首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of experimental studies and examination of variations in major elements, trace elements and Sr isotopes indicate that fractionation, assimilation and magma mixing combined to produce the lavas at Medicine Lake Highland. Some characteristics of the compositional differences among the members of the calc-alkalic association (basalt-andesite-dacite-rhyolite) can be produced by fractional crystallization, and a fractionation model reproduces the major element trends. Other variations are inconsistent with a fractionation origin. Elevated incompatible element abundances (K and Rb) observed in lavas intermediate between basalt and rhyolite can be produced through assimilation of a crustal component. An accompanying increase in 87Sr/86Sr from ∼ 0.07030 in basalt to ∼0.7040 in rhyolite is also consistent with crustal assimilation. The compatible trace element contents (Ni and Sr) of intermediate lavas can not be produced by fractional crystallization, and suggest a magma-mixing origin for some lavas. Unusual phenocryst assemblages and textural criteria in these lavas provide additional evidence for magma mixing. A phase diagram constructed from the low pressure melting experiments identifies a distributary reaction point, where olivine+augite react to pigeonite. Parental basalts reach this point at low pressures and undergo iron-enrichment at constant SiO2 content. The resulting liquid line of descent is characteristic of the tholeiitic trend. Calc-alkalic differentiation trends circumvent the distributary reaction point by three processes: fractionation at elevated pH2O, assimilation and magma mixing.  相似文献   

2.
3.
The Medicine Lake shield volcano is part of the Oregon high alumina plateau basalt petrologic province, as defined by Waters (1962) and Higgins (1973). The early eruptions are basaltic andesites and they constitute a significant portion of the shield-forming lavas. These lavas are characterized by a mild iron enrichment trend produced by fractionation of plagioclase and olivine, together with lesser amounts of clinopyroxene. Siliceous andesites of less areal extent form the shield-capping lavas. Their formation is initiated by the appearance of titanomagnetite as a liquidus phase which prevents further iron enrichment. Additional fractionation of plagioclase, clinopyroxene, orthopyroxene, and minor olivine continued during this interval.An origin for the basaltic andesites which involves the derivation of a liquid by partial melting of lithosphere composed of low Sr87/Sr86 material previously subducted along the continental margin is favored. This magma subsequently fractionated under low pressure conditions, a conclusion supported by least squares mixing calculations.  相似文献   

4.
The mechanisms and the timescales of magmatic evolution were investigated for historical lavas from the Askja central volcano in the Dyngjufjöll volcanic massif, Iceland, using major and trace element and Sr, Nd, and Pb isotopic data, as well as 238U-230Th-226Ra systematics. Lavas from the volcano show marked compositional variation from magnesian basalt through ferrobasalt to rhyolite. In the magnesian basalt-ferrobasalt suite (5-10 wt% MgO), consisting of lavas older than 1875 A.D., 87Sr/86Sr increases systematically with increasing SiO2 content; this suite is suggested to have evolved in a magma chamber located at ∼600 MPa through assimilation and fractional crystallization. On the other hand, in the ferrobasalt-rhyolite suite (1-5 wt% MgO), including 1875 A.D. basalt and rhyolite and 20th century lavas, 87Sr/86Sr tends to decrease slightly with increasing SiO2 content. It is suggested that a relatively large magma chamber occupied by ferrobasalt magma was present at ∼100 MPa beneath the Öskjuvatn caldera, and that icelandite and rhyolite magmas were produced by extraction of the less and more evolved interstitial melt, respectively, from the mushy boundary layer along the margin of the ferrobasalt magma chamber, followed by accumulation of the melt to form separate magma bodies. Ferrobasalt and icelandite lavas in the ferrobasalt-rhyolite suite have a significant radioactive disequilibrium in terms of (226Ra/230Th), and its systematic decrease with magmatic evolution is considered to reflect aging, along with assimilation and fractional crystallization processes. Using a mass-balance model in which simultaneous fractional crystallization, crustal assimilation, and radioactive decay are taken into account, the timescale for the generation of icelandite magma from ferrobasalt was constrained to be <∼3 kyr which is largely dependent on Ra crystal-melt partition coefficients we used.  相似文献   

5.
We use granular inclusions and phenocrysts in the Little Glass Mountain rhyolite flows to estimate temperature, pressure and the fugacities of O2, H2 and H2O. The compositions of magnetite-ilmenite are used to estimate temperature and oxygen fugacity. Fugacities of H2 and H2O are estimated from the compositions of associated biotite-sanidine-magnetite. PTotal depends on the compositions of magnetite -ferrosilite-silica. Lastly, hydrothermal experiments were conducted at the estimated T, P and fO2 to establish the beginning of melting of the most evolved of the inclusions in CO2-H2O fluids.The data suggest that the most evolved inclusions formed at ~ 830°C, a total pressure of 5200 bars, fO2 of 10?13 and PH2O ~ 1000 bars. Of these variables total pressure is most difficult to estimate accurately. The values of T, P etc., previously stated produce a maximum estimate of the depth of equilibration between host magma and the inclusions whereas, assuming PH2O = PTotal yields a minimum estimate. The physical conditions together with texture suggest a plutonic origin at a minimum depth of 3.4 km but no deeper than 15–18 km beneath the Medicine Lake Highland.The composition and mineralogy suggest that the rhyolite was derived from the dacite by crystal fractionation. The relation between dacite and associated basaltic or andesitic rocks is uncertain. The 87Sr86Sr ratios (essentially 0.7040 for both inclusions and lavas) do not require involvement of crustal rocks. A source in the uppermost mantle or lower lithosphere is considered most probable for the parental liquid which gave rise to the dacite.  相似文献   

6.
This article is focused on dacitic pumices, which are the felsic members of the basalt–andesite–dacite series. The phenoscrysts of all of the rocks from this series are the same: plagioclase, olivine, clino- and orthopyroxenes, and titanomagnetite. The groundmass of dacitic pumices that contain microlites of the same minerals and felsic glass has been studied in detail. Quartz and K–Na feldspar are absent. The study of that microlite zoning that formed in the upper parts of the channels or at the surface under the most nonequilibrium conditions was one of the most important tasks; it revealed several interesting features. As an example, anorthite plagioclases were found as microlites. The resorption zones are absent in both plagioclase phenocrysts and microlites, which implies the major role of fractionation rather than magma mixing.  相似文献   

7.
The island of Salina comprises one of the most distinct calc-alkaline series of the Aeolian arc (Italy), in which calc-alkaline, high-K calc-alkaline, shoshonitic and leucite-shoshonitic magma series are developed. Detailed petrological, geochemical and isotopic (Sr, Nd, Pb, O) data are reported for a stratigraphically well-established sequence of lavas and pyroclastic rocks from the Middle Pleistocene volcanic cycle (430–127 ka) of Salina, which is characterized by an early period of basaltic volcanism (Corvo; Capo; Rivi; Fossa delle Felci, group 1) and a sequence of basaltic andesites, and andesites and dacites in the final stages of activity (Fossa delle Felci, groups 2–8). Major and trace element compositional trends, rare earth element (REE) abundances and mineralogy reveal the importance of crystal fractionation of plagioclase + clinopyroxene + olivine/ orthopyroxene ± titanomagnetite ± amphibole ± apatite in generating the more evolved magma types from parental basaltic magmas, and plagioclase accumulation in producing the high Al2O3 contents of some of the more evolved basalts. Sr isotope ratios range from 0.70410 to 0.70463 throughout the suite and show a well-defined negative correlation with 143Nd/144Nd (0.51275–0.51279). Pb isotope compositions are distinctly radiogenic with relatively large variations in 206Pb/204Pb (19.30–19.66), fairly constant 207Pb/204Pb (15.68–15.76) and minor variations in 208Pb/204Pb ratios (39.15–39.51). Whole-rock δ18O values range from +6.4 to +8.5‰ and correlate positively with Sr isotope ratios. Overall, the isotopic variations are correlated with the degree of differentiation of the rocks, indicating that only small degrees of crustal assimilation are overprinting the dominant evolution by crystal–liquid fractionation (AFC-type processes). The radiogenic and oxygen isotope composition of the Salina basalts suggests derivation from primary magmas from a depleted mantle source contaminated by slab-derived fluids and subducted sediments with an isotopic signature of typical upper continental crust. These magmas then evolved further to andesitic and dacitic compositions through the prevailing process of low-pressure fractional crystallization in a shallow magma reservoir, accompanied by minor assimilation of crustal lithologies similar to those of the Calabrian lower crust. Received: 29 November 1999 / Accepted: 16 April 2000  相似文献   

8.
Most Hawaiian basaltic shield volcanoes are capped by moderately to strongly evolved alkalic lavas (MgO<4.5 wt.%). On Mauna Kea Volcano the cap is dominantly composed of hawaiite with minor mugearite. Although these lavas contain dunite and gabbroic xenoliths, they are nearly aphyric with rare olivine and plagioclase phenocrysts and xenocrysts. The hawaiites are nearly homogeneous in radiogenic isotope ratios (Sr, Nd, Pb) and they define coherent major and trace element abundance trends. These compositional trends are consistent with segregation of a plagioclase-rich cumulate containing significant clinopyroxene and Fe-Ti oxides plus minor olivine. Elements which are usually highly incompatible, e.g., Rb, Ba, Nb, are only moderately incompatible within the hawaiite suite because these elements are incorporated into feldspar (Rb, Ba) and oxides (Nb). However, in the most evolved lavas abundances of the most incompatible elements (P, La, Ce, Th) exceed (by 5–10%) the maximum enrichments expected from models based on major elements. Apparently, the crystal fractionation process was more complex than simple, closed system fractionation. The large amounts of clinopyroxene in the fractionating assemblage and the presence of dense dunite xenoliths with CO2 inclusions formed at minimum pressures of 2 kb are consistent with fractionation occurring at moderate depths. Crystal segregation along conduit or magma chamber walls is a possible mechanism for explaining compositional variations within these alkalic cap lavas.  相似文献   

9.
Primitive arc magmatism and mantle wedge processes are investigated through a petrologic and geochemical study of high-Mg# (Mg/Mg + Fe > 0.65) basalts, basaltic andesites and andesites from the Kurile-Kamchatka subduction system. Primitive andesitic samples are from the Shisheisky Complex, a field of Quaternary-age, monogenetic cones located in the Aleutian–Kamchatka junction, north of Shiveluch Volcano, the northernmost active composite volcano in Kamchatka. The Shisheisky lavas have Mg# of 0.66–0.73 at intermediate SiO2 (54–58 wt%) with low CaO (<8.8%), CaO/Al2O3 (<0.54), and relatively high Na2O (>3.0 wt%) and K2O (>1.0 wt%). Olivine phenocryst core compositions of Fo90 appear to be in equilibrium with whole-rock ‘melts’, consistent with the sparsely phyric nature of the lavas. Compared to the Shisheisky andesites, primitive basalts from the region (Kuriles, Tolbachik, Kharchinsky) have higher CaO (>9.9 wt%) and CaO/Al2O3 (>0.60), and lower whole-rock Na2O (<2.7 wt%) and K2O (<1.1 wt%) at similar Mg# (0.66–0.70). Olivine phenocrysts in basalts have in general, higher CaO and Mn/Fe and lower Ni and Ni/Mg at Fo88 compared to the andesites. The absence of plagioclase phenocrysts from the primitive andesitic lavas contrasts the plagioclase-phyric basalts, indicating relatively high pre-eruptive water contents for the primitive andesitic magmas compared to basalts. Estimated temperature and water contents for primitive basaltic andesites and andesites are 984–1,143°C and 4–7 wt% H2O. For primitive basalts they are 1,149–1,227°C and 2 wt% H2O. Petrographic and mineral compositions suggest that the primitive andesitic lavas were liquids in equilibrium with mantle peridotite and were not produced by mixing between basalts and felsic crustal melts, contamination by xenocrystic olivine, or crystal fractionation of basalt. Key geochemical features of the Shisheisky primitive lavas (high Ni/MgO, Na2O, Ni/Yb and Mg# at intermediate SiO2) combined with the location of the volcanic field above the edge of the subducting Pacific Plate support a genetic model that involves melting of eclogite or pyroxenite at or near the surface of the subducting plate, followed by interaction of that melt with hotter peridotite in the over-lying mantle wedge. The strongly calc-alkaline igneous series at Shiveluch Volcano is interpreted to result from the emplacement and evolution of primitive andesitic magmas similar to those that are present in nearby monogenetic cones of the Shisheisky Complex.  相似文献   

10.
A systematic study of Pb isotope composition was carried out for Elbrus Volcano, one of the Europe’s largest volcanoes, using high-precision method of multi-collector inductively coupled plasma mass spectrometry. The measurement error of Pb isotope ratios was estimated from the results of replicate analyses of international BCR-1 and AGV-1 standards as ±0.03% (±2SD). The study of a representative collection showed that dacites of all three phases of the Elbrus eruptive activity are characterized by relatively small-scale variations of Pb isotope composition: 206Pb/204Pb 18.621–18.670, 207Pb/204Pb 15.636–15.659, and 208Pb/204Pb 38.762–38.845. New Pb isotope geochemical characteristics in combination with existing Sr-Nd data indicate that the parental magmas of Elbrus are of mixed mantle-crust origin. They were formed by interaction of mantle-derived melts with continental crust of the Greater Caucasus during continental collision between the Eurasian, Arabian, Turkish, and Iranian plates.  相似文献   

11.
Petrologic and chemical data are presented for samples from five volcanically active islands in the northern Marianas group, an intra-oceanic island arc. The data include microprobe analyses of phenocryst and xenolith assemblages, whole rock major and trace element chemistry including REE, and Sr isotope determinations (87Sr/86Sr=0.7034±0.0001). Quartz-normative basalt and basaltic andesite are the most abundant lava types. These are mineralogically and chemically similar to the mafic products of other intra-oceanic islands arcs. It is suggested, however, that they are not typical of the ‘island arc tholeiitic’ series, having Fe enrichment trends and K/Rb, for example, more typical of calc-alkaline suits. Major and trace element characteristics, and the presence of cumulate xenoliths, indicate that extensive near surface (< 3 Kb) fractionation has occurred. Thus, even least fractionated basalts have low abundances of Mg, Ni and Cr, and high abundances of K and other large cation, imcompatible elements, relative to ocean ridge tholeiites. However, abundances of REE and small cation lithophile elements, such as Ti, Zr, Nb, and Hf are lower than typical ocean ridge tholeiites. The REE data and Sr isotope compositions suggest a purely mantle origin for the Marianas island arc basalts, with negligible input from subducted crustal material. Thus, subduction of oceanic lithosphere may not be a sufficient condition for initiation of island arc magmatism. Intersection of the Benioff zone with an asthenosphere under appropriate conditions may be requisite. Element ratios and abundances, combined with isotopic data, suggest that the source for the Marianas island arc basalts is more chondritic in some respects, and less depleted in large cations than the shallow (?) mantle source for ocean ridge tholeiites.  相似文献   

12.
The rhyolite of Little Glass Mountain (73–74% SiO2) is a single eruptive unit that contains inclusions of quenched andesite liquid (54–61% SiO2) and partially crystalline cumulate hornblende gabbro (53–55% SiO2). Based on previous studies, the quenched andesite inclusions and host rhyolite lava are related to one another through fractional crystallization and represent an example of a fractionation-generated composition gap. The hornblende gabbros represent the cumulate residue associated with the rhyolite-producing and composition gap-forming fractionation event. This study combines textural (Nomarski Differential Interference Contrast, NDIC, imaging), major element (An content) and trace element (Mg, Fe, Sr, K, Ti, Ba) data on the style of zonation of plagioclase crystals from representative andesite and gabbro inclusions, to assess the physical environment in which the fractionation event and composition gap formation took place. The andesite inclusions (54–61% SiO2) are sparsely phyric with phenocrysts of plagioclase, augite and Fe-oxide±olivine, +/–orthopyroxene, +/–hornblende set within a glassy to crystalline matrix. The gabbro cumulates (53–55% SiO2) consist of an interconnected framework of plagioclase, augite, olivine, orthopyroxene, hornblende and Fe-oxide along with highly vesicular interstitial glass (70–74% SiO2). The gabbros record a two-stage crystallization history of plagioclase+olivine+augite (Stage I) followed by plagioclase+orthopyroxene+ hornblende+Fe-oxide (Stage II). Texturally, the plagioclase crystals in the andesite inclusions are characterized by complex, fine-scale oscillatory zonation and abundant dissolution surfaces. Compositionally (An content) the crystals are essentially unzoned from core-to-rim. These features indicate growth within a dynamic (convecting?), reservoir of andesite magma. In contrast, the plagioclase crystals in the gabbros are texturally smooth and featureless with strong normal zonation from An74 at the core to around An30. K, and Ba abundances increase and Mg abundances decrease steadily towards the rim. Ti, Fe, and Sr abundances increase and then decrease towards the rim. The trace element variations are fully consistent with the two-stage crystallization sequence inferred from the gabbro mineralogy. These results indicate progressive closed-system in situ crystallization in a quiescent magmatic boundary layer environment located along the margins of the andesite magma body. The fractional crystallization that generated the host rhyolite lava is one of inward solidification of a crystallizing boundary layer followed by melt extraction and accumulation of highly evolved interstitial liquid. This mechanism explains the formation of the composition gap between parental andesite and rhyolite magma compositions.  相似文献   

13.
Concentrations of tungsten (W) and uranium (U), which represent two of the most highly incompatible elements during mantle melting, have been measured in a suite of Hawaiian picrites and primitive tholeiites from nine main-stage shield volcanoes. Tungsten abundances in the parental melts are estimated from correlations between sample W abundances and MgO contents, and/or by olivine correction calculations. From these parental melt determinations, along with independent estimates for the degree of partial melting at each volcanic center, we extrapolate the W content of the mantle sources for each shield volcano. The mantle sources of Hualalai, Mauna Loa, Kohala, Kilauea, Mauna Kea, Koolau and Loihi contain 9 ± 2 (2σ), 11 ± 5, 10 ± 4, 12 ± 4, 10 ± 5, 8 ± 7 and 11 ± 5 ng/g, respectively. When combined, the mean Hawaiian source has an average of 10 ± 3 ng/g W, which is three-times as enriched as the Depleted MORB Mantle (DMM; 3.0 ± 2.3 ng/g).The relatively high abundances of W in the mantle sources that contribute to Hawaiian lavas may be explained as a consequence of the recycling of W-rich oceanic crust and sediment into a depleted mantle source, such as the depleted MORB mantle (DMM). However, this scenario requires varying proportions of recycled materials with different mean ages to account for the diversity of radiogenic isotope compositions observed between Kea- and Loa-trend volcanoes. Alternatively, the modeled W enrichments may also reflect a primary source component that is less depleted in incompatible trace elements than the DMM. Such a source would not necessarily require the addition of recycled materials, although the presence of some recycled crust is permitted within our model parameters and likely accounts for some of the isotopic variations between volcanic centers.The physical admixture of ?0.5 wt.% outer core material with the Hawaiian source region would not be resolvable via W source abundances or W/U ratios; however, W isotopes may provide a more sensitive to this mixing process. Recent W isotopic studies show no indication of core-mantle interaction, indicating that either such a process does not occur, or that mechanisms other than physical mixing may operate at the core-mantle boundary.  相似文献   

14.
The isotopic compositions of Nd and Sr and concentrations of major and trace elements were measured in flows and tuffs of the Woods Mountains volcanic center of eastern California to assess the relative roles of mantle versus crustal magma sources and of fractional crystallization in the evolution of silicic magmatic systems. This site was chosen because the contrast in isotopic composition between Precambrian-to-Mesozoic country rocks and the underlying mantle make the isotope ratios sensitive indicators of the proportions of crustal- and mantle-derived magma. The major eruptive unit is the Wild Horse Mesa tuff (15.8 m.y. old), a compositionally zoned rhyolite ignimbrite. Trachyte pumice fragments in the ash-flow deposits provide information on intermediate composition magma types. Crustal xenoliths and younger flows of basalt and andesite (10 m.y. old) provide opportunities to confirm the isotopic compositions of potential mantle and crustal magma sources inferred from regional patterns. The trachyte and rhyolite have Nd values of -6.2 to -7.5 and initial 87Sr/86Sr ratios mostly between 0.7086 and 0.7113. These magmas cannot have been melted directly from the continental basement because the Nd values are too high. They also cannot have formed by closed system fractional crystallization of basalt because the 87Sr/86Sr ratios are higher than likely values for parental basalt. Both major and trace element variations indicate that crystal fractionation was an important process. These results require that the silicic magmas are end products of the evolution of mantle-derived basalt that underwent extensive fractional crystallization accompanied by assimilation of crustal rock. The mass fraction of crustal components in the trachyte and rhyolite is estimated to be between 10% and 40%, with the lower end of the range considered more likely. The generation of magmas with SiO2 contents greater than 60% appears to be dominated by crystal fractionation with minimal assimilation of upper crustal rocks.  相似文献   

15.
Nd- and Sr-isotopic data are reported for lavas from 23 submarine and 3 subaerial volcanoes in the northern Mariana and southern Volcano arcs. Values of Nd range from +2.4 to +9.5 whereas 87Sr/86Sr ranges from 0.70319 to 0.70392; these vary systematically between and sometimes within arc segments. The Nd-and Sr-isotopic compositions fall in the field of ocean island basalt (OIB) and extend along the mantle array. Lavas from the Volcano arc, Mariana Central Island Province and the southern part of the Northern Seamount Province have Nd to +10 and 87Sr/86Sr=0.7032 to 0.7039. These are often slightly displaced toward higher 87Sr/86Sr at similar Nd. In contrast, those lavas from the northern part of the Mariana Northern Seamount Province as far north as Iwo Jima show OIB isotopic characteristics, with Nd and 87Sr/86Sr=0.7035 to 0.7039. Plots of 87Sr/86Sr and Nd versus Ba/La and (La/Yb)n support a model in which melts from the Mariana and Volcano arcs are derived by mixing of OIB-type mantle (or melts therefrom) and a metasomatized MORB-type mantle (or melts therefrom). An alternate interpretation is that anomalous trends on the plots of Nd- and Sr-isotopic composition versus incompatible-element ratios, found in some S-NSP lavas, suggest that the addition of a sedimentary component may be locally superimposed on the two-component mixing of mantle end-members.  相似文献   

16.
Melting experiments have been performed at 1 bar (anhydrous) and 1- and 2-kbar H2O-saturated conditions to study the effect of water on the differentiation of a basaltic andesite. The starting material was a mafic pumice from the compositionally zoned tuff deposited during the ~75 ka caldera-forming eruption of Newberry Volcano, a rear-arc volcanic center in the central Oregon Cascades. Pumices in the tuff of Newberry caldera (TNC) span a continuous silica range from 53 to 74 wt% and feature an unusually high-Na2O content of 6.5 wt% at 67 wt% SiO2. This wide range of magmatic compositions erupted in a single event makes the TNC an excellent natural laboratory in which to study the conditions of magmatic differentiation. Our experimental results and mineral–melt hygrometers/thermometers yield similar estimates of pre-eruptive H2O contents and temperatures of the TNC liquids. The most primitive (mafic) basaltic andesites record a pre-eruptive H2O content of 1.5 wt% and a liquidus temperature of 1,060–1,070 °C at upper crustal pressure. This modest H2O content produces a distinctive fractionation trend that is much more enriched in Na, Fe, and Ti than the calc-alkaline trend typical of wetter arc magmas, but slightly less enriched in Fe and Ti than the tholeiitic trend of dry magmas. Modest H2O contents might be expected at Newberry Volcano given its location in the Cascade rear arc, and the same fractionation trend is also observed in the rim andesites of the rear-arc Medicine Lake volcano in the southern Cascades. However, the Na–Fe–Ti enrichment characteristic of modest H2O (1–2 wt%) is also observed to the west of Newberry in magmas erupted from the arc axis, such as the Shevlin Park Tuff and several lava flows from the Three Sisters. This shows that modest-H2O magmas are being generated directly beneath the arc axis as well as in the rear arc. Because liquid lines of descent are particularly sensitive to water content in the range of 0–3 wt% H2O, they provide a quantitative and reliable tool for precisely determining pre-eruptive H2O content using major-element data from pumices or lava flows. Coupled enrichment in Na, Fe, and Ti relative to the calc-alkaline trend is a general feature of fractional crystallization in the presence of modest amounts of H2O, which may be used to look for “damp” fractionation sequences elsewhere.  相似文献   

17.
Gypsum and anhydrite fabrics observed in trenches and deep (500 m) cores from Bristol Dry Lake, California, USA, exhibit a vertical alignment of crystals similar to the fabric seen in bottom-nucleated brine pond gypsum. However, geochemical and sedimentological evidence indicate that the gypsum formed in Bristol Dry Lake precipitated displacively within the sediment where groundwater saturated with respect to gypsum recharges around the playa margin (groundwater-seepage gypsum). Evidence for displacive growth of gypsum is: (i) the geometry of the deposit, (ii) stable isotopic data and the water chemistry of the brine, and (iii) inclusions of matrix which follow twin planes and completely surround crystals as they grow. The bulk of the gypsum precipitated in the playa occurs around the edges of the playa in the playamargin facies and completely rings the lake. Sulphate concentrations in the groundwater increase toward the gypsum zone in the playa margin. Basinward of this zone, sulphate concentrations decrease sharply to trace element levels in the basin centre brine. Authigenic gypsum is rare in the centre of the playa. Stable (δ18O values measured for gypsum waters of crystallization (GWC) are similar to the values calculated for groundwater in the playa margin and alluvial fan sediments (?– 6%0), whereas measured brine δ18O values range from + 0·5 to + 3·7%0. Deuterium values measured for groundwater are ?– 70%0, GWC are ?– 60 to – 65%0 and brine values are ?– 57%0. The geometry of the deposit and the chemical data suggest that the water precipitating the gypsum is more closely associated with the groundwater than the brine. However, some mixing between groundwater and brine is likely. Within 100 m of the surface, the gypsum dehydrates to anhydrite, although the same vertically aligned fabric is retained through the diagenetic process. The similarity of displacive vertically aligned gypsum and anhydrite fabrics seen in Bristol Dry Lake to subaqueously deposited gypsum in modern brine ponds indicates that the criteria used to define subaqueous fabrics must be better constrained.  相似文献   

18.
Eruptive products of the Shirataka volcano (0.9–0.7 Ma) in NE Japan are calc-alkaline andesite–dacite, and are divisible into six petrologic groups (G1–G6). Shirataka rocks possess mafic inclusions—basalt–basaltic andesite, except for G3 and G4. All rocks show mixing and mingling of the mafic and silicic end-members, with trends defined by hosts and inclusions divided into high-Cr and low-Cr types; both types coexist in G1, G2, and G5. Estimated mafic end-members are high-Cr (1120–1170°C, 48–51% SiO2, olv ± cpx ± plg) and low-Cr type magmas (49–52% SiO2, cpx ± plg) except for the Sr isotopic composition. In contrast, the silicic end-members of both types have similar petrologic features (790–840°C, 64–70% SiO2, hbl ± qtz ± px + plg). High-Cr type mafic and corresponding silicic end-members have lower 87Sr/86Sr ratios than the low-Cr ones in each group. The trace element model calculations suggest that the low-Cr type mafic end-member magma is produced through ca. 20% fractional crystallization (olv ± cpx ± plg) from the high-Cr type one with assimilation of granitoids (= 0.02–0.05). The silicic magmas are producible through <30% partial remelting of previously emplaced basaltic magma with assimilation of crustal components. The compositional difference between the low-K and medium-K basalts in the Shirataka volcano is mainly attributed to the different degrees of the effect of subduction derived fluid by dehydration of phlogopite. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
镜泊湖火山区是我国陆内新生代玄武岩研究的一个重要窗口。东南部的杏山火山群研究不足且前人的研究否定了其岩浆经历过同化混染作用。笔者等对杏山火山群的玄武岩开展了系统的岩石学、岩石地球化学和Sr—Nd—Pb同位素的研究,认为杏山火山群主要为碧玄岩和粗面玄武岩,原生岩浆在上升过程中发生了橄榄石和单斜辉石的分离结晶,并在上地壳区域发生了同化混染作用,但同化混染—分离结晶作用较为微弱。将杏山火山群与同期的镜泊湖玄武岩对比发现,两个地区的玄武岩都来源于石榴子石橄榄岩的部分熔融,杏山火山群的部分熔融程度略低于同期的镜泊湖玄武岩。在岩浆源区方面,杏山火山群的岩浆源区为普通地幔与全硅酸盐地球端元的混合源。岩浆源区的不均一性和岩浆演化过程中所经历的同化混染作用是造成杏山火山群和镜泊湖火山群的岩性差异的主要影响因素。  相似文献   

20.
Dikii Greben' Volcano is the largest modern volcano with silicic rocks in the Kurile-Kamchatka island arc. It consists of many domes and lava flows of rhyodacite, dacite and andesite which were erupted in a reverse differentiation sequence. Non-equilibrium phenocryst assemblages (quartz + Mg-rich olivine, An-rich + An-poor plagioclase etc.), abundance of chilled mafic pillows in the dacites and andesites, and linear variations of rock compositions in binary plots are considered as mineralogical, textural and geochemical evidence for mixing. Mafic pillows in volcanics have a lower density (because of high porosity) and contain the same non-equilibrium phenocryst assemblages as the host rocks. Their groundmass contains skeletal microlites of plagioclase and amphibole proving that the groundmass as well as the pillows themselves formed from a water-rich basaltic magma at depth. They are considered as supercooled, vesiculated floating drops of a hot hybrid layer in the magma chamber which formed after refilling. The lower density of the inclusions allows them to float in the host magma and to concentrate at the top of the chamber prior to eruption. Magma mingling was effected by mechanical disintegration of the inclusions in the host magma during eruption. The rhyodacitic and basic end-members of the mixing series cannot be linked by low-P fractionation though high-P, amphibole-rich fractionation is not excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号