首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New data on paleomagnetism and isotope geochronology of Jurassic and Early Cretaceous basic igneous rocks on Franz Josef Land Archipelago (FJL) represented by flows and dikes are discussed. The first paleomagnetic data obtained for these rocks offer the opportunity to suggest a model of spatial changes in the FJL block position during the Jurassic?Cretaceous. In the Early Jurassic, the block occupied a different position relative to Europe from the modern one. It was displaced in the northeasterly direction by a distance of approximately 500 km and rotated clockwise by about 40° relative to its modern position. By the Early Cretaceous, the FJL block occupied a position close to the present-day one avoiding subsequent substantial relative displacements. The data obtained are of principal significance for reconstructing the geodynamic evolution of Arctic structures in the Mesozoic and contribute greatly to the base of paleomagnetic data for the Arctic region, development of which is now in progress.  相似文献   

2.
A new paleomagnetic study on well-dated (~ 155 Ma) volcanic rocks of the Tiaojishan Formation (Fm) in the northern margin of the North China Block (NCB) has been carried out. A total of 194 samples were collected from 26 sites in the Yanshan Belt areas of Luanping, Beipiao, and Shouwangfen. All samples were subjected to stepwise thermal demagnetization. After removal of a recent geomagnetic field viscous component, a stable high temperature component (HTC) was isolated. The inclinations of our new data are significantly steeper than those previously published from the Tiaojishan Fm in the Chengde area (Pei et al., 2011, Tectonophysics, 510, 370–380). Our analyses demonstrate that the paleomagnetic directions obtained from each sampled area were strongly biased by paleosecular variation (PSV), but the PSV can be averaged out by combining all the virtual geomagnetic poles (VGPs) from the Tiaojishan Fm in the region. The mean pole at 69.6°N/203.0°E (A95 = 5.6°) passes a reversal test and regional tilting test at 95% confidence and is thus considered as a primary paleomagnetic record. This newly determined pole of the Tiaojishan Fm is consistent with available Late Jurassic poles from red-beds in the southern part of the NCB, but they are incompatible with coeval poles of Siberia and the reference pole of Eurasia, indicating that convergence between Siberia and the NCB had not yet ended by ~ 155 Ma. Our calculation shows a ~ 1600-km latitudinal plate movement and crustal shortening between the Siberia and NCB after ~ 155 Ma. In addition, no significant vertical axis rotation was found either between our sampled areas or between the Yanshan Belt and the major part of the NCB after ~ 155 Ma.  相似文献   

3.
The paper summarizes paleomagnetic and rock-magnetic data on the Late Cretaceous diatremes and associated dikes from the Minusa trough located within the southwestern Siberian Platform. It is shown that the stable characteristic component of magnetization is superimposed magnetization (in physical sense). It is linked to Fe-rich titanomagnetite produced by the decay and oxidation of Ti-rich titanomagnetite derived from a primary magma. This process, however, coincides in time with the intrusion cooling, which is supported by paleomagnetic tests. Correlation of magnetic polarity with 39Ar/40Ar ages suggests that the acquired stable characteristic component of magnetization corresponds to magnetic Chrons C33-C32 and characterizes the Middle Campanian magnetic field (74–82 Ma). The mean paleomagnetic pole for this span is located at 82.8° N, 188.5° E, with α95 = 6.1 and, within confidence intervals, coincides with the reference data from the European part of the Eurasian plate. The excellent agreement between virtual paleomagnetic poles testifies that the intraplate motions in the Mesozoic resulting in the crust deformation of Central Asia ceased in the late Cretaceous or were so small that elude detection by the paleomagnetic method.  相似文献   

4.
In this paper we present new paleomagnetic and paleontological data from the Ordovician and Silurian carbonate rocks of Kotelny Island (the Anjou Archipelago), and from the Ordovician turbidities of Bennett Island (the De Long Archipelago). It is assumed that both archipelagos belong to the NSI (New Siberian Islands) terrane — a key tectonic element in the Arctic region. Ages of the studied rocks have been established by paleontological data and lithological correlations. Our new data on conodonts combined with those from previous studies of Ordovician and Silurian fauna indicate a biogeographic similarity between the shelves of the Siberian paleocontinent and the NSI in the Early Paleozoic. Three new paleomagnetic poles for the NSI (48.9°N, 13.8°E, A95 = 18.1° for 475 Ma; 45.5°N, 31.9°E, A95 = 11.0° for 465 Ma, and 33.7°N, 55.7°E, A95 = 11.0° for 435 Ma) fall between the south-eastern part of Central Europe and the Zagros Mountains. The similarity of paleomagnetic directions from Kotelny and Bennet islands confirms that both the Anjou and De Long archipelagos belong to the same terrane. Calculated paleolatitudes indicate that in Ordovician–Silurian times this terrane has been located between 30° and 45°, possibly in the northern hemisphere. Based on this observation, we suggest a linkage between the NSI and the Kolyma–Omolon superterrane. Comparison of apparent polar wander paths (APWPs) of the NSI, Siberia and other cratons/terranes suggests that the NSI drifted independently. We demonstrate that the structural line between Svyatoy Nos Peninsula and Great Lyakhovsky Island is the continuation of the Kolyma Loop suture on the Arctic shelf, and expect that the continuation of the South Anyui suture is to be found east of the NSI.  相似文献   

5.
Northwestern China belts result from the Palaeozoic collage of Central Asia and the subsequent reactivations due to far-field effects of the Mesozoic Tibetan and the Cenozoic Himalayan collisions. Triassic is a crucial period to understand and decipher the tectonics related to these two episodes. About 250 oriented palaeomagnetic cores from 43 sites were collected from six sections of Upper Permian to Late Triassic sandstone, in South and West Junggar, Northwestern China. Thermomagnetic, IRM and hysteresis measurements reveal magnetite as the main carrier of the magnetic remanence with minor hematite and maghemite. Stepwise thermal demagnetisation has generally isolated two components. The low temperature component, up to 300–350 °C, displays a direction consistent with the present-day geomagnetic field. The locality-mean directions related to the high temperature component (above 350 °C) were also calculated. Two out of six sections display intense viscous magnetisation and the occurrence of maghemite reveals a possible Cenozoic chemical remagnetisation for these two localities. For the other four localities, we assume that the magnetisation is primary because: (1) AMS measurements reveal a primary fabric, (2) there are local occurrences of antipodal polarities, and (3) palaeolatitudes of tilt-corrected poles are compatible with previous studies. The consistency between the Early Triassic poles of West and South Junggar indicates that Junggar evolved as a rigid block only since Early Mesozoic. The comparison of the Late Palaeozoic and the Early Mesozoic poles of Junggar and those of Siberia and Tarim shows major rotations between the Late Permian and the Late Jurassic–Early Cretaceous. These periods of discrete rotations are characterized by strike-slip faulting in Tianshan and Altai and they may correlate with the major episodes of coarse-grained detrital sedimentation and uplift of the range. Especially, the counter-clockwise rotations of Junggar relative to Tarim and Siberia, which occurred between the Early and the Late Triassic and between the Late Triassic and the Late Jurassic, are accommodated by transpressive tectonics in the Tianshan and the Altai belts. This reactivation is a far-field effect of Tibetan blocks diachronous collisions. Therefore, these first Triassic palaeomagnetic results from Junggar infer that post-Carboniferous rotations were due to the combined effect of the post-orogenic transcurrent movement and the Mesozoic oblique reactivation.  相似文献   

6.
North-eastern China and surrounding regions host some of the best examples of Phanerozoic juvenile crust on the globe. However, the Mesozoic tectonic setting and geodynamic processes in this region remain debated. Here we attempt a systematic analysis of the spatio-temporal distribution patterns of ore deposits in NE China and surrounding regions to constrain the geodynamic milieu. From an evaluation of the available geochronological data, we identify five distinct stages of ore formation: 240–205 Ma, 190–165 Ma, 155–145 Ma, 140–120 Ma, and 115–100 Ma. The Triassic (240–205 Ma) magmatism and associated mineralisation occurred during in a post-collisional tectonic setting involving the closure of the Paleo-Asian Ocean. The Early-Mid Jurassic (190–165 Ma) events are related to the subduction of the Paleo-Pacific Ocean in the eastern Asian continental margin, whereas in the Erguna block, these are associated with the subduction of the Mongol–Okhotsk Ocean. From 155 to 120 Ma, large-scale continental extension occurred in NE China and surrounding regions. However, the Late Jurassic magmatism and mineralisation events in these areas evolved in a post-orogenic extensional environment of the Mongol–Okhotsk Ocean subduction system. The early stage of the Early Cretaceous events occurred under the combined effects of the closure of the Mongol–Okhotsk Ocean and the subduction of the Paleo-Pacific Ocean. The widespread extension ceased during the late phase of Early Cretaceous (115–100 Ma), following the rapid tectonic changes resulting from the Paleo-Pacific Oceanic plate reconfiguration.  相似文献   

7.
The Yanshan Orogenic Belt is located in the northern part of the North China Craton (NCC), which lost ∼120 km of lithospheric mantle during Phanerozoic tectonic reactivation. Mesozoic magmatism in the Yanshan fold-and-thrust belt began at 195–185 Ma (Early Jurassic), with most of the granitic plutons being Cretaceous in age (138–113 Ma). Along with this magmatism, multi-phase deformational structures, including multiple generations of folds, thrust and reverse faults, extensional faults, and strike-slip faults are present in this belt. Previous investigations have mostly focused on geochemical and isotopic studies of these magmatic rocks, but not on the thermal history of the Mesozoic plutons. We have applied 40Ar/39Ar thermochronology to biotites and K-feldspars from several Lower Cretaceous granitic plutons to decipher the cooling and uplift history of the Yanshan region. The biotite 40Ar/39Ar ages of these plutons range from 107 to 123 Ma, indicating that they cooled through about 350 °C at that time. All the K-feldspar step-heating results modeled using multiple diffusion domain theory yield similarly rapid cooling trends, although beginning at different times. Two rapid cooling phases have been identified at ca. 120–105 and 100–90 Ma. The first phase of rapid cooling occurred synchronously with widespread extensional deformation characterized by the formation of metamorphic core complexes, A-type magmatism, large-scale normal faults, and the development of half-graben basins. This suggests rapid exhumation took place in an extensional regime and was a shallow-crustal-level response to lithospheric thinning of the NCC. The second phase of rapid cooling was probably related to the regional uplift and unroofing of the Yanshan Belt, which is consistent with the lack of Upper Cretaceous sediments in most of the Yanshan region.  相似文献   

8.
The Serbo-Macedonian Massif (SMM) represents a composite crystalline belt within the Eastern European Alpine orogen, outcropping from the Pannonian basin in the north, to the Aegean Sea in the south. The central parts of the massif (i.e. southeastern Serbia, southwestern Bulgaria, eastern Macedonia) consist of the medium- to high-grade Lower Complex, and the low-grade Vlasina Unit. New results of U–Pb LA-ICP-MS analyses, coupled with geochemical analyses of Hf isotopes on magmatic and detrital zircons, and main and trace element concentrations in whole-rock samples suggest that the central SMM and the basement of the adjacent units (i.e. Eastern Veles series and Struma Unit) originated in the central parts of the northern margin of Gondwana. These data provided a basis for a revised tectonic model of the evolution of the SMM from the late Ediacaran to the Early Triassic.The earliest magmatism in the Lower Complex, Vlasina Unit and the basement of Struma Unit is related to the activity along the late Cadomian magmatic arc (562–522 Ma). Subsequent stage of early Palaeozoic igneous activity is associated with the reactivation of subduction below the Lower Complex and the Eastern Veles series during the Early Ordovician (490–478 Ma), emplacement of mafic dykes in the Lower Complex due to aborted rifting in the Middle Ordovician (472–456 Ma), and felsic within-plate magmatism in the early Silurian (439 ± 2 Ma). The third magmatic stage is represented by Carboniferous late to post-collisional granites (328–304 Ma). These granites intrude the gneisses of the Lower Complex, in which the youngest deformed igneous rocks are of early Silurian age, thus constraining the high-strain deformation and peak metamorphism to the Variscan orogeny. The Permian–Triassic (255–253 Ma) stage of late- to post-collisional and within-plate felsic magmatism is related to the opening of the Mesozoic Tethys.  相似文献   

9.
《Gondwana Research》2014,25(1):48-102
The Asian continent formed during the past 800 m.y. during late Neoproterozoic through Jurassic closure of the Tethyan ocean basins, followed by late Mesozoic circum-Pacific and Cenozoic Himalayan orogenies. The oldest gold deposits in Asia reflect accretionary events along the margins of the Siberia, Kazakhstan, North China, Tarim–Karakum, South China, and Indochina Precambrian blocks while they were isolated within the Paleotethys and surrounding Panthalassa Oceans. Orogenic gold deposits are associated with large-scale, terrane-bounding fault systems and broad areas of deformation that existed along many of the active margins of the Precambrian blocks. Deposits typically formed during regional transpressional to transtensional events immediately after to as much as 100 m.y. subsequent to the onset of accretion or collision. Major orogenic gold provinces associated with this growth of the Asian continental mass include: (1) the ca. 750 Ma Yenisei Ridge, ca. 500 Ma East Sayan, and ca. 450–350 Ma Patom provinces along the southern margins of the Siberia craton; (2) the 450 Ma Charsk belt of north-central Kazakhstan; (3) the 310–280 Ma Kalba belt of NE Kazakhstan, extending into adjacent NW Xinjiang, along the Siberia–Kazakhstan suture; (4) the ca. 300–280 Ma deposits within the Central Asian southern and middle Tien Shan (e.g., Kumtor, Zarmitan, Muruntau), marking the closure of the Turkestan Ocean between Kazakhstan and the Tarim–Karakum block; (5) the ca. 190–125 Ma Transbaikal deposits along the site of Permian to Late Jurassic diachronous closure of the Mongol–Okhotsk Ocean between Siberia and Mongolia/North China; (6) the probable Late Silurian–Early Devonian Jiagnan belt formed along the margin of Gondwana at the site of collision between the Yangtze and Cathaysia blocks; (7) Triassic deposits of the Paleozoic Qilian Shan and West Qinling orogens along the SW margin of the North China block developed during collision of South China; and (8) Jurassic(?) ores on the margins of the Subumusu block in Myanmar and Malaysia. Circum-Pacific tectonism led to major orogenic gold province formation along the length of the eastern side of Asia between ca. 135 and 120 Ma, although such deposits are slightly older in South Korea and slightly younger in the Amur region of the Russian Southeast. Deformation related to collision of the Kolyma–Omolon microcontinent with the Pacific margin of the Siberia craton led to formation of 136–125 Ma ores of the Yana–Kolyma belt (Natalka, Sarylakh) and 125–119 Ma ores of the South Verkhoyansk synclinorium (Nezhdaninskoe). Giant ca. 125 Ma gold provinces developed in the Late Archean uplifted basement of the decratonized North China block, within its NE edge and into adjacent North Korea, in the Jiaodong Peninsula, and in the Qinling Mountains. The oldest gold-bearing magmatic–hydrothermal deposits of Asia include the ca. 485 Ma Duobaoshan porphyry within a part of the Tuva–Mongol arc, ca. 355 Ma low-sulfidation epithermal deposits (Kubaka) of the Omolon terrane accreted to eastern Russia, and porphyries (Bozshakol, Taldy Bulak) within Ordovican to Early Devonian oceanic arcs formed off the Kazakhstan microcontinent. The Late Devonian to Carboniferous was marked by widespread gold-rich porphyry development along the margins of the closing Ob–Zaisan, Junggar–Balkhash, and Turkestan basins (Amalyk, Oyu Tolgoi); most were formed in continental arcs, although the giant Oyu Tolgoi porphyry was part of a near-shore oceanic arc. Permian subduction-related deformation along the east side of the Indochina block led to ca. 300 Ma gold-bearing skarn and disseminated gold ore formation in the Truong Son fold belt of Laos, and along the west side to ca. 250 Ma gold-bearing skarns and epithermal deposits in the Loei fold belt of Laos and Thailand. In the Mesozoic Transbaikal region, extension along the basin margins subsequent to Mongol–Okhotsk closure was associated with ca. 150–125 Ma formation of important auriferous epithermal (Balei), skarn (Bystray), and porphyry (Kultuminskoe) deposits. In northeastern Russia, Early Cretaceous Pacific margin subduction and Late Cretaceous extension were associated with epithermal gold-deposit formation in the Uda–Murgal (Julietta) and Okhotsk–Chukotka (Dukat, Kupol) volcanic belts, respectively. In southeastern Russia, latest Cretaceous to Oligocene extension correlates with other low-sulfidation epithermal ores that formed in the East Sikhote–Alin volcanic belt. Other extensional events, likely related to changing plate dynamics along the Pacific margin of Asia, relate to epithermal–skarn–porphyry districts that formed at ca. 125–85 Ma in northeastmost China and ca. 105–90 Ma in the Coast Volcanic belt of SE China. The onset of strike slip along a part of the southeastern Pacific margin appears to correlate with the giant 148–135 Ma gold-rich porphyry–skarn province of the lower and middle Yangtze River. It is still controversial as to whether true Carlin-like gold deposits exist in Asia. Those deposits that most closely resemble the Nevada (USA) ores are those in the Permo-Triassic Youjiang basin of SW China and NE Vietnam, and are probably Late Triassic in age, although this is not certain. Other Carlin-like deposits have been suggested to exist in the Sepon basin of Laos and in the Mongol–Okhotsk region (Kuranakh) of Transbaikal.  相似文献   

10.
Revision of crustal architecture and evolution of the Central Asian Orogenic Supercollage (CAOS) between the breakup of Rodinia and assembly of Pangea shows that its internal pattern cannot be explained via a split of metamorphic terranes from and formation of juvenile magmatic arcs near the East European and Siberian cratons, followed by zone-parallel complex duplication and oroclinal bending of just one or two magmatic arcs/subduction zones against the rotating cratons. Also, it cannot be explained by breakup of multiple cratonic terranes and associated magmatic arcs from Gondwana and their drift across the Paleoasian Ocean towards Siberia. Instead, remnants of early Neoproterozoic oceanic lithosphere at the southern, western and northern periphery of the Siberian craton, as well as Neoproterozoic arc magmatism in terranes, now located in the middle of the CAOS, suggest oceanic spreading and subduction between Eastern Europe and Siberia even before the breakup of Rodinia at 740–720 Ma. Some Precambrian terranes in the western CAOS and Alai-Tarim-North China might have acted as a bridge between Eastern Europe and Siberia.The CAOS evolution can be rather explained by multiple regroupings of old and juvenile crust in eastern Rodinia in response to: 1) 1000–740 Ma propagation of the Taimyr-Paleoasian oceanic spreading centres between Siberian and East European cratons towards Alai-Tarim-North China; 2) 665–540 Ma opening and expansion of the Mongol-Okhotsk Ocean, collision of Siberian and East European cratons with formation of the Timanides and tectonic isolation of the Paleoasian Ocean; 3) 520–450 Ma propagation of the Dzhalair-Naiman and then Transurals-Turkestan oceanic spreading centres, possibly from the Paleotethys Ocean, between Eastern Europe and Alai-Tarim, essentially rearranging all CAOS terranes into a more or less present layout; and 4) middle to late Paleozoic expansion of the Paleotethys Ocean and collision of Alai-Tarim-North China cratons with CAOS terranes and Siberian craton to form the North Asian Paleoplate prior to its collision with Eastern Europe along the Urals to form Laurasia. Two to five subduction zones, some stable long-term and some short-living or radically reorganized in time, can be restored in the CAOS during different phases of its evolution.  相似文献   

11.
《Gondwana Research》2014,25(1):170-189
The Lhasa terrane in southern Tibet is composed of Precambrian crystalline basement, Paleozoic to Mesozoic sedimentary strata and Paleozoic to Cenozoic magmatic rocks. This terrane has long been accepted as the last crustal block to be accreted with Eurasia prior to its collision with the northward drifting Indian continent in the Cenozoic. Thus, the Lhasa terrane is the key for revealing the origin and evolutionary history of the Himalayan–Tibetan orogen. Although previous models on the tectonic development of the orogen have much evidence from the Lhasa terrane, the metamorphic history of this terrane was rarely considered. This paper provides an overview of the temporal and spatial characteristics of metamorphism in the Lhasa terrane based mostly on the recent results from our group, and evaluates the geodynamic settings and tectonic significance. The Lhasa terrane experienced multistage metamorphism, including the Neoproterozoic and Late Paleozoic HP metamorphism in the oceanic subduction realm, the Early Paleozoic and Early Mesozoic MP metamorphism in the continent–continent collisional zone, the Late Cretaceous HT/MP metamorphism in the mid-oceanic ridge subduction zone, and two stages of Cenozoic MP metamorphism in the thickened crust above the continental subduction zone. These metamorphic and associated magmatic events reveal that the Lhasa terrane experienced a complex tectonic evolution from the Neoproterozoic to Cenozoic. The main conclusions arising from our synthesis are as follows: (1) The Lhasa block consists of the North and South Lhasa terranes, separated by the Paleo-Tethys Ocean and the subsequent Late Paleozoic suture zone. (2) The crystalline basement of the North Lhasa terrane includes Neoproterozoic oceanic crustal rocks, representing probably the remnants of the Mozambique Ocean derived from the break-up of the Rodinia supercontinent. (3) The oceanic crustal basement of North Lhasa witnessed a Late Cryogenian (~ 650 Ma) HP metamorphism and an Early Paleozoic (~ 485 Ma) MP metamorphism in the subduction realm associated with the closure of the Mozambique Ocean and the final amalgamation of Eastern and Western Gondwana, suggesting that the North Lhasa terrane might have been partly derived from the northern segment of the East African Orogen. (4) The northern margin of Indian continent, including the North and South Lhasa, and Qiangtang terranes, experienced Early Paleozoic magmatism, indicating an Andean-type orogeny that resulted from the subduction of the Proto-Tethys Ocean after the final amalgamation of Gondwana. (5) The Lhasa and Qiangtang terranes witnessed Middle Paleozoic (~ 360 Ma) magmatism, suggesting an Andean-type orogeny derived from the subduction of the Paleo-Tethys Ocean. (6) The closure of Paleo-Tethys Ocean between the North and South Lhasa terranes and subsequent terrane collision resulted in the formation of Late Permian (~ 260 Ma) HP metamorphic belt and Triassic (220 Ma) MP metamorphic belt. (7) The South Lhasa terrane experienced Late Cretaceous (~ 90 Ma) Andean-type orogeny, characterized by the regional HT/MP metamorphism and coeval intrusion of the voluminous Gangdese batholith during the northward subduction of the Neo-Tethyan Ocean. (8) During the Early Cenozoic (55–45 Ma), the continent–continent collisional orogeny has led to the thickened crust of the South Lhasa terrane experiencing MP amphibolite-facies metamorphism and syn-collisional magmatism. (9) Following the continuous continent convergence, the South Lhasa terrane also experienced MP metamorphism during Late Eocene (40–30 Ma). (10) During Mesozoic and Cenozoic, two different stages of paired metamorphic belts were formed in the oceanic or continental subduction zones and the middle and lower crust of the hanging wall of the subduction zone. The tectonic imprints from the Lhasa terrane provide excellent examples for understanding metamorphic processes and geodynamics at convergent plate boundaries.  相似文献   

12.
The coastal Changle-Nan’ao tectonic zone of SE China contains important geological records of the Late Mesozoic orogeny and post-orogenic extension in this part of the Asian continent. The folded and metamorphosed T3–J1 sedimentary rocks are unconformably overlain by Early Cretaceous volcanic rocks or occur as amphibolite facies enclaves in late Jurassic to early Cretaceous gneissic granites. Moreover, all the metamorphic and/or deformed rocks are intruded by Cretaceous fine-grained granitic plutons or dykes. In order to understand the orogenic development, we undertook a comprehensive zircon U–Pb geochronology on a variety of rock types, including paragneiss, migmatitic gneiss, gneissic granite, leucogranite, and fine-grained granitoids. Zircon U–Pb dating on gneissic granites, migmatitic gneisses, and leucogranite dyke yielded a similar age range of 147–135 Ma. Meanwhile, protoliths of some gneissic granites and migmatitic gneisses are found to be late Jurassic magmatic rocks (ca. 165–150 Ma). The little deformed and unmetamorphosed Cretaceous plutons or dykes were dated at 132–117 Ma. These new age data indicate that the orogeny lasted from late Jurassic (ca. 165 Ma) to early Cretaceous (ca. 135 Ma). The tectonic transition from the syn-kinematic magmatism and migmatization (147–136 Ma) to the post-kinematic plutonism (132–117 Ma) occurred at 136–132 Ma.  相似文献   

13.
The Qinling Orogen is one of the main orogenic belts in Asia and is characterized by multi-stage orogenic processes and the development of voluminous magmatic intrusions. The results of zircon U–Pb dating indicate that granitoid magmatism in the Qinling Orogen mainly occurred in four distinct periods: the Neoproterozoic (979–711 Ma), Paleozoic (507–400 Ma), and Early (252–185 Ma) and Late (158–100 Ma) Mesozoic. The Neoproterozoic granitic magmatism in the Qinling Orogen is represented by strongly deformed S-type granites emplaced at 979–911 Ma, weakly deformed I-type granites at 894–815 Ma, and A-type granites at 759–711 Ma. They can be interpreted as the products of respectively syn-collisional, post-collisional and extensional setting, in response to the assembly and breakup of the Rodinia supercontinent. The Paleozoic magmatism can be temporally classified into three stages of 507–470 Ma, 460–422 Ma and ∼415–400 Ma. They were genetically related to the subduction of the Shangdan Ocean and subsequent collision of the southern North China Block and the South Qinling Belt. The 507–470 Ma magmatism is spatially and temporally related to ultrahigh-pressure metamorphism in the studied area. The 460–422 Ma magmatism with an extensive development in the North Qinling Belt is characterized by I-type granitoids and originated from the lower crust with the involvement of mantle-derived magma in a collisional setting. The magmatism with the formation age of ∼415–400 Ma only occurred in the middle part of the North Qinling Belt and is dominated by I-type granitoid intrusions, and probably formed in the late-stage of a collisional setting. Early Mesozoic magmatism in the study area occurred between 252 and 185 Ma, with the cluster in 225–200 Ma. It took place predominantly in the western part of the South Qinling Belt. The 250–240 Ma I-type granitoids are of small volume and show high Sr/Y ratios, and may have been formed in a continental arc setting related to subduction of the Mianlue Ocean between the South Qinling Belt and the South China Block. Voluminous late-stage (225–185 Ma) magmatism evolved from early I-type to later I-A-type granitoids associated with contemporaneous lamprophyres, representative of a transition from syn- to post-collisional setting in response to the collision between the North China and the South China blocks. Late Mesozoic (158–100 Ma) granitoids, located in the southern margin of the North China Block and the eastern part of the North Qinling Belt, are characterized by I-type, I- to A-type, and A-type granitoids that were emplaced in a post-orogenic or intraplate setting. The first three of the four periods of magmatism were associated with three important orogenic processes and the last one with intracontinental process. These suggest that the tectonic evolution of the Qinling Orogen is very complicated.  相似文献   

14.
The Xinan Cu–Mo deposit, newly-discovered in the Zijinshan Au–Cu–Mo Orefield (the largest porphyry–epithermal system in SE China), is featured by the presence of abundant multi-phase granitoids, which reflects the complex Mesozoic tectono-magmatic evolution in the region.New and published LA-ICP-MS zircon U–Pb age data reveal that the Mesozoic Zijinshan magmatism occurred in two major phases: (1) Middle to Late Jurassic (ca. 169–150 Ma), forming the Zijinshan complex granite and the Xinan monzogranite; (2) late Early Cretaceous to earliest Late Cretaceous (ca. 112–98 Ma), forming the Shimaoshan volcanic rocks, Sifang granodiorite, and the Xinan (fine-grained) granodiorite porphyry, porphyritic granodiorite and late aplite dykes. Additionally, a possible earliest Cretaceous magmatism (ca. 141 Ma) may have occurred based on inherited zircon evidence. Major and trace element geochemistry indicates that all the Zijinshan igneous rocks show subduction-related geochemical affinities. Zircon Ce4 +/Ce3 + values of the late Early Cretaceous to earliest Late Cretaceous granitoids (Ce4 +/Ce3 + = 190–1706) are distinctly higher than the Middle to Late Jurassic ones (Ce4 +/Ce3 + = 27–457), suggesting that the former were derived from more oxidized parental magma. The Middle to Late Jurassic Zijinshan complex granite and monzogranite have εHf (t) values of − 8.02 to − 10.00, with the two-stage Hf model ages (TDM2) of 1.72 to 1.84 Ga (similar to the Paleoproterozoic metamorphosed Cathaysia Block basement), suggesting that they were derived from partial melting of the basement. The late Early Cretaceous to earliest Late Cretaceous Sifang granodiorite and Xinan (fine-grained) granodiorite porphyry, porphyritic granodiorite and aplite dykes contain higher and wider range of εHf (t) values (0.66 to − 6.05), with TDM2 of 1.12 to 1.56 Ga, indicating that they were also partial melting product of the Cathaysia basement but with more mantle and/or juvenile mafic lower crustal input. We propose that the Zijinshan Orefield was in a compressive, Pacific subduction-related tectonic setting during the Middle to Late Jurassic. The regional tectonic regime may have changed to extensional in the late Early Cretaceous to earliest Late Cretaceous, during which the Pacific plate subduction direction change and the accompanying subduction roll-back and slab window-opening occurred. The tectonic regime transition, high oxygen fugacity and mantle/mafic lower crustal materials involvement in the late Early Cretaceous to earliest Late Cretaceous may have generated the Zijinshan porphyry-related Au–Cu–Mo mineralization.  相似文献   

15.
New zircon U–Pb data, along with the data reported in the literature, reveal five phases of magmatic activity in the Tengchong Terrane since the Early Paleozoic with spatial and temporal variations summarized as Cambrian–Ordovician (500–460 Ma) to the east, minor Triassic (245–206 Ma) in the east and west, abundant Early Cretaceous (131–114 Ma) in the east, extensive Late Cretaceous (77–65 Ma) in the central region, and Paleocene–Eocene (65–49 Ma) in the central and western Tengchong Terrane, in which the Cretaceous–Eocene magmatism migrated from east to west. The increased zircon εHf(t) of the Early Cretaceous granitoids from − 12.3 to − 1.4 at ca. 131–122 Ma to − 4.6 to + 7.1 at ca. 122–114 Ma, identified for the first time in this study, and the magmatic flare-up at ca. 53 Ma in the central and western Tengchong Terrane indicate increased contributions from mantle- or juvenile crust-derived components. The spatial and temporal variations and changing magmatic compositions over time in the Tengchong Terrane closely resemble those of the Lhasa Terrane in southern Tibet. Such similarities, together with the data of stratigraphy and paleobiogeography, enable us to propose that the Tengchong Terrane in SW Yunnan is most likely linked with the Lhasa Terrane in southern Tibet, both of which experienced similar tectonomagmatic histories since the Early Paleozoic.  相似文献   

16.
A central target in Earth sciences is to understand the processes controlling the stabilization and destruction of Archean continents. The North China craton (NCC) has in part lost its dense crustal root after the Mesozoic, and thus it is a key region to test models of crust–mantle differentiation and subsequent evolution of the continental crust. However, the timing and mechanisms responsible for its crustal thickening and reworking have been long debated. Here we report the Early Cretaceous Yinan (eastern NCC) adakitic granites, for which major/trace elemental models demonstrate that they are complementary to the analogy of the documented eclogitic relicts within the NCC. Based on their Late Archean inherited zircons, depleted mantle Nd model ages of ∼2.8 Ga, large negative εNd(t) values (−36.7 to −25.3) and strongly radiogenic initial 87Sr/86Sr ratios (0.7178–0.7264), we suggest that the Yinan adakitic granites were potentially formed by the dehydration melting of a thickened Archean mica-bearing mafic lower crust during the Early Cretaceous (ca. 124 Ma), corresponding to a major period (117–132 Ma) of the NCC Mesozoic intrusive magmatism. Combined previous results, it is shown that the thickening and reworking of the North China Archean lower crust occurred largely as two short-lived episodes at 155–180 Ma and 117–132 Ma, rather than a gradual, secular event. These correlated temporally with the superfast-spreading Pacific plate during the Mesozoic. The synchroneity of these events suggests rapid plate motion of the Pacific plate driving the episodic NCC crustal thickening and reworking, resulting in dense eclogitic residues that became gravitationally unstable. The onset of lithospheric delamination occurred when upwelling asthenosphere heated the base of lower crust to form coeval felsic magmas with or without involvement of juvenile mantle material. Collectively, the circum-Pacific massive crustal production could be attributed to the unusually rapid motion of Pacific at 155–180 Ma and 117–132 Ma.  相似文献   

17.
Two of the major granite belts of Southeast Asia are the Main Range and Eastern Province. Together, these are interpreted to represent the magmatic expression of the closure of Palaeo-Tethys during Late Palaeozoic to Early Mesozoic times. Recent geochronological and geochemical work has better delineated these belts within Peninsular Malaysia, thereby providing important constraints on the timing of Palaeo-Tethys suturing. However, the northern extension of this Palaeo-Tethyan suture is less well understood. Here we present new ion microprobe U–Pb zircon age data from northern Thailand and eastern Myanmar. Measured ages of 219 and 220 Ma from the Kyaing Tong granite imply northern extension of the Main Range Province into eastern Myanmar. The Tachileik granite in far eastern Myanmar yields an age of 266 Ma, consistent with published Eastern Province ages, and this therefore constrains the northern extension of the Palaeo-Tethys suture in eastern Myanmar. We further discuss how this suture may extend northwards into Yunnan. A Late Cretaceous age (70 Ma) measured in Thailand represents later magmatic activity, and is similar to published magmatic ages from central Myanmar. This younger magmatism is interpreted to be related to the subduction of Neo-Tethys prior to India–Asia collision. Further, we present new laser ablation zircon Hf isotope data from eastern Myanmar which suggest that Palaeoproterozoic crust underlies both the Main Range and Eastern Province granites. Our εHf model age of ca. 1750 Ma from Sibumasu, the basement underlying eastern Myanmar, lies within the range of other model ages reported thus far for the Baoshan Block north in Yunnan, interpreted by some to be the northern extension of Sibumasu.  相似文献   

18.
Metamorphic and magmatic rocks are present in the northwestern part of the Schwaner Mountains of West Kalimantan. This area was previously assigned to SW Borneo (SWB) and interpreted as an Australian-origin block. Predominantly Cretaceous U-Pb zircon ages (c. 80–130 Ma) have been obtained from metapelites and I-type granitoids in the North Schwaner Zone of the SWB but a Triassic metatonalite discovered in West Kalimantan near Pontianak is inconsistent with a SWB origin. The distribution and significance of Triassic rocks was not known so the few exposures in the Pontianak area were sampled and geochemical analyses and zircon U-Pb ages were obtained from two meta-igneous rocks and three granitoids and diorites. Triassic and Jurassic magmatic and metamorphic zircons obtained from the meta-igneous rocks are interpreted to have formed at the Mesozoic Paleo-Pacific margin where there was subduction beneath the Indochina–East Malaya block. Geochemically similar rocks of Triassic age exposed in the Embuoi Complex to the north and the Jagoi Granodiorite in West Sarawak are suggested to have formed part of the southeastern margin of Triassic Sundaland. One granitoid (118.6 ± 1.1 Ma) has an S-type character and contains inherited Carboniferous, Triassic and Jurassic zircons which indicate that it intruded Sundaland basement. Two I-type granitoids and diorites yielded latest Early and Late Cretaceous weighted mean ages of 101.5 ± 0.6 and 81.1 ± 1.1 Ma. All three magmatic rocks are in close proximity to the meta-igneous rocks and are interpreted to record Cretaceous magmatism at the Paleo-Pacific subduction margin. Cretaceous zircons of metamorphic origin indicate recrystallisation at c. 90 Ma possibly related to the collision of the Argo block with Sundaland. Subduction ceased at that time, followed by post-collisional magmatism in the Pueh (77.2 ± 0.8 Ma) and Gading Intrusions (79.7 ± 1.0 Ma) of West Sarawak.  相似文献   

19.
With the aim of constraining the influence of the surrounding plates on the Late Paleozoic–Mesozoic paleogeographic and tectonic evolution of the southern North China Craton (NCC), we undertook new U–Pb and Hf isotope data for detrital zircons obtained from ten samples of upper Paleozoic to Mesozoic sediments in the Luoyang Basin and Dengfeng area. Samples of upper Paleozoic to Mesozoic strata were obtained from the Taiyuan, Xiashihezi, Shangshihezi, Shiqianfeng, Ermaying, Shangyoufangzhuang, Upper Jurassic unnamed, and Lower Cretaceous unnamed formations (from oldest to youngest). On the basis of the youngest zircon ages, combined with the age-diagnostic fossils, and volcanic interlayer, we propose that the Taiyuan Formation (youngest zircon age of 439 Ma) formed during the Late Carboniferous and Early Permian, the Xiashihezi Formation (276 Ma) during the Early Permian, the Shangshihezi (376 Ma) and Shiqianfeng (279 Ma) formations during the Middle–Late Permian, the Ermaying Group (232 Ma) and Shangyoufangzhuang Formation (230 and 210 Ma) during the Late Triassic, the Jurassic unnamed formation (154 Ma) during the Late Jurassic, and the Cretaceous unnamed formation (158 Ma) during the Early Cretaceous. These results, together with previously published data, indicate that: (1) Upper Carboniferous–Lower Permian sandstones were sourced from the Northern Qinling Orogen (NQO); (2) Lower Permian sandstones were formed mainly from material derived from the Yinshan–Yanshan Orogenic Belt (YYOB) on the northern margin of the NCC with only minor material from the NQO; (3) Middle–Upper Permian sandstones were derived primarily from the NQO, with only a small contribution from the YYOB; (4) Upper Triassic sandstones were sourced mainly from the YYOB and contain only minor amounts of material from the NQO; (5) Upper Jurassic sandstones were derived from material sourced from the NQO; and (6) Lower Cretaceous conglomerate was formed mainly from recycled earlier detritus.The provenance shift in the Upper Carboniferous–Mesozoic sediments within the study area indicates that the YYOB was strongly uplifted twice, first in relation to subduction of the Paleo-Asian Ocean Plate beneath the northern margin of the NCC during the Early Permian, and subsequently in relation to collision between the southern Mongolian Plate and the northern margin of the NCC during the Late Triassic. The three episodes of tectonic uplift of the NQO were probably related to collision between the North and South Qinling terranes, northward subduction of the Mianlue Ocean Plate, and collision between the Yangtze Craton and the southern margin of the NCC during the Late Carboniferous–Early Permian, Middle–Late Permian, and Late Jurassic, respectively. The southern margin of the central NCC was rapidly uplifted and eroded during the Early Cretaceous.  相似文献   

20.
There is ongoing debate as to the subduction direction of the Bangong–Nujiang Ocean during the Mesozoic (northward, southward or bidirectional subduction). Arc-related intermediate to felsic intrusions could mark the location of the subduction zone and, more importantly, elucidate the dominant geodynamic processes. We report whole rock geochemical and zircon U–Pb and Hf isotopic data for granitoids from the west central Lhasa subterrane (E80° to E86°). All rocks show metaluminous to peraluminous, calc-alkaline signatures, with strong depletion of Nb, Ta and Ti, enrichment of large ion lithophile elements (e.g., Cs, Rb, K), a negative correlation between SiO2 and P2O5, and a positive correlation between Rb and Th. All these features are indicative of I-type arc magmatism. New zircon U–Pb results, together with data from the literature, indicate continuous magmatism from the Late Jurassic to the Early Cretaceous (160 to 130 Ma). Zircon U–Pb ages for samples from the northern part of the west central Lhasa subterrane (E80° to E82°30′) yielded formation ages of 165 to 150 Ma, whereas ages of 142 to 130 Ma were obtained on samples from the south. This suggests flat or low-angle subduction of the Bangong–Nujiang Ocean, consistent with a slight southward decrease in zircon εHf(t) values for Late Jurassic rocks. Considering the crustal shortening, the distance from the Bangong–Nujiang suture zone, and a typical subduction zone melting depth of ~ 100 km, the subduction angle was less than 14° for Late Jurassic magmatism in the central Lhasa interior, consistent with flat or low-angle subduction. Compared with Late Jurassic rocks (main εHf(t) values of − 16 to − 7), Early Cretaceous rocks (145 to 130 Ma) show markedly higher εHf(t) values (mainly − 8 to 0), possibly indicating slab roll-back, likely caused by slab foundering or break-off. Combined with previously published works on arc magmatism in the central Lhasa and west part of the southern Qiangtang subterranes, our results support the bidirectional subduction of the Bangong–Nujiang Ocean along the Bangong–Nujiang Suture Zone, and indicates flat or low-angle southward subduction (165 to 145 Ma) followed by slab roll-back (145 to 130 Ma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号