首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the distribution of organic carbon in rocks of the Bazhenov horizon, a unique object of predominantly biogenic sedimentation in the West Siberian sedimentary basin. The contents of organic carbon in the rocks were determined using the data from 4094 core analyses and core-log relationships derived from 48,500 radioactive- and electrical-log measurements. For the Bazhenov and Tutleima Formations, both approaches gave the same results. The average content of organic carbon in the rocks is 7.7%. These data were used to compile a detailed map of the distribution of organic carbon contents in sedimentary rocks of the basin. It was shown that the average organic carbon content in the rocks increases from 2-4% on the periphery of the basin to 10-12% in its central, deepest part. The distribution of Corg values in the basin is highly asymmetric. The highest Corg values are observed in the southwestern part of the basin interior, where beds with > 10% Corg range in thickness from 5 to 12-15 m. In sections, the highest Corg values are observed in their middle and upper parts, composed predominantly of silicites and mixtites enriched in biogenic silica.  相似文献   

2.
3.
Late Devonian to Early Carboniferous stratigraphic units within the ‘Zhulumute’ Formation, Hongguleleng Formation (stratotype), ‘Hebukehe’ Formation and the Heishantou Formation near the Boulongour Reservoir in northwestern Xinjiang are fossil-rich. The Hongguleleng and ‘Hebukehe’ formations are biostratigraphically well constrained by microfossils from the latest Frasnian linguiformis to mid-Famennian trachytera conodont biozones. The Hongguleleng Formation (96.8 m) is characterized by bioclastic argillaceous limestones and marls (the dominant facies) intercalated with green spiculitic calcareous shales. It yields abundant and highly diverse faunas of bryozoans, brachiopods and crinoids with subordinate solitary rugose corals, ostracods, trilobites, conodonts and other fish teeth. The succeeding ‘Hebukehe’ Formation (95.7 m) consists of siltstones, mudstones, arenites and intervals of bioclastic limestone (e.g. ‘Blastoid Hill’) and cherts with radiolarians. A diverse ichnofauna, phacopid trilobites, echinoderms (crinoids and blastoids) together with brachiopods, ostracods, bryozoans and rare cephalopods have been collected from this interval. Analysis of geochemical data, microfacies and especially the distribution of marine organisms, which are not described in detail here, but used for facies analysis, indicate a deepening of the depositional environment at the Boulongour Reservoir section. Results presented here concern mainly the sedimentological and stratigraphical context of the investigated section. Additionally, one Late Devonian palaeo-oceanic and biotic event, the Upper Kellwasser Event is recognized near the section base.  相似文献   

4.
The Paleoproterozoic McArthur Basin (McArthur Group) of northern Australia hosts world-class sedimentary ‘exhalative’ (SEDEX) McArthur type Zn–Pb deposits, which are largely hosted within a sequence of 1.64 Ga pyritic carbonaceous shales deposited in an extensional rift setting. A well-known example of these is McArthur River (or Here's Your Chance [HYC] Zn–Pb–Ag deposit). The ~ 1.78 Ga McDermott and ~ 1.73 Ga Wollogorang formations (Tawallah Group) both contain carbonaceous shales deposited in similar environments. Our observations suggest the carbonaceous facies of the Wollogorang Formation were deposited under mostly euxinic conditions, with periodically-high concentrations of sedimentary pyrite deposition. The carbonaceous shales in the older McDermott Formation contain considerably less early pyrite, reflecting a mostly sulfide-poor, anoxic depositional environment. Localized fault-bound sub-basins likely facilitated lateral facies variations, which is evident from synsedimentary breccias.The presence of evaporitic oxidized facies within the McDermott and Wollogorang formations, alongside evidence for synsedimentary brecciation in reduced shales are favourable criteria for SEDEX-style base metal deposition. Both formations overlie volcanic units, which could have been sources of base metals. Detailed X-ray petrography, new geochemical data and sulfur isotope data from historical drill cores indicate multiple horizons of stratiform and sediment breccia-hosted base metal sulfide within carbonaceous shale units, with high-grade Zn concentrations. A close association between sphalerite and ferromanganean dolomite alteration draws comparisons with younger SEDEX mineralization at HYC. Additionally, SEDEX alteration indices, used demonstrably as a vector to the younger orebodies, indicate the sedimentary rocks analyzed in this study are marginally below the ore window when compared to the overlying mineralized stratigraphy.Our data imply that localized active circulation of metalliferous brines occurred in the Tawallah Group basin. High-grade sulfide deposition in reduced facies alteration may represent distal expressions of larger SEDEX-style deposits. Furthermore, abundant pyrite and high molybdenum in the Wollogorang Formation suggest the global oceanic sulfate concentration was sufficient by ~ 1.73 Ga to engender intermittent but strong bottom-water euxinia during shale deposition, thus providing a robust chemical trap for base metal sulfide mineralization.  相似文献   

5.
The lithologic composition of basalts from the most complex sections of the Koltogory-Urengoi Rift is considered, and their 40Ar/39Ar ages are given: basalts from the lower section of Nikol'skaya BH-1 (Bergamak Formation)  272.9 ± 10.5 and 249.5 ± 3.0 Ma, basalts from the uppermost section (Voinov Formation)  247.5 ± 2.9 Ma, and basalts from the lower section of Tyumenskaya SDB-6 (Korotchaevo Formation)  251.2 ± 2.0 Ma. According to these and the paleomagnetic data, trap magmatism began in the Koltogory-Urengoi Rift in the Permian and ended in the Early Triassic, whereas the paleontological data suggest its beginning in the Early Triassic and its termination in the late Middle Triassic.In Tyumenskaya SDB-6 we have recognized both low-K tholeiitic and medium- to high-K subalkalic and calc-alkalic basalts, which form large alternating packets up to 480 m thick. This section is juxtaposed to the anomalous sections of the Siberian Platform trap formation near the margins of the Tunguska syneclise. The section of Nikol'skaya BH-1 is composed mainly of medium- and high-K subalkaline basalts with scarce flows of low-K ones. The low-K basalts differ from the medium- and high-K varieties in having lower contents of TiO2, P2O5, Ba, Rb, Th, and ΣLREE.The Tyumenskaya SDB-6 basalts are characterized by paleohypergene alterations, up to the development of more than five levels of alumina-ferruginous cuirasses, as well as superposed chloritization, sericitization (hydromication), carbonatization, zeolitization, silicification, and epidotization, whereas the Nikol'skaya BH-1 basalts are subjected mainly to carbonatization, chloritization, and hydromication. We have concluded that the existence of a vast mega-arch above the superplume within the West Siberian geosyneclise in the Permo-Triassic was complicated by the Koltogory-Urengoi Rift. The Triassic rift deposits are both continental and marine sediments (sandstones and siltstones with glauconite, coccolith oozes, spherulitic lavas, and hyaloclastites). The basic volcanism within the rift showed the features of both rift and flood basalts as well as E-MORB.  相似文献   

6.
Rare-earth elements abundance in black shales of the Upper Jurassic (Tithonian Stage)–Lower Cretaceous (Berriassian Stage) Bazhenov Formation is discussed. This formation is the principal oil source rocks of West Siberia. The deposits within the formation can be subdivided into two main marine groups: (a) moderately hemipelagic deposits (clayey-siliceous, including phosphatic and carbonate rocks) and low-density distal clayey turbidites (argillites), both are considered as normal and (b) silty argillites and clayey-silt rocks, which are channel deposits and considered as anomalous. The hemipelagic rocks of normal sections, which are enriched in the rare-earth elements (REE), accumulated under both slow rates of sedimentation (clayey-siliceous rocks) and faster rates of sedimentation (argillites). The channel deposits of anomalous sections, which are impoverished in the REE, accumulated exclusively under fast rates of sedimentation.Within the hemipelagic group the rate of sedimentation of the argillites was faster than of the clayey-siliceous rocks, but the REE concentration in the former rocks (140.4 ppm) is higher than in the latter group (97.4 ppm). The argillites are more than twice enriched in clayey material than clayey-siliceous rocks. It is likely that the clay fraction was the main carrier of REE in these rocks. In the channel group of rocks, the REE abundance in clayey-silt rocks (21.2 ppm) is lower than in the silty argillite (84.6 ppm), in which the clay content is elevated.With respect to redox potential the Bazhenov Formation rocks can be subdivided further into three groups, based on the degree of pyritization index (DOP): (1) the highly reducing clayey-siliceous rocks of normal sections, with high DOP; (2) the substantially reducing argillites and carbonate rocks of normal sections, with intermediate DOP; (3) the moderately reducing rocks of anomalous sections with low DOP. The rocks with the high DOP (group 1) are characterized by ΣLREE/Σ(M+H)REE ratios between 7.37 and 7.5, whereas the rocks with the lower DOP (group 2 and 3) are characterized by ΣLREE/Σ(M+H)REE ratios between 12.8 and 13.5. Negative Ce anomalies are either small or absent in all deposits, which is typical for reducing conditions.Thus, the Bazhenov Formation exemplifies the complex depositional conditions that influence the REE concentration in black shale. However, it is this very complexity that has contributed to the development of six separate depositional models (REE contents in ppm are given in brackets). (1) Phosphatic clayey-siliceous rocks of normal sections (367.95); (2) argillites of normal sections (130.73); (3) clayey-siliceous rocks of normal sections (85.97); (4) carbonate rocks, largely dolomites of normal sections (23.23); (5) silty argillites of anomalous sections (78.7) and (6) clayey-silt rocks of anomalous sections (19.66).  相似文献   

7.
The Sebahat (Middle Miocene to Early Pliocene) and Ganduman (Early Pliocene to Late Pliocene) Formations comprise part of the Dent Group. The onshore Sebahat and Ganduman Formations form part of the sedimentary sequence within the Sandakan sub-basin which continues offshore in the southern portion of the Sulu Sea off Eastern Sabah. The Ganduman Formation lies conformably on the Sebahat Formation. The shaly Sebahat Formation represents a distal holomarine facies while the sandy Ganduman Formation represents the proximal unit of a fluvial–deltaic system.Based on organic geochemical and petrological analyses, both formations posses very variable TOC content in the range of 0.7–48 wt% for Sebahat Formation and 1–57 wt% for Ganduman Formation. Both formations are dominated by Type III kerogen, and are thus considered to be gas-prone based on HI vs. Tmax plots. Although the HI–Tmax diagram indicates a Type III kerogen, petrographic observations indicate a significant amount of oil-prone liptinite macerals. Petrographically, it was observed that significant amounts (1–17% by volume) of liptinite macerals are present in the Ganduman Formation with lesser amounts in the Sebahat Formation.Both formations are thermally immature with vitrinite reflectance values in the range of 0.20–0.35%Ro for Ganduman Formation and 0.25–0.44%Ro for Sebahat Formation. Although these onshore sediments are thermally immature for petroleum generation, the stratigraphic equivalent of these sediments offshore are known to have been buried to deeper depth and could therefore act as potential source rocks for gas with minor amounts of oil.  相似文献   

8.
Mineral exploration of prospective areas concealed by extensive post-mineralization cover is growing, being very complex and expensive. The projection of rich and giant Paleocene to early Oligocene porphyry-Cu-Mo belts in northernmost Chilean Andes (17.5–19.5°S) has major exploration potential, but only a few minor deposits have been reported to date, due to the fact that the area is largely covered by post-mineral strata. We integrate the Cenozoic stratigraphic, structural and metallogenic evolution of this sector, in order to identify the most promising regions related to lesser post-mineral cover and the projection of different metallogenic belts. The Paleocene to early Eocene metallogenic belt extends along the Precordillera, with ca. 30 km wide, and includes porphyry-Cu prospects and small Cu (±Mo-Au-Ag) vein and breccia-pipe deposits. Geochronological data indicate an age of 55.5 Ma for an intrusion related to one deposit and ages from 69.5 to 54.5 Ma for hydrothermal alteration in one porphyry-Cu prospect and largest known Cu deposits. The middle Eocene to early Oligocene porphyry belt, in the Western Cordillera farther east, is associated with 46–44 Ma intrusions. It is estimated to be 40-km wide, but is largely concealed by thick post-mineral cover. The youngest Miocene to early Pliocene metallogenic belt, also in the Western Cordillera, is well-exposed and includes Au-Ag epithermal and polymetallic veins and manto-type deposits.The Oligocene-Holocene cover consists of a succession of continental sedimentary and volcanic rocks that overall increase in thickness from 0 to 5000 m, from west to east. These strata are subhorizontal in the west and folded-faulted towards the east. Miocene gentle anticlines and monocline flexures extend along strike for 30–60 km in the Precordillera and were generated by propagation of high-angle east-dipping blind reverse faults with at least 300–900 m of Oligocene bedrock offset. The thickness of cover exceeds 2000 m in the eastern Central Depression, whereas it is generally less than 1000 m in the Precordillera along the Paleocene to early Eocene porphyry-Cu belt and it can reach locally up to 5000 m in the Western Cordillera, above the middle Eocene to early Oligocene belt.In the studied Andean segment, the Miocene to early Pliocene metallogenic belt is superimposed on the Paleocene to Oligocene belts in a 40–50 km wide zone. This overlap may be explained by an accentuated migration of the magmatic front, from east to west, since ca. 25 Ma, as a consequence of subduction slab steepening after a period of magmatic lull and flat subduction from ca. 30–35 to 25 Ma. The identified areas of lesser cover thickness are prone to exploration for concealed deposits, especially along the projection of major porphyry-Cu-Mo belts.  相似文献   

9.
10.
Late Paleozoic peperites have been identified for the first time at the bottom of Tailegula Formation in West Junggar, China. This finding is significant for the reconstruction of Late Paleozoic evolution in the Junggar region. The peperites form successions up to 500 m thick interbedded with basaltic lava and sedimentary rocks. Four types of peperites are described and interpreted as resulting from basaltic lava bulldozed into wet, unconsolidated sediments at their basal contacts. Zircon LA-ICP-MS U–Pb dating of a tuff lens enclosed by lava showed that the peperites formed in the Late Devonian (ca. 364 Ma). The peperite-bearing units probably formed at a water depth of less than 3 km and are generally undeformed, occurring in continuous stratigraphic sections distributed regionally over a distance of 100 km on either side of the Darbut and Baijiantan ophiolitic belts, in contrast to the highly deformed slices of ophiolite. They demonstrate that the Darbut and Baijiantan ophiolitic belts should not be interpreted as significant plate boundaries and represent the underlying ocean crust uplifted along tectonic lineaments within a continuous shallow remnant ocean basin. The peperites formed during the spreading phase of the remnant ocean basin and represent the final stages of creation of oceanic crust.  相似文献   

11.
Based on facies, structural, and general paleogeographic analyses, new models of the bottom topography and accumulation of the Tithonian–Early Berriasian Bazhenov Formation (West Siberian Basin) are proposed. According to these patterns, quite a low proportion of the terrigenous material in the high-carbon facies of the Bazhenov Formation can be explained by its accumulation in relatively deep troughs that frame the uplifted shallow-water central part of the West Siberian basin. In addition, the structure and dynamics of ocean currents are considered. During the Tithonian–Early Berriasian, these currents were related to the aeration stages of bottom waters enriched in hydrogen sulfide and carbon dioxide. As a result of the convection of the water mass suffocation periods occurred.  相似文献   

12.
The contents of biogenic components in 1511 samples of the Baltic Sea sediments (depth range 0–5 cm) are studied, and maps of their distribution are compiled. The sediments contain < 13.03% Corg, < 1.33% N, < 9.0% SiO2am, < 5.0% CaCO3, and < 1.45% P. The maximum and elevated contents of components are found in the mud of the sea deeps. The more fraction < 0.01 mm the sediments contain, the higher are the contents of components. Four facies types of carbonaceous mud, precursors of shales, have been recognized: (1) shallow-water (lagoon) lime sapropel, (2) carbonaceous mud of the shallow-water Gulf of Finland, (3) carbonaceous mud of the middle-depth Baltic Sea, and (4) laminated carbonaceous metal-bearing mud. The latter type of mud is strongly enriched in manganese and ore-forming trace elements, which points to its formation in the stagnant environment. In composition the Baltic Sea mud is similar to petroliferous mudstones of the Bazhenov Formation in West Siberia and to ancient black shales.  相似文献   

13.
Exposures of Pliocene and Pleistocene deposits in the Ileret region include all eight members of the Koobi Fora Formation and represent at least 533 m of section from the base of the Lonyumun Member to the top of the Chari Mb. This thickness is more than twice that reported by earlier workers (∼260 m) and compares well with the composite section of the Koobi Fora Formation (525 m). Thus the Ileret region provides a very complete and representative outcrop of the Koobi Fora Formation. As Koobi Fora Formation member boundaries are placed at the base of specified tuffs, not all member boundaries can be recognized in the Ileret region. For this reason, the stratigraphy is described in terms of the following members (thicknesses in parentheses): Lonyumun (110 m), undifferentiated Moiti and Lokochot (104 m), Tulu Bor (54 m), Burgi (55 m), KBS (74 m), Okote (45 m), and Chari (93 m). Moreover, the boundary between the Okote Member and the KBS Member in the Ileret region is placed at a prominent caliche which must closely approximate the age of the Okote Tuff in its type section.  相似文献   

14.
Recent work in the central Andean Main Range of Chile near Laguna del Laja (∼37.5°S, 71°W) has produced the first mammal fossils for the region. Fossils, locally abundant and well preserved, occur patchily across a wide area southeast of the lake. Mammalian remains are derived from generally strongly folded (kilometer-scale) exposures of the locally ∼1.8 km thick, early to middle Miocene Cura-Mallín Formation; two identifiable specimens have been recovered from the overlying Trapa Trapa Formation as well. Both formations consist primarily of well-stratified (1–5 m thick layers) volcaniclastic and volcanic strata, deposited predominantly in fluviatile systems. The Cura-Mallín Formation is possibly the southern continuation of (or lateral equivalent to) the richly fossiliferous Abanico Formation mapped between ∼32°S and 36°S. Intensive sampling in a series of localities east and south of Laguna del Laja has yielded diverse faunas, in addition to radioisotopically dateable horizons. The new fossil mammal faunas represent as many as six South American Land Mammal “Ages” (SALMAs). Fossils, together with preliminary 40Ar/39Ar radioisotopic dates, ranging from ∼9 to 20 Ma across the exposed thickness of the Cura-Mallín Formation and into the overlying Trapa Trapa Formation, provide a robust geochronological framework for middle Cenozoic strata in the Laguna del Laja region. The sequence of directly superposed mammalian assemblages at Laguna del Laja is one of the longest in all of South America, rivaled only by the classic Gran Barranca section of Patagonian Argentina. These data illuminate the geological history of the area and its record of mammalian evolution. The potential to isotopically date these diverse faunas with high precision (error ± 0.5 Ma) presents a rare opportunity to calibrate related portions of the SALMA sequence.  相似文献   

15.
In this paper, we extract 1500 P receiver functions in the Tengchong volcanic area from 211 teleseismic events recorded at nine digital seismic stations. A common conversion point stacking technique is used to improve the signal-to-noise ratio and to get the time delays of the Ps, PpPs, PsPs + PpSs phases within grids of 10 km × 10 km. Finally, the crustal thickness and Poisson’s ratio are calculated. The results show that the crustal thickness ranges from 28 to 40 km and the Poisson’s ratio ranges from 0.28 to 0.36. There exist two mantle-uplifting sites each with a horizontal scale of about 30 km × 30 km, one in Mazhan–Tengchong–Maanshan and the other in Wuhe–Longjiang–Tuantian. The high Poisson’s ratio is consistently located within these two sites. Recorded shocks with Ms > 2.0 reveal that most of the shocks are distributed around the two sites and few are located at the centers. The shocks, the geothermal distribution, and the crustal structure suggest that the magma is still active, and the two mantle-uplifting sites detected may be the positions of two magma chambers in the crust.  相似文献   

16.
The paper presents new isotope geochronological data for several mineral deposits, ore occurrences, and related igneous bodies (plutons and dikes) in the Verkhoyansk-Kolyma folded area, eastern Yakutia. Twenty-one 40Ar/39Ar mica and four U-Pb zircon dates provide the first age constraints on key metallogenic units in the area. The dating results allow correlation between tectonic, magmatic, and metallogenic events. The sampled mineral deposits within the Adycha-Taryn fault zone in the southeastern Verkhoyansk-Chersky orogen apparently formed at the Jurassic-Cretaceous boundary during the final phase of the collision between the Siberian (North Asian) craton and the Kolyma-Omolon microcontinent (Kupol’noe deposit and the early metallogenic pulse of the Malotarynskoe deposit, ~ 143-144 Ma) and in the latest Early Cretaceous, in the beginning of the orogen collapse (Tallalakh and Dora-Pil’ deposits and the Malotarynskoe late metallogenic pulse, ~ 126 Ma). According to the suggested new classification of metallogenic units, these deposits belong to the Late Jurassic-Early Cretaceous Yana-Kolyma metallogenic belt. The Kyuchus deposit (~ 106 Ma), the Deputatsky ore cluster (~ 106-113 Ma), and the Khotoidokh deposit (~ 116 Ma) in the northern Verkhoyansk-Kolyma folded area belong to the North Verkhoyansk metallogenic belt. Their origin was associated with accretional and collisional processes that produced the Novosibirsk-Chukotka orogen in the middle Cretaceous. The Mangazeya ore cluster (~ 100 Ma, Early-Late Cretaceous boundary) in the southwestern end of the North Tirekhtyakh magmatic transverse belt belongs to the West Verkhoyansk metallogenic belt. The Nezhdaninskoe, Zaderzhnoe, Kurum, and Kuta deposits of the South Verkhoyansk area (~ 125-120 and ~ 100-95 Ma) can be joined into a single Verkhoyansk-Okhotsk metallogenic belt. The belt resulted from accretion and collision along the East Asian active continental margin and the related formation of the South Verkhoyansk orogen in the Early Cretaceous.  相似文献   

17.
The W Horizon, Marathon Cu-Pd deposit in the Mesoproterozoic Midcontinent rift is one of the highest grade PGE repositories in magmatic ore deposits world-wide. The textural relationships and compositions of diverse platinum-group mineral (PGM) and sulfide assemblages in the extremely enriched ores (>100 ppm Pd-Pt-Au over 2 m) of the W Horizon have been investigated in mineral concentrates with ∼10,000 PGM grains and in situ using scanning electron microprobe and microprobe analyses.Here we show, from ore samples with concentrations up to 23.1 Pd ppm, 8.9 Pt ppm, 1.4 Au ppm and 0.73 Rh ppm, the diversity of minerals (n = 52) including several significant unknown minerals and three new mineral species marathonite (Pd25Ge9; McDonald et al., 2016), palladogermanide (Pd2Ge; IMA 2016-086, McDonald et al., 2017), kravtsovite (PdAg2S, IMA No 2016-092, Vymazalová et al., 2017). The PGM are distributed as PG-, sulfides (52 vol%), -arsenides (34 vol%), -intermetallics of Au-Ag-Pd-Cu and Pd-Ge(10 vol%) and -bismuthides and tellurides (4 vol%). The discovery of abundant (>330 grains) large unknown sulfide minerals with Rh allows us to present analyses three significant potentially new minerals (WUK-1, WUK-2, WUK-3) that are all clearly enriched in Rh (averaging 4.2, 8.5 and 28.21 wt% Rh respectively). Several examples of paragenetic sequences and mineral chemical changes for enrichment of Cu, Pd and Rh with time are revealed in the PGM and base-metal sulfides. We suggest this enhanced metal enrichment formed in response to increasing fO2 causing the oxidation of Fe2+ to Fe3+ and to a lesser extent, S.Phase relations in the Ag-Pd-S, Rh-Ni-Fe-S, Pd-Ge, Au-Pd-Cu-Ag, Pd-Ag-Te systems help constrain the crystallization temperatures of the majority of ore minerals in the W Horizon at ∼500 °C or moderate to high subsolidus temperatures (400–600 °C). Local transport by aqueous fluids becomes evident as minerals recrystallize down to <300 °C. The PGE-enriched W Horizon ores exhibit a complex post-magmatic history dominated by the effects of oxidation during cooling of a Cu-PGE enriched magma source from a deep reservoir.  相似文献   

18.
《Gondwana Research》2013,24(4):1599-1606
Direct radiometric dating of the Lower/Middle Permian epochs has not been well accomplished. Shales and bedded cherts of the geologically well-documented Middle Permian Gufeng Formation are exposed in the Chaohu area, Anhui province, South China. Through detailed field examination and mapping of the Gufeng stratigraphic section, we found at least four volcanic ash beds within the basal shale strata. This new discovery indicates the existence of prominent volcanic activity during Gufeng sedimentation and provides the opportunity to precisely date the age of the Middle Permian. Zircon grains separated from two near-basal horizon yield LA‐ICP‐MS U–Pb ages of 272.0 ± 5.5 Ma (MSWD = 2.6) and 271.5 ± 3.3 Ma (MSWD = 1.7). As the first precise isotopic age (272 Ma) of the Middle Permian Gufeng Formation in South China, our data offer precise geochronological constraints for the division and correlation of Middle Permian not only in South China but also worldwide.  相似文献   

19.
A technique akin to Galton’s composite portraiture is suggested for creating a generalized image of a stratigraphic unit based on well log data from a group of well sections. The procedure begins with superimposing stratigraphically equivalent section points according to pairwise correlation models followed by weighted summation of similar logs. The superimposition highlights persistent common features of the sections, while their minor individual details become suppressed. A generalized model of the Bazhenov Formation in the Salym area has been constructed from gamma-ray, apparent resistivity, and self-potential logs. Radioactivity and resistivity anomalies, which are often used as constraints on the Bazhenov Formation boundaries, show a significant spatial discrepancy. According to the correlation, the formation volume in each well depends on the depth interval corresponding to the hypostratotype. The results were used to map the Bazhenov Formation thickness and its standard deviation, as well as average values of different logs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号