首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Dovyren intrusive complex includes the ore-bearing (Cu–Ni–PGE) Yoko–Dovyren layered pluton (728 Ma, up to 3.4 km in thickness), underlying ultramafic sills, and comagmatic leuconorite and gabbro-diabase dikes. Studies of Sr–Nd–Pb isotope systems were carried out for 24 intrusive rocks and five associated low- and high-Ti basalts. The high-Ti basalts show 0.7028 ≤ (87Sr/86Sr)T ≤ 0.7048 and 4.6 ≤ εNd(T) ≤ 5.8, similar to the values in MORB. The intrusive basic and ultrabasic rocks are geochemically similar to the low-Ti formation, making a compact cluster of compositions with extremely high ratios of radiogenic Sr and Pb isotopes and low εNd values. The maximum enrichment in radiogenic Sr is shown by the rocks near the pluton bottom ((87Sr/86Sr)T = 0.71387 ± 0.00010 (2σ); εNd(T) = –16.09 ± 0.06), which are the products of crystallization of the most primitive high-Mg magmas. The above-located dunites, troctolites, and gabbro show lower enrichment, probably because of the contamination of the host rocks during the filling of the magma chamber and/or because of the slight heterogeneity of the source. Calculations of the proportions of mixing of the parental melt with carbonate terrigenous material have shown that the variations in the Sr and Nd isotope ratios are due to the incredibly high contamination of the sediments, up to 40–50%. This contradicts the succession of the main rock types in the Yoko–Dovyren pluton in accordance with the crystallization of picrite-basaltic magma. The contribution of 5–10% high-Ti component seems more likely and suggests interaction between two isotopically contrasting magmas in this province in the Late Riphean. In general, the minor variations in εNd(T) of the intrusive rocks and metavolcanics (–14.3 ± 1.1) testify to the isotopically anomalous source of the low-Ti magmas. The time variation trend of εNd and geochemical features of the Dovyren rocks indicate that the products of melting of 2.7–2.8 Ga suprasubduction mantle might have been the massif protolith. Thus, the Dovyren parental magmas formed from a much older (sub)lithospheric source in the Late Riphean. The source was initially enriched in a mafic component with a low Sm/Nd ratio and was isolated from the convecting mantle and mantle melting processes for ~ 2 Gyr. The existence of such a long-living and at least twice reactivated lithospheric substratum is confirmed by the fact that the Nd isotope evolution trend of the initially nonanomalous mantle protolith includes not only the Dovyren rocks but also the Paleoproterozoic gabbro of the Chinei pluton and the Archean enderbites of the Baikal region.© 2015, V.S. Sobolev IGM, Siberian Branch of the RAS. Published by Elsevier B.V. All rights reserved.  相似文献   

2.
This paper reports Rb–Sr and Sm–Nd isotope data on the gabbro–diorite–tonalite rock association of the Reft massif (eastern margin of the Middle Urals) and Lu–Hf isotope data on zircon populations from these rocks. In terms of Nd and Hf isotope composition, the rocks of the studied association are subdivided into two distinctly different groups. The first group consists of gabbros and diorites, as well as plagioclase granites from thin dikes and veins cutting across the gabbros. In terms of 43Nd/144Nd i = 0.512518–0.512573 (εNd(T) = +8.6...+9.7) and 176Hf/177Hf i = 0.282961–0.283019 (εHf(T) = +15.9...+17.9), these rocks are practically identical to depleted mantle. Their Nd and Hf model ages show wide variations, but in general are close to their crystallization time. The second group is represented by tonalites and quartz diorites, which compose a large body occupying over half of the massif area. These rocks are characterized by the lower values of 143Nd/144Nd i = 0.512265–0.512388 (εNd(T) = +3.7...+6.0) and 176Hf/177Hf i = 0.282826–0.282870 (εHf(T) = +11.1...+12.7). The TDM values of the second group are much (two–three times) higher than their geological age (crystallization time), which indicates sufficiently long crustal residence time of their source. The initial 87Sr/86Sr in the rocks of both the groups varies from 0.70348 to 0.70495. This is likely explained by the different saturation of melts with fluid enriched in radiogenic Sr. The source of this fluid could be seawater that was buried in a subduction zone with oceanic sediments and released during slab dehydration. Obtained data make it possible to conclude that the formation of the studied gabbro–diorite–tonalite association is a result of spatially and temporally close magma formation processes in the crust and mantle, with insignificant contribution of differentiation of mantle basite magma.  相似文献   

3.
The minor intrusions of the Edel'veis alkaline–carbonatite complex are bounded by the spurs of the North Chuya Ridge in southeastern Gorny Altai. According to Ar–Ar isotope data, the complex formed in the Middle Cambrian (~507 Ma). All of its components (alkali clinopyroxenite–melanogabbro–alkali syenite + Ca-carbonatite) occur in only one pluton. Silicate igneous rocks are equivalent in silica content and alkalinity to potassic alkaline and subalkalic mafic rocks. Apatite-phlogopitic Ca-carbonatites are enriched in P2O5 (up to 3.6 wt.%), Sr (~2500–5500 ppm), and REE (up to ~2000 ppm) and are, presumably, of liquation genesis. A PREMA-type plume component was a predominant magma source for the complex (?Nd(T) = +6.56 to +6.85). According to isotope data (87Sr/86Sr(T) ~ 0.7032–0.7039; δ18O ~ 7.5–14.9‰; δ13C ~ –2.7 to –8.4‰), the fractionation of the melts was accompanied by their crustal contamination. The trace-element composition of the rocks suggests that the complex developed on a continental margin and its development was accompanied by late-collisional rifting and the mixing of moderately depleted (PREMA) and enriched suprasubductional lithospheric mantle (EM I or EM II) with continental crust. It is presumed that the alkaline and carbonatite complexes in the western Central Asian Fold Belt are of primary plume origin and form a LIP within this belt together with other associations produced by Early Paleozoic (510–470 Ma) magmatism.  相似文献   

4.
According to isotopic analysis of rocks of the Reft gabbro–diorite–tonalite complex (Middle Urals), gabbro and related diorite and dikes and vein-shaped bodies of plagiogranitoids, crosscutting gabbro, are similar to the depleted mantle substance in εNd(T) = 8.6–9.7 and εHf(T) = 15.9–17.9. Their model Hf ages are correlated with the time of crystallization. Here, the tonalites and quartz diorites constituting most of the Reft massif are characterized by lower values: εNd(T) = 3.7–6.0, εHf(T) = 11.1–12.7, and T DM values significantly exceeding the age datings. This is evidence that Neoproterozoic crustal rocks were a source of parental magma for these rocks. The primary 87Sr/86Sr ratio in rocks of both groups is highly variable (0.70348–0.70495). The data obtained allow us to reach the conclusion that the Reft gabbro–diorite–tonalite complex was formed as a result of nearly synchronous processes occurring in the crust and the mantle within a limited area.  相似文献   

5.
We present the results of a study on gabbroic rocks, syenites, pegmatites, carbonatites, and hydrothermal products of the Oshurkovo apatite-bearing massif. The results include Nd and Sr isotope ratios; the isotope compositions of carbon and oxygen in calcite; oxygen in apatite, magnetite, and silicate minerals (phlogopite, titanite, diopside, amphibole, K-feldspar, and quartz); sulfur in barite; and hydrogen in mica. The isotopic data are close to the EM-1 enriched mantle values and confirm a comagmatic relationship between the gabbros and carbonatites. The binary plot ?Nd vs. 87Sr/86Sr demonstrates strong differentiation between silicate rocks and carbonatites, as is the case with the other Late Mesozoic carbonatite occurrences of southwestern Transbaikalia. The oxygen isotope composition of all comagmatic phases also falls within the range of mantle values. A clear trend toward heavier oxygen and lighter carbon isotope compositions is observed in all successively emplaced phases, which is consistent with a trend defined by hydrothermal products formed under the influence of the parent magma chamber. Carbonates formed during the greenstone alteration of gabbroic rocks are enriched in the light oxygen isotope (δ18O from ?2.8 to ?7.3‰), suggesting a contribution of vadose water.  相似文献   

6.
Early Paleozoic alkaline basic magmatism in the Kuznetsk Alatau is manifested in the Upper Petropavlovka pluton of gabbro, feldspathoid rocks (theralites, mafic foidolites, and nepheline syenites), and Ca-carbonatites. According to Sm–Nd and Rb–Sr isotope data, the pluton formed in the Middle Cambrian (509 ± 10 Ma). The silicate igneous rocks correspond in the contents of silica, alumina, and alkalies to derivates of a K–Na alkaline basic association. The Ca-carbonatites are characterized by a high-temperature (600–900 °C) paragenesis of apatite, clinopyroxene, ferromonticellite, phlogopite, and magnetite. They are enriched in P2O5 (up to 6.4 wt.%), Sr (up to 3000–4500 ppm; Sr/Ba ~ 5–7), and REE + Y (up to 800 ppm) and show evidence for liquation genesis. The predominant magmatic source (εNd(T) = 5–7) was moderately depleted PREMA, possibly combined with E-MORB and EM. According to the isotopic data ((87Sr/86Sr)T ~ 0.7024–0.7065; δ18O ~ 6.3–15.5‰; δ18C ~ –3.5 to –2.0‰), the fractionation of the melts was accompanied by their crustal contamination. The trace-element composition of the mafic rocks testifies to the participation of a substance similar to the substrata of the parental magmas of MORB, IAB, and OIB in the magma generation. This suggests intrusion in the geodynamic setting of interaction between the active continental margin and an ascending mantle diapir. Most likely, the intrusion led to the mixing of material from different sources, including the components of PREMA, enriched suprasubduction lithospheric mantle (EM), and continental crust. The assumption is made that the complexes of highly alkaline rocks and carbonatites in the western Central Asian Fold Belt are of plume origin and belong to an Early Paleozoic large igneous province.  相似文献   

7.
Multi-isotope study including whole-rock Nd–Sr, single zircon Hf, and SIMS δ18O analyses of zircons sheds light on magma sources in the northernmost Arabian–Nubian Shield (ANS) during ~820–570 Ma. Reconnaissance initial Nd and Sr isotope data for the older rocks (~820–740 Ma) reaffirms previous estimates that early crustal evolution in this part of the shield involved some crustal contamination by pre-ANS material. Prominent isotope provinciality is displayed by post-collisional calc-alkaline and alkaline igneous rocks of ~635–570 Ma across a NW-SE transect across basement of the Sinai Peninsula (Egypt) and southern Israel. Silicic rocks of the NW-region are characterized by lower εNd(T)–εHf(T) and higher Sri and δ18O compared with rocks of the SE-region, and the transition between the regions is gradual. Within each region isotope ratios are independent of the extent of magma fractionation, and zircon cores and rims yield similar δ18O values. Comparison with southern segments of the ANS shows that the source for most ~635–570 Ma rocks can be modeled as the isotopically aged lower-intermediate crust in the ANS core (SE-region) and its northern, more contaminated ANS margins (NW-region). Nevertheless, Nd–Sr isotope enrichment of the lithospheric mantle is indicated by some basic magmas of the NW-region displaying the most enriched Nd–Sr isotope compositions. Comparison of Nd and Hf depleted mantle model ages for rocks of the SE-region may indicate that crustal formation events in the ANS geographical core took place at 1.1–1.2 Ga and were followed by crustal differentiation starting at ~0.9 Ga.  相似文献   

8.
长白山区二道白河流域早更新世玄武质熔岩的成因   总被引:2,自引:1,他引:1  
马晗瑞  杨清福  盘晓东  武成智  陈聪 《岩石学报》2015,31(11):3484-3494
采用岩石化学和同位素分析方法,研究了二道白河流域早更新世玄武质熔岩的成因。玄武质熔岩由钠质拉斑玄武岩和钾质粗面玄武岩、玄武质粗面安山岩组成。它们的REE分配形式比较相近,表明它们来自共同的源区。Sr、Nd、Pb同位素示踪表明,二道白河流域早更新世玄武质熔岩岩浆源区接近于似原始地幔。它们的Mg#=100Mg O/(Mg O+Fe O)低于中国东部新生代玄武岩原始岩浆的Mg#(60~68),Ni(27.76×10-6~200.6×10-6)低于原始地幔,Rb/Sr(0.05~0.09)、Ba/Rb(15.64~264)高于原始地幔,说明这些岩石不是源自原始地幔。玄武质熔岩的DI变化于42~67,具有高Ca、高Sr、Eu正异常,微量元素图解显示玄武岩保留部分熔融趋势,粗面玄武岩、玄武质粗安岩具有结晶分异趋势,岩浆上升过程中发生了不同程度的地壳混染作用。玄武质熔岩的Nb/Ta之比为14.8~15.8,与勘察加半岛深俯冲带火山类似。Nb/Ta-(Na2O-K2O)关系图解显示研究区玄武质岩浆的形成与俯冲板片的部分熔融有关。  相似文献   

9.
ABSTRACT

The Eastern Pontides orogenic belt in NE Turkey hosts numerous I-type plutons of Eocene epoch. Here, we report new U–Pb SHRIMP zircon ages and in situ zircon Lu-Hf isotopes along with bulk-rock geochemical and Sr-Nd-Pb-O isotope data from the Kemerlikda??, Ayd?ntepe and Pelitli plutons and mafic microgranular enclaves (MMEs) to constrain their parental melt source(s) and evolutionary processes. U-Pb SHRIMP zircon dating yielded crystallization ages between 45 and 44 Ma for the studied plutons and their MMEs. The plutons range from gabbro to granite and have I-type, medium to high-K calc-alkaline, and metaluminous to slightly peraluminous characteristics. On the primitive mantle-normalized multi-trace-element variations, the plutons and their MMEs are characterized by signi?cant enrichment in LILE/HFSE. Chondrite-normalized REE patterns of the plutons and their MMEs are close to each other and show moderate enrichment with variable negative Eu anomalies. The studied plutons have fairly homogeneous isotope composition (87Sr/86Sr(i) = 0.70502 to 0.70560; εNd(i) = +0.9 to – 1.4; δ18O = +5.0 to +8.7‰, εHf(i) = – 2.2 to +13.5). The MMEs show medium to high-K calc-alkaline and metaluminous character. Although the isotope signatures of the MMEs (87Sr/86Sr(i) = 0.70508 to 0.70542; εNd(i) = +0.9 to ?1.1; δ18O = +5.8 to +8.0, εHf(i) = +4.3 to +10.4) are very similar to those of the host rocks. Fractionation of plagioclase, amphibole, pyroxene and Fe-Ti oxides played an important role in the evolution of the plutons. The isotopic composition of the studied plutons and MMEs are similar to I-type plutons derived from mantle sources. The MMEs show incomplete magma mixing/mingling, representing small bodies of mafic parental magma. The parental magma(s) of the studied plutons were generated from the enriched lithospheric mantle and then modified by fractional crystallisation, and lesser assimilation and mixing/mingling in the crustal magma chambers.  相似文献   

10.
This paper reports isotopic and geochemical studies of eclogites from the western ultrahigh pressure (UHP) and eastern high-pressure (HP) blocks of the Kokchetav subduction-collision zone. These HP and UHP eclogites exhumed in two stages: (1) The rocks of the western block metamorphosed within the field of diamond stability (e.g., Kumdy-Kol and Barchy); (2) In contrast, the metamorphic evolution of the eastern block reached the pressure peak within the stability field of coesite (e.g., Kulet, Chaglinka, Sulu-Tyube, Daulet, and Borovoe). The eclogites vary widely in the ratios of incompatible elements and in the isotope ratios of Nd (143Nd/144Nd = 0.51137-0.513180) and Sr (87Sr/86Sr = 0.703930.78447). The Sulu-Tyube eclogites display isotope-geochemical features close to N-MORB, while those from the other sites are compositionally similar to E-type MORB or island arc basalts (IAB). The model ages TNd(DM) of eclogites vary between 1.95 and 0.67 Ga. The Sulu-Tyube eclogite yields the youngest age; it has the values of εNd(T) (7.2) and 87Sr/86Sr (0.70393) close to the depleted mantle values. The crustal input to the protolith of the Kokchetav eclogites is evident on the εNd(T)-86Sr/87Sr and εNd(T)-T plots. The eclogites make up a trend from DM to country rocks. Some eclogites from the Kulet, Kumdy-Kol, and Barchy localities display signs of partial melting, such as high Sm/Nd (0.65-0.51) and low (La/Sm)N (0.34-0.58) values. The equilibrium temperatures of these eclogites are higher than 850 °C. The geochemical features of eclogites testify to the possibility of the eclogite protolith formation in the tectonic setting of passive continental rift margin subducted to depths over 120 km.  相似文献   

11.
The western Kunlun orogen occupies a key position along the tectonic junction between the Pan-Asian and Tethyan domains, reflecting Proto- and Palaeo-Tethys subduction and terrane collision during early Palaeozoic to early Mesozoic time. We present the first detailed zircon U–Pb chronology, major and trace element, and Sr–Nd–O–Hf isotope geochemistry of the Qiukesu pluton and its microgranular enclaves from this multiple orogenic belt. SHRIMP zircon U–Pb dating shows that the Qiukesu pluton was emplaced in the early Silurian (ca. 435 Ma). It consists of weakly peraluminous high-K calc-alkaline monzogranite and syenogranite, with initial 87Sr/86Sr ratios of 0.7131–0.7229, ?Nd(T) of –4.1 to –5.7, δ18O of 8.0–10.8‰, and ?Hf(T) (in situ zircon) of –4.9. Elemental and isotopic data suggest that the granites formed by partial melting of lower-crustal granulitized metasedimentary-igneous Precambrian basement triggered by underplating of coeval mantle-derived enclave-forming intermediate magmas. Fractional crystallization of these purely crustal melts may explain the more felsic end-member granitic rocks, whereas such crustal melts plus additional input from coeval enclave-forming intermediate magma could account for the less felsic granites. The enclaves are intermediate (SiO2 57.6–62.2 wt.%) with high K2O (1.8–3.6 wt.%). They have initial 87Sr/86Sr ratios of 0.7132–0.7226, ?Nd(T) of –5.0 to –6.0, δ18O of 6.9–9.9‰, and ?Hf(T) (in situ zircon) of –8.1. We interpret the enclave magmas as having been derived by partial melting of subduction-modified mantle in the P–T transition zone between the spinel and spinel-garnet stability fields. Our new data suggest that subduction of the Proto-Tethyan oceanic crust was continuous to the early Silurian (ca. 435 Ma); the final closure of the Proto-Tethys occurred in the middle Silurian.  相似文献   

12.
安徽伏川蛇绿岩套的Nd-Sr-O同位素研究   总被引:13,自引:1,他引:13       下载免费PDF全文
安徽歙县伏川的蛇绿岩套形成于中-晚元古宙,其Nd、Sr和O同位素组成是:εNd(T)=+0.7-+3.8,εSr(T)=+30.7-+53.9,δ18O=3.2-11.0‰。据地质学和同位素地球化学特征,该岩套位于杨子板块南缘、江南古岛弧的弧后小洋盆地轴部。εNd(T)值的变化是由于蛇绿岩形成过程中受到下伏不成熟硅铝质基底地壳的混染引起的;εSr(T)和δ18O的变化,是在蛇绿岩形成时或形成后不久遭受海水热液蚀变的结果。  相似文献   

13.
Summary The eastern part of the agpaitic Khibina complex is characterized by the occurrence of dykes of various alkali silicate rocks and carbonatites. Of these, picrite, monchiquite, nephelinite and phonolite have been studied here. Whole rock and mineral geochemical data indicate that monchiquites evolved from a picritic primary magma by olivine+ magnetite fractionation and subsequent steps involving magma mixing at crustal levels. None of these processes or assimilation/magma mixing of wall rocks or other plutonic rocks within the complex can entirely explain the geochemical and Nd–Sr-isotopic characteristics of the monchiquites (i.e. a covariant alignment between (87Sr/86Sr)370=0.70367, (143Nd/144Nd)370=0.51237 and (87Sr/86Sr)370=0.70400, (143Nd/144Nd)370=0.51225 representing the end points of the array). This signature points to isotopic heterogeneities of the mantle source of the dyke-producing magma. The four mantle components (i.e. depleted mantle, lower mantle plume component, EMI-like component and EMII-like component) must occur in different proportions on a small scale in order to explain the isotopic variations of the dyke rocks. The EMII-like component might be incorporated into the source area of the primary magma by carbonatitic fluids involving subducted crustal material. The most likely model to explain the small-scale isotopic heterogeneity is plume activity. The results of this study do not provide any support to a cogenetic origin (e.g. fractionation or liquid immiscibility) for carbonatite and monchiquite or other alkali-silicate dyke rocks occurring in spatial proximity. Instead, we propose that both, carbonatite and picrite/monchiquite, originated by low-degree partial melting of peridotite. Textural observations, mineralogical data, and C and O isotopic compositions suggest incorporation of calcite from carbonatite in monchiquite and the occurrence of late-stage carbothermal fluids.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s00710-003-0016-2  相似文献   

14.
以新疆东天山旱草湖地区中酸性环状岩体为研究对象,进行LA-ICP-MS锆石U-Pb年龄和全岩地球化学研究,探讨其成因和地质意义。结果表明,侵入英云闪长岩的最老年龄为275.0±2.9Ma(MSWD=4.8),侵位时代为二叠纪。岩体Al_2O_3含量为14.46%~17.05%,A/CNK为0.93~1.09,属准铝质和弱过铝质系列,较富集K_2O,MgO含量较低,为0.71%~2.84%,Mg~#值为33.3~48.6。微量元素高Sr、低Y,Sr含量为217×10~(-6)~740×10~(-6),Y含量为4.26×10~(-6)~21.4×10~(-6),Sr/Y值为16.87~145.07,富集大离子亲石元素Rb、Sr、Ba,亏损高场强元素Nb、Ta、Ti。稀土元素配分模式图呈现平坦右倾的轻稀土元素富集、重稀土元素亏损,表明岩体来源于石榴子石和金红石较稳定而斜长石不稳定的区域,属于角闪岩相向榴辉岩相过渡阶段,可能是同时期底侵的产物。地球化学特征表明岩体不是一期岩浆事件结晶分离演化的结果,不同岩性的岩体之间没有发生结晶分离。部分熔融程度和新生幔源组分的不同导致了旱草湖环状花岗质岩体的形成,二叠纪旱草湖地区存在较强烈的中酸性岩浆活动,是东天山二叠纪构造-岩浆演化的响应。  相似文献   

15.
Integrated zircon–olivine O–Hf isotope data have been successfully used to unravel the nature of the source mantle for the early Permian post-collisional mafic–ultramafic intrusive rocks in the southern margin of the Central Asian Orogenic Belt in NW China. Olivine crystals with forsterite (Fo) contents varying from 91 to 87 mol% from the Permian Pobei mafic–ultramafic complex in the region yield highly elevated δ18O from 6.0 to 7.2‰. These values are much higher than typical mantle values (~?5.3‰) and are apparently at odds with the mantle-like εNd(t) values of whole rocks (4.9–5.4). Magmatic zircon crystals from troctolite and gabbroic rocks show divergent oxygen and hafnium isotopic compositions: mantle-like εHf(t) values from 5.1 to 11.9 and crust-like δ18O values from 7.6 to 10.1‰. The observed increase of δ18O values from olivine (an early crystallizing phase) to zircon (a late crystallizing phase) in the mafic–ultramafic rocks is generally consistent with an AFC process. However, this process cannot fully explain the highly elevated δ18O values (6–7‰) for the most primitive olivine containing Fo as high as mantle olivine (>?90 mol%) and the mantle-like Hf isotope composition of zircon. Mixing calculation indicates that such highly unusual isotope compositions can be explained by the previous source mantle contamination with subducted sediment-derived melts and slab-derived fluids. Our results show that the combination of zircon O–Hf isotopes and olivine oxygen isotopes is more effective than the data of zircon or olivine alone to distinguish the effect of AFC process from source contamination. The results from this study provide a new line of evidence that the sub-arc mantle is not homogeneous in oxygen isotopes.  相似文献   

16.
Melting of subducting oceanic lithosphere and associated melt-mantle interactions in convergent plate margins require specific geodynamic environment that allows the oceanic slab to be abnormally heated. Here we focus on the Early Mesozoic mafic rocks and granite porphyry, which provide insights into slab melting processes associated with final closure of the Paleo-Asian Ocean. The granite porphyry samples are calc-alkaline and distinguished by high Sr contents, strong depletion of heavy rare earth elements, resulting in high (La/Yb)N and Sr/Y ratios, and negligible Eu anomalies. Based on their high Na2O and MgO, low K2O contents, positive εHf(t) and εNd(t) and low (87Sr/86Sr)i values, we propose that the granite porphyry was likely derived from partial melting of subducting Paleo-Asian oceanic crust. The Nb-enriched mafic rocks are enriched in Rb, Th, U, Pb and K, and depleted in Nb, Ta, Ba, P and Ti, corroborating a subduction-related origin. Their heterogeneous Sr-Nd-Hf-O isotopic compositions and other geochemical features suggest that they were likely derived from partial melting of peridotitic mantle wedge interacted with oceanic slab-derived adakitic melts. Trace element and isotope modeling results and elevated zircon δ18O values suggest variable subducting sediments input into the mantle wedge, dominated by terrigenous sediments. Synthesizing the widely-developed bimodal rock associations, conjugated dikes, thermal metamorphism, tectonic characteristics, paleomagnetic constraints, and paleogeographical evidence along the Solonke-Changchun suture zone, we identify a slab window triggered by slab break-off, which accounts for slab melting and formation of the Nb-enriched mafic rocks and associated adakitic granite porphyry in southeastern Central Asian Orogenic Belt.  相似文献   

17.
The Urumieh-Dokhtar magmatic arc (UDMA) of Central Iran has been formed during Neotethyan Ocean subduction underneath Eurasia. The Rabor-Lalehzar magmatic complex (RLMC), covers an area ~1000?km2 in the Kerman magmatic belt (KMB), SE of UDMA. RLMC magmatic rocks include both granitoids and volcanic rocks with calc-alkaline and adakitic signatures but with different ages.Miocene adakitic rocks are characterd by relatively enrichmented in incompatible elements, high (Sr/Y)(N) (>40), and (La/Yb)(N) (>10) ratios with slightly negative Eu anomalies (EuN/Eu*≈ 0.9), depletion in HFSEs, and relatively non-radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7048–0.7049). In contrast, the Oligocene granitoids exhibit low Sr/Y (<20) and La/Yb (<9) ratios, negative Eu anomalies (EuN/Eu*?≈?0.5), and enrichment in HFSEs and radiogenic Sr isotope signatures (87Sr/86Sr?=?0.7050–0.7052), showing affinity to the island arc rocks. Eocene volcanic rocks which crusscut the younger granitoid rocks comprise andesites and dacites. Geochemically, lavas show calc-alkaline character without any Eu anomaly (EuN/Eu*?≈?1.0). Based on the geochemical and isotopic data we propose that melt source for both calc-alkaline and adakitic rocks from the RLMC can be related to the melting of a sub-continental lithospheric mantle (SCLM). Basaltic melts derived from a metasomatized mantle wedge might be emplaced at the mantle-crust boundary and formed the juvenile mafic lower crust. However, some melts fractionated in the shallow magma chambers and continued to rise forming the volcanic intermediate-mafic rocks at the surface. On the other hand, the assimilation and fractional crystallization in the shallow magma chambers of may have been responsible for the development of Oligocene granitoids with calc-alkaline affinity. In the mid-Late Miocene, following the collision between Afro-Arabia and Iranian block the juvenile mafic crust of UDMA underwent thickening and metamorphosed into garnet-amphibolites. Subsequent upwelling of a hot asthenosphere during Miocene was responsible for partial melting of thickened juvenile crust of the SE UDMA (RLM complex). The adakitic melts ascended to the shallow crust to form the adakitic rocks in the KMB.  相似文献   

18.
西藏多龙矿集区是班公湖-怒江缝合带北缘在增生楔基础上发育的超大型岛弧斑岩铜金矿床。对多龙增生杂岩中的辉长岩进行了LA-ICP-MS锆石U-Pb定年及主量、微量元素分析和Sr-Nd同位素组成研究,获得了多龙增生杂岩中辉长岩的成岩时代。由LA-ICP-MS测得的辉长岩锆石~(206)Pb/~(238)U年龄为246.0±1.4Ma,代表了岩浆的结晶年龄。辉长岩以低钛、富钠、富镁、贫钾、富集轻稀土元素和大离子亲石元素(Ba、U、La、Sr)、亏损高场强元素Nb和Ta为特征,具有与岛弧玄武岩相似的主量和微量元素组成,相对于原始地幔具高Sr、低Nd的同位素组成和古老的Nd同位素二阶段模式年龄(T_(DM2)=0.54~0.99Ga),属于增生楔基础上发育的板内岛弧辉长岩。由此认为,多龙矿集区早三叠世末岩浆活动很可能是班公湖-怒江洋向北俯冲诱发洋壳物质与岩石圈地幔物质相互作用的结果。该发现和认识为班公湖-怒江洋早三叠世向北俯冲,提供了重要的岩浆作用证据。  相似文献   

19.
The high-K, calcalkaline granitic rocks of the 370 Ma, post-orogenic Harcourt batholith in southeastern Australia have I-type affinities but are mildly peraluminous and have remarkably radiogenic isotope characteristics, with 87Sr/86Srt in the range 0.70807 to 0.714121 and εNdt in the range ??5.6 to ??4.3. This batholith appears to be a good example of magmas that were derived through partial melting of distinctly heterogeneous source rocks that vary from intermediate meta-igneous to mildly aluminous metasedimentary rocks, with the balance between the two rock types on the metasedimentary side. Such transitional S-I-type magmas, formed from mainly metasedimentary source rocks, may be more common than is generally realised. The Harcourt batholith also contains mainly granodioritic igneous microgranular enclaves (IMEs). Like their host rocks, the IMEs are peraluminous and have rather radiogenic isotope signatures (87Sr/86Srt of 0.71257–0.71435 and εNdt of ??7.3 to ??4.3), though some are hornblende-bearing. Origins of these IMEs by mixing a putative mantle end member with the host granitic magma can be excluded because of the variability in whole-rock isotope ratios and, for the same reason, the IME magmas cannot represent quench cumulates (autoliths) from the host magmas. Less abundant monzonitic to monzosyenitic IMEs cannot represent accumulations of magmatic biotite and/or alkali feldspar because K-feldspar is absent, and there is no co-enrichment of K2O and FeO?+?MgO, nor can they be mixtures of anything plausible with the host-rock magma. The granodioritic IMEs probably originated through high degrees of assimilation of a range of crustal materials (partial melts?) by basaltic magmas in the deep crust, and the monzonitic IMEs as melts of enriched subcontinental mantle. Such enclave suites provide little or no information on the chemical evolution of their host granitic rocks.  相似文献   

20.
G.G. Pe  A. Gledhill 《Lithos》1975,8(3):209-214
Isotopic ratios of strontium in 9 volcanic rocks from the south-eastern part of the Hellenic arc range from 0.7037 to 0.7075. Within individual series of differentiation, there seems to be a correlation between Sr87/Sr86 and K2O/SiO2.All strontium isotope data for the Hellenic arc are reviewed. Comparable (but slightly smaller) ranges of Sr isotope ratios are found in other island arcs with continental basement. To explain the high values of Sr87/Sr86 ratio for the Hellenic arc, a selective addition of Sr87 from the wall rock, and a process of assimilation involving water, perhaps from subducted sediments, are suggested. Since closely-spaced individual volcanic centres of similar ages have very different Sr isotope ratios, and since the range of Sr isotopic composition in individual centres is quite large, the variation is unlikely to be due to primary variation in mantle composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号