a planet deposits considerable energy in the atmosphere. If the radius of the impactor is much larger than an atmospheric scale height and its velocity much larger than the planetary escape velocity, some of the planetary atmosphere may be driven off into space. The process is analyzed theoretically in this paper. The amount of gas that escapes is equal to the amount of gas intercepted by the impacting body multiplied by a factor not very different from unity. Escape occurs only if the velocity of the impacting body exceeds the planetary escape velocity. At large impact velocities the enhancement factor, which is the factor multiplying the amount of atmosphere intercepted by the impacting body, approaches a constant value approximately equal to 1012/Ve2, where Ve is the escape velocity (in cm/sec). The enhancement factor is independent of atmospheric mass or surface pressure. Ablation of the impacting body and the planetary surface adds to the mass of gas that must be accelerated into space if escape is to occur. As a result, impact erosion of the atmosphere does not occur from a planet with an escape velocity in excess of 10 km/sec.  相似文献   

13.
The temporal evolution of pressure in solar coronal loops is studied using the ideal theory of magnetohydrodynamic turbulence in cylindrical geometry. The velocity and the magnetic fields are expanded in terms of the Chandrasekhar-Kendall (C-K) functions. The three-mode representation of the velocity and the magnetic fields submits to the investigation of chaos. When the initial values of the velocity and the magnetic field coefficients are very nearly equal, the system shows periodicities. For randomly chosen initial values of these parameters, the evolution of the velocity and the magnetic fields is nonlinear and chaotic. The consequent plasma pressure is determined in the linear and nonlinear regimes. The evidence for the existence of chaos is established by evaluating the invariant correlation dimension of the attractorD 2, a fractal value of which indicates the existence of deterministic chaos.  相似文献   

14.
A theory for the interaction of a neutral gas with a moving magnetized plasma is given. The Alfvén expression for the critical velocity is identified with that for the terminal velocity while another expression for the threshold velocity for interaction is given. The implications of these results to the Alfvén-Arrhenius model for the solar system are discussed.Paper dedicated to Professor Hannes Alfvén on the occasion of his 70th birthday, 30 May, 1978.  相似文献   

15.
A new method to measure the epicycle frequency κ in the Galactic disc is presented. We make use of the large data base on open clusters completed by our group to derive the observed velocity vector (amplitude and direction) of the clusters in the Galactic plane. In the epicycle approximation, this velocity is equal to the circular velocity given by the rotation curve, plus a residual or perturbation velocity, of which the direction rotates as a function of time with the frequency κ. Due to the non-random direction of the perturbation velocity at the birth time of the clusters, a plot of the present-day direction angle of this velocity as a function of the age of the clusters reveals systematic trends from which the epicycle frequency can be obtained. Our analysis considers that the Galactic potential is mainly axis-symmetric, or in other words, that the effect of the spiral arms on the Galactic orbits is small; in this sense, our results do not depend on any specific model of the spiral structure. The values of κ that we obtain provide constraints on the rotation velocity of the disc; in particular, V 0 is found to be  230 ± 15 km s−1  even if the short scale  ( R 0= 7.5 kpc)  of the Galaxy is adopted. The measured κ at the solar radius is  43 ± 5 km s−1 kpc −1  . The distribution of initial velocities of open clusters is discussed.  相似文献   

16.
Hathaway  David H. 《Solar physics》1988,117(2):329-341
A method is described for constructing artificial data that realistically simulate photospheric velocity fields. The velocity fields include rotation, differential rotation, meridional circulation, giant cell convection, supergranulation, convective limb shift, p-mode oscillations, and observer motion. Data constructed by this method can be used for testing algorithms designed to extract and analyze these velocity fields in real Doppler velocity data.  相似文献   

17.
The solar wind velocity near Earth shows systematic structure in and around the heliospheric current sheet. The solar wind velocity measurements at IMF sector boundary crossings at 1 AU during 1972–1977 have been used to infer the azimuthal structure of the solar wind velocity in the current sheet. We found that the solar wind velocity in the in-ecliptic portion of the current sheet varies from longitude to longitude, where it originates from the corona. Also, the yearly average value of solar wind velocity in the HCS is found to vary with the phase of the solar cycle; with a maximum value around 1974. TheK-corona brightness on the source surface corresponding to the IMF sector boundary crossings during the period of study also shows a similar but opposite pattern of variation when the data are averaged over a long period. However, this relation is not observed when we considered them individually. So, we conclude that there exists a longitudinal variation of solar wind velocity in the heliospheric current sheet.  相似文献   

18.
We present predictions for the line-of-sight velocity dispersion profiles of dwarf spheroidal galaxies and compare them to observations in the case of the Fornax dwarf. The predictions are made in the framework of standard dynamical theory of spherical systems with different velocity distributions. The stars are assumed to be distributed according to Sérsic laws with parameters fitted to observations. We compare predictions obtained assuming the presence of dark matter haloes (with density profiles adopted from N -body simulations) with those resulting from Modified Newtonian Dynamics (MOND). If the anisotropy of velocity distribution is treated as a free parameter, observational data for Fornax are reproduced equally well by models with dark matter and with MOND. If stellar mass-to-light ratio of 1 M/L is assumed, the required mass of the dark halo is     , two orders of magnitude larger than the mass in stars. The derived MOND acceleration scale is     . In both cases a certain amount of tangential anisotropy in the velocity distribution is needed to reproduce the shape of the velocity dispersion profile in Fornax.  相似文献   

19.
We examine the scattering of single stars from an open star cluster. The probability of the capture of a star by a star cluster is dependent on the velocity and mass of the star, and the stars that are not captured experience a velocity change. For low-velocity stars there is an exponential decrease of the capture probability with the initial velocity, and the velocity change decreases almost linearly. For high-velocity stars there is a v −6 dependence for the capture probability, and a v −1 dependence for the velocity change. Analytical estimations, Monte Carlo and full N -body simulations are all in good agreement.  相似文献   

20.
New spectroscopic and photometric observations of the variable Ap star ET And carried out 1982 and 1983 confirm once again the existence of short-time variations. For the radial velocity variations a period of 0.19771 days and for the light variations a period of 0.0989 days was found. Some spectrograms show a velocity progression of the Balmer lines. The gradient is of such a kind that the radial velocity values increase from the line Hγ to H15. Different models for the interpreation of the velocity progression are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号