首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tropical cloud regimes defined by cluster analysis of International Satellite Cloud Climatology Project (ISCCP) cloud top pressure (CTP)–optical thickness distributions and ISCCP-like Goddard Institute for Space Studies (GISS) general circulation model (GCM) output are analyzed in this study. The observations are evaluated against radar–lidar cloud-top profiles from the atmospheric radiation measurement (ARM) Program active remote sensing of cloud layers (ARSCL) product at two tropical locations and by placing them in the dynamical context of the Madden–Julian oscillation (MJO). ARSCL highest cloud-top profiles indicate that differences among some of the six ISCCP regimes may not be as prominent as suggested by ISCCP at the ARM tropical sites. An experimental adjustment of the ISCCP CTPs to produce cloud-top height profiles consistent with ARSCL eliminates the independence between those regimes. Despite these ambiguities, the ISCCP regime evolution over different phases of the MJO is consistent with existing MJO mechanisms, but with a greater mix of cloud types in each phase than is usually envisioned. The GISS Model E GCM produces two disturbed and two suppressed regimes when vertical convective condensate transport is included in the model’s cumulus parameterization. The primary model deficiencies are the absence of an isolated cirrus regime, a lack of mid-level cloud relative to ARSCL, and a tendency for occurrences of specific parameterized processes such as deep and shallow convection and stratiform low cloud formation to not be associated preferentially with any single cloud regime.  相似文献   

2.
Summary An ozone mini-hole is a region of strongly depleted column total ozone amounts, associated with the growth of synoptic-scale wave disturbances. Their formation is illustrated here using a sequence of idealised model experiments. Simplified barotropic dynamics are used to drive an ozone tracer advection model on an f-plane representing a hemisphere. Firstly, the Contour Dynamics method is used to integrate the barotropic vorticity equation. Vorticity contours are initialised to simulate typical planetary wave structures and the developing wind field advects components of the ozone model. The vertical profiles of ozone mixing ratio are represented by simple linear functions, separated by a tropopause height field and capped by an upper model boundary. Integrating these profiles thus yields a total column ozone field which is closely dependent on tropopause height. In addition to horizontal advection, a vertical motion parametrisation is included, based on a quasi-geostrophic theory for tropopause displacement. The model is also used to simulate the formation of an actual mini-hole which occurred over northern Europe. Here, observed fields of vorticity, ozone and tropopause height are employed and the system integrated using a pseudo-spectral method. The mini-hole is successfully simulated, despite the simple model dynamics. The results demonstrate the correlation between column total ozone and the tropopause height and confirm the crucial role played by vertical air motions and by the meridional gradients of mid-stratospheric ozone mixing ratios for the formation of ozone mini-holes.With 12 Figures  相似文献   

3.
The bora event observed in Novorossiysk on February 6–8, 2012 was analyzed using the WRF numerical model of regional atmospheric circulation. The main meteorological parameters are reproduced. It is demonstrated that the maximum wind speed is reached in the area of the lee slope directly over the bay. It is obtained that the bora development is accompanied by intensive waves associated with the flowing around coastal mountains whose regime changes in time. Computed and measured changes in the surface wind speed are in a good agreement.  相似文献   

4.
Multifractal analysis can provide parameters associated with different scales of rainfall, which may be useful for setting up parsimonious downscaling models of rainfall, or for revealing climate-specific properties. Time series of rain rate with 1-min resolution collected from ten stations over a monsoon watershed in eastern China were used to study the multifractal properties. The power spectra estimated by fast Fourier transform (FFT) and discrete Haar wavelet transform (DWT) showed three scaling regimes: the sub-hourly scaling regime with β?≈?1.2, the scaling regime from 1 h to 1 day with β close to 0.6, and the low-frequency spectra plateau with β?≈?0.1. From the hyperbolic tails of exceeding probability distributions, the estimated values of parameter q c are in 2–2.5, which were consistent with the critical order of K(q) curves. The statistical moments display two main scaling regimes: the high-frequency regime from 3 min to 5 days and the scaling regime beyond 5 days. The scales of 5–10 days seem a transitional regime. The reason that the regimes, revealed by the power spectra, disagree with the statistical moments may be that both FFT and DWT power spectra have limited abilities of analyzing low-frequency scaling but are sensitive to the properties in high-frequency scales. The H values estimated for the regime of sub-hourly scales are larger than 0.4, and the values for the regime 1 h–1 day are close to 0.1. For the low-frequency scales beyond 1 day, negative H is obtained by DWT power spectra. The parameters of universal multifractal models were also estimated. The values of α for the scaling range of 1 min–5 days are 0.486?±?0.047, and for the low-frequency scaling range, its values are 0.808?±?0.323. For the high- and low-frequency scaling ranges, the values of C 1 are 0.5 and 0.169, respectively, which is different from the values for daily rainfall series collected at the same rain gages.  相似文献   

5.
There are many geometrical factors than can influence the aerodynamic parameters of urban surfaces and hence the vertical wind profiles found above. The knowledge of these parameters has applications in numerous fields, such as dispersion modelling, wind loading calculations, and estimating the wind energy resource at urban locations. Using quasi-empirical modelling, we estimate the dependence of the aerodynamic roughness length and zero-plane displacement for idealized urban surfaces, on the two most significant geometrical characteristics; surface area density and building height variability. A validation of the spatially-averaged, logarithmic wind profiles predicted by the model is carried out, via comparisons with available wind-tunnel and numerical data for arrays of square based blocks of uniform and heterogeneous heights. The model predicts two important properties of the aerodynamic parameters of surfaces of heterogeneous heights that have been suggested by experiments. Firstly, the zero-plane displacement of a heterogeneous array can exceed the surface mean building height significantly. Secondly, the characteristic peak in roughness length with respect to surface area density becomes much softer for heterogeneous arrays compared to uniform arrays, since a variation in building height can prevent a skimming flow regime from occurring. Overall the simple model performs well against available experimental data and may offer more accurate estimates of surface aerodynamic parameters for complex urban surfaces compared to models that do not include height variability.  相似文献   

6.
We investigate the scaling behaviour of a turbulent kinetic energy (TKE) closure model for stably stratified conditions. The mixing length scale for stable stratification is proportional to the ratio of the square root of the TKE and the local Brunt–Väisälä frequency, which is a commonly applied formulation. We analyze the scaling behaviour of our model in terms of traditional Monin–Obukov Similarity Theory and local scaling. From the model equations, we derive expressions for the stable limit behaviour of the flux–gradient relations and other scaling quantities. It turns out that the scaling behaviour depends on only a few model parameters and that the results obey local scaling theory. The analytical findings are illustrated with model simulations for the second GABLS intercomparison study. We also investigate solutions for the case in which an empirical correction function is used to express the eddy diffusivity for momentum as a function of the Richardson number (i.e. an increasing turbulent Prandtl number with stability). In this case, it seems that for certain parameter combinations the model cannot generate a steady-state solution. At the same time, its scaling behaviour becomes unrealistic. This shows that the inclusion of empirical correction functions may have large and undesired consequences for the model behaviour.  相似文献   

7.
This heuristic study of the urban morphology influence on urban albedo is based on some 3,500 simulations with the Solene model. The studied configurations include square blocks in regular and staggered rows, rectangular blocks with different street widths, cross-shaped blocks, infinite street canyons and several actual districts in Marseilles, Toulouse and Nantes, France. The scanned variables are plan density, facade density, building height, layout orientation, latitude, date and time of the day. The sky-view factors of the ground and canopy surfaces are also considered. This study demonstrates the significance of the facade density, in addition to the built plan density, as the explanatory geometrical factor to characterize the urban morphology, rather than building height. On the basis of these albedo calculations the puzzling results of Kondo et al. (Boundary-Layer Meteorol 100:225–242, 2001) for the influence of building height are explained, and the plan density influence is quantitatively assessed. It is shown that the albedo relationship with plan and facade densities obtained with the regular square plot configuration may be considered as a reference for all other configurations, with the exception of the infinite street canyon that shows systematic differences for the lower plan densities. The curves representing this empirical relationship may be used as a sort of abacus for all other geometries while an approximate simple mathematical model is proposed, as well as relationships between the albedo and sky-view factors.  相似文献   

8.
 The stability of the thermohaline circulation is investigated using an ocean general circulation model coupled to a simple atmospheric model. The atmospheric model is so developed that it represents the wind stress and the freshwater flux more realistically than existing energy balance models. The coupled model can reproduce the realistic deep ocean circulation without any flux adjustment. Effects of the wind stress and the vertical diffusion on the thermohaline circulation are studied by conducting various experiments with the coupled model. The Ekman upwelling between 60N and 90N brings up salt to the sea surface, while the compensation flow of the Ekman transport and the wind-driven gyre circulation between 30N and 60N carry salt horizontally to the high latitudes. By carrying out experiments where the wind stress is completely or partly removed, it is demonstrated that either of the vertical or the horizontal salt transport prevents the halocline formation at high latitudes and maintains the thermohaline circulation. For an experiment in which the vertical diffusivity is enhanced at high latitudes, it is shown that the vertical diffusion at high latitudes also prevents the halocline formation and stabilizes the thermohaline circulation. It is also shown that the value of the vertical diffusivity at high latitude affects the existence of the multiple equilibria of the thermohaline circulation. Received: 26 April 2000 / Accepted: 10 January 2001  相似文献   

9.
Abstract

We look at the development of the first plumes that emerge from a convectively unstable boundary layer by modelling the process as the instability of a fluid with a time‐dependent mean density field. The fluid is semi‐infinite, rotating, dissipative ‐ characterized by the ratio of its viscosity to thermal diffusivity (Prandtl number Pr = ν/κ) ‐ and initially homogeneous. A constant destabilizing heat flux is applied at the boundary and the stability of the evolving density field is investigated both mathematically and in laboratory experiments.

Using a “natural convective” scaling, we show that the behaviour of the non‐dimensional governing equations depends on Pr and the parameter γ = f(ν/B)1/2, where f is the Coriolis parameter, and B is the applied buoyancy flux. For the ocean, γ ≈ 0.1, whilst for the atmosphere γ ≈ 0.01. In the absence of rotation, the behaviour of the differential equations is independent of B, depending only on Pr. The boundary‐layer Rayleigh number (Rabl) is also independent of B. We show that Rabl, evaluated at the onset of rapid vertical motion, depends on the form of the perturbation.

Due to the time‐dependence of the mean density field, analytic instability analysis is difficult, so we use a numerical technique. The governing equations are transformed to a stretched vertical coordinate and their stability investigated for a particular form of perturbation function. The model predictions are, for the ocean: instability time ~2–4 h, density difference ~0.002–0.013 kg m‐3, boundary‐layer thickness ~50–75 m and horizontal scale ~200–300 m; and for the atmosphere: instability time ~10 min, temperature difference ~2.0–3.0°C, boundary‐layer thickness ~400–500 m and horizontal scale ~1.5–2.0 km.

Laboratory experiments are performed to compare with the numerical predictions. The time development of the mean field closely matches the assumed analytic form. Furthermore, the model predictions of the instability timescale agree well with the laboratory measurements. This supports the other predictions of the model, such as the lengthscales and buoyancy anomaly.  相似文献   

10.
对汾河谷地及太原市在2015年1月的一次重污染过程运用WRF-Chem模式进行污染过程的数值模拟、观测验证和地形敏感性实验,分析了河谷地形对区域污染过程和大气环境容量的影响机制。结果表明:太原市及周边汾河谷地大气边界层环流和大气污染传输受天气系统、地形和城市化共同影响;地形环流强度明显强于太原城市热岛环流,且对其发展存在明显抑制作用,从而限制了城市大气环境容量,加剧城市近地面大气污染物的堆积和空气质量恶化;研究区域大气环境容量受气象主导风向影响:当天气主导风向偏南北向,也即与狭长的汾河谷地走向一致时,有利于该区域大气污染物的扩散清除,而当天气主导风向偏东西向时,则该区域大气环境容量明显减小,且近地面大气污染物浓度与大气环境容量之间呈强相关性,相关系数达到0.74;当地形敏感组实验中取消太原市周边河谷地形特征时,上述相关系数降低到0.21。  相似文献   

11.
 The sensitivity of a coupled model to the oceanic vertical diffusion coefficient κ v is examined. This is compared to the sensitivity of an ocean-only model forced by mixed boundary conditions (BC). The atmospheric component of the coupled model is a moist energy balance model. The ocean component is a 12-level geostrophic model, defined on a midlatitude β-plane. Atmosphere and ocean are coupled through the fluxes of heat and moisture at their interface. The coupled model contains a number of feedback processes which are not represented in the ocean-only model. This results in a temperature and salinity response to κ v which is stronger in the coupled model than in the ocean-only model. On the other hand, there is a weaker response in oceanic processes such as meridional heat transport, deep-water formation at high latitudes, etc. Ocean-only sensitivity experiments were also performed with modified BCs, which parametrise the feedback processes included in the coupled model. These are the modified thermal BC of Rahmstorf and Willebrand and a modified freshwater BC proposed in the present study. Large-scale features of the response in oceanic surface fields are well represented with modified BCs. However, the sensitivity of the deep ocean temperature is only partly captured due to local differences in the surface response. The scaling behavior of the zonal overturning stream function was found to depend on the surface BCs. In contrast to this, the meridional overturning stream function basically scales with κ0.5 v in all sensitivity experiments. Differences in the heat transport response among the experiments are thus primarily related to differences in the temperature response. Received: 28 February 1997/Accepted: 12 September 1997  相似文献   

12.
Turbulent and mean meteorological data collected at five levels on a 20-m tower over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are analyzed to examine different regimes of the stable boundary layer (SBL). Eleven months of measurements during SHEBA cover a wide range of stability conditions, from the weakly unstable regime to very stable stratification. Scaling arguments and our analysis show that the SBL can be classified into four major regimes: (i) surface-layer scaling regime (weakly stable case), (ii) transition regime, (iii) turbulent Ekman layer, and (iv) intermittently turbulent Ekman layer (supercritical stable regime). These four regimes may be considered as the basic states of the traditional SBL. Sometimes these regimes, especially the last two, can be markedly perturbed by gravity waves, detached elevated turbulence (‘upside down SBL’), and inertial oscillations. Traditional Monin–Obukhov similarity theory works well in the weakly stable regime. In the transition regime, Businger–Dyer formulations work if scaling variables are re-defined in terms of local fluxes, although stability function estimates expressed in these terms include more scatter compared to the surface-layer scaling. As stability increases, the near-surface turbulence is affected by the turning effects of the Coriolis force (the turbulent Ekman layer). In this regime, the surface layer, where the turbulence is continuous, may be very shallow (< 5 m). Turbulent transfer near the critical Richardson number is characterized by small but still significant heat flux and negligible stress. The supercritical stable regime, where the Richardson number exceeds a critical value, is associated with collapsed turbulence and the strong influence of the earth’s rotation even near the surface. In the limit of very strong stability, the stress is no longer a primary scaling parameter.  相似文献   

13.
Abstract

The impact of cloud representation on the simulation of mid-latitude recurrent large-scale flows and forecast skill of mid-latitude atmospheric teleconnections is evaluated using the Community Climate System Model, version 4 (CCSM4), and the super-parameterized CCSM4 (SP-CCSM4). Patterns of low-level atmospheric circulation anomalies and convection associated with the Madden–Julian oscillation (MJO) are affected by the method used for the representation of cloud processes. The configuration of the model using super-parameterization for the representation of cloud processes produces MJO-related patterns that agree better with observations than the configuration of the model using a conventional cloud parameterization scheme. The recurrent circulation regimes of the mid-latitudes are also sensitive to the representation of cloud processes. In the North Atlantic sector, the inability of CCSM4 to simulate the Scandinavian blocking regime is corrected in the super-parameterized version of the model. In the North Pacific sector, the strength of the clustering (measured by a variance ratio) is too large in CCSM4 compared with observations and SP-CCSM4. The SP-CCSM4 model has better forecast skill for the MJO amplitude and phase than the model with conventional representation of moist convective processes. In turn, the improved forecast skill of the super-parameterized model results in better forecast skill for mid-latitude teleconnections in 500 hPa geopotential height anomalies forced by the MJO convection.  相似文献   

14.
The effects of Earth's rotation on convection into stratified fluid under uniform surface cooling are investigated using a large-eddy simulation (LES) model. The initial mixed layer depth varies by a factor of 40 and temperature gradient below the mixed layer varies by three orders of magnitude. At the end of integration (typically 20–40 inertial periods), the so-called natural Rossby number for the rotating experiments varies from 0.06 to 2. The wide range of conditions used is designed to extract scaling laws of rotating convection and to shed light on the importance of Earth's rotation on convection. It is found that the effects of rotation can be characterized by a series of hyperbolic tangent functions of the natural Rossby number. The effects of rotation are most pronounced when Ro is order 0.1 or less. For Ro  1, the effects of rotation become small. Comparison of Lagrangian statistics of numerical floats reveals that horizontal mixing is suppressed in the presence of rotation. This result is consistent with the finding that integral length scale and turbulent intensity decrease when rotation is included, in contrast to the conclusion of an early study that argued for increased horizontal mixing in the presence of rotation.  相似文献   

15.
Abstract

Intervention experiments using the Coupled Forecast System model, version 2 (CFSv2), have been performed in which various Madden-Julian Oscillation (MJO) evolutions were added to the model’s internally generated heating: Slow Repeated Cycles, Slow Single Cycle, Fast Repeated Cycles, and Fast Single Cycle. In each experiment, one of these specified MJO evolutions of tropical diabatic heating was added in multiple ensemble reforecasts of boreal winter (1 November to 31 March for 31 winters: 1980–2010). Since in each experiment, multiple re-forecasts were made with the identical heating evolution added, predictable component analysis is used to identify modes with the highest signal-to-noise ratio. Traditional MJO-phase analysis of total model heating (dominated by internally generated heating) shows that the MJO-related heating structure compares well with heating estimated from observed fast and slow episodes; however, the model heating is larger by a factor of two. The evolution of Euro-Atlantic circulation regimes indicates a clear response due to the added heating, with a robust increase in the frequency of occurrence of the negative phase of the North Atlantic Oscillation (NAO?) after the heating crosses into the Pacific and a somewhat less robust increase in the positive phase of the NAO (NAO+) following Indian Ocean heating. In the Fast Cycle experiments, the model response is somewhat muted compared with the Slow Cycle experiments. The Scandinavian Blocking regime becomes more frequent prior to the NAO? regime. The two leading modes in the predictable component analysis of 300?hPa height (Z300), synoptic scale feedback (DZ300), and planetary wave diabatic heating in all experiments form an oscillatory pair with high statistical significance. The oscillatory pair represents the cyclic response to the particular MJO signal (Fast or Slow, Single, or Repeated Cycles) in each case. The period is about 64 days for the Slow Cycle and 36 days for the Fast Cycle, consistent with the imposed periods. The time series of one of the leading modes of Z300 is highly anti-correlated with the frequency of occurrence of the NAO– in the Repeated Cycle experiments. A clear cycle involving the Z300 and DZ300 leading modes is identified.  相似文献   

16.
The lower limit on the drag coefficient under hurricane force winds is determined by the break-up of the air–sea interface due to Kelvin–Helmholtz instability and formation of the two-phase transition layer consisting of sea spray and air bubbles. As a consequence, a regime of marginal stability develops. In this regime, the air–sea drag coefficient is determined by the turbulence characteristics of the two-phase transition layer. The upper limit on the drag coefficient is determined by the Charnock-type wave resistance. Most of the observational estimates of the drag coefficient obtained in hurricane conditions and in laboratory experiments appear to lie between the two extreme regimes: wave resistance and marginal stability.  相似文献   

17.
Abstract

A series of experiments was carried out to determine the sensitivity of an operational numerical weather prediction model to increased vertical resolution and the addition of stratospheric levels. Emphasis is placed on the planetary waves, since recent theoretical investigations indicate that the structure of these waves is greatly influenced by a model's vertical configuration.

It is shown that the sensitivity is low and that only a small reduction of forecast error in the planetary waves is achieved by augmented vertical structure.  相似文献   

18.
In the Northeastern U.S., salt marsh area is in decline. Habitat change analysis has revealed fragmentation, displacement of high marsh by low marsh species, and marsh drowning, while development of adjacent uplands limits upslope migration. Measures of marsh vegetation loss for eight sites in Rhode Island and New York between ca.1970 and 2011 indicate that substantial loss has occurred over past decades, with higher loss rates found for lower elevation salt marshes. Using inundation experiments, field surveys, and LiDAR datasets, we developed an elevation-productivity relationship for Spartina alterniflora specific to the U.S. Northeast, and located current salt marsh orthometric heights on this curve. We estimate that 87 % of Northeastern salt marshes are located at elevations where growth is limited by inundation. By manipulating water column nutrients, precipitation, and elevation, we further found that altered precipitation regime was associated with significant reductions in biomass, and that nutrient enrichment adversely impacts organic matter accumulation and peat formation. These results provide evidence that Northeastern U.S. marshes are vulnerable to the effects of accelerated sea level rise, and that neither precipitation changes, nor cultural eutrophication, will contribute positively to long-term salt marsh survival.  相似文献   

19.
This study examines mid-latitude climate variability in a model that couples turbulent oceanic and atmospheric flows through an active oceanic mixed layer. Intrinsic ocean dynamics of the inertial recirculation regions combines with nonlinear atmospheric sensitivity to sea-surface temperature (SST) anomalies to play a dominant role in the variability of the coupled system.Intrinsic low-frequency variability arises in the model atmosphere; when run in a stand-alone mode, it is characterized by irregular transitions between preferred high-latitude and less frequent low-latitude zonal-flow states. When the atmosphere is coupled to the ocean, the low-latitude state occurrences exhibit a statistically significant signal in a broad 5–15-year band. A similar signal is found in the time series of the model ocean's energy in this coupled simulation. Accompanying uncoupled ocean-only and atmosphere-only integrations are characterized by a decrease in the decadal-band variability, relative to the coupled integration; their spectra are indistinguishable from a red spectrum.The time scale of the coupled interdecadal oscillation is set by the nonlinear adjustment of the ocean's inertial recirculations to the high-latitude and low-latitude atmospheric forcing regimes. This adjustment involves, in turn, SST changes resulting in long-term ocean–atmosphere heat-flux anomalies that induce the atmospheric regime transitions.  相似文献   

20.
We consider the structure of the stable boundary layer using the concept of local scaling. In this scaling approach turbulence variables, non-dimensionalized with measurements taken at the same height, can be expressed as a function of a single parameter z/, where z is the height and a local Obukhov length. One of the consequences is that locally scaled variables become constant above the surface layer. This behavior is illustrated with observations of the Richardson number. With local scaling as a closure hypothesis we then formulate a model of the stable boundary layer. Its solution for steady-state conditions is given. One result we obtain is the well-known Zilitinkevich equation for the boundary-layer height. A comparison of this equation with observations results in a reasonable agreement. Also we discuss some alternative expressions for the stable boundary-layer height and compare them with observations. Another result of our model is an explicit profile for the K-coefficient as a quadratic function of height. We discuss the consequences of this expression for the dispersion of a point source emission. We find that the time scale of diffusion in this case is about 5 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号