首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 62 毫秒
1.
饱和粉土在低围压下剪切特性的试验研究   总被引:1,自引:0,他引:1  
章伟  林霖  冯秀丽  董攀 《海洋科学》2006,30(8):94-97
通过室内静三轴试验,对黄河水下三角洲埕岛海域沉积物———粉土的剪切特性进行了研究。比较了粉土在低围压和高围压下的剪切变形特性和强度特性。试验结果表明,粉土在低围压(10,20,30,40 kPa)下的应力应变曲线和高围压下的应力应变曲线总体趋势基本一致,但在不同围压下其抗剪强度存在差别。  相似文献   

2.
开展了低围压条件下固结不排水振动三轴实验,对埕北海域重塑粉土振动孔压发展模型进行研究。低围压条件下粉土孔压随振次的发展曲线呈现两种形态,具体呈现何种形态与粉土轴向动应力和临界循环应力有关。对孔压数据进行了归一化处理,发现低围压条件下粉土孔压模型可以用指数函数进行拟合,且黏土含量并不影响孔压模型形式,只会影响a、b两个实验参数。孔压影响因素分析表明,少量黏粒含量的加入可以使粉土的孔压发展速度增大;振动频率对粉土孔压发展的影响也存在一个临界值,约0.2 Hz,当振动频率小于该值时,粉土孔压增长速度随频率的增加而减缓;当振动频率大于该值时,粉土孔压增长的速度随频率的增加而增大。  相似文献   

3.
低分子肝素作为一种抗血栓的多糖药物在临床中已应用了二十多年 ,目前已作为外科预防血栓形成药物 ,并在治疗急性静脉栓塞紊乱方面取代了未分级肝素。因肝素的来源和制备的方法不同使低分子肝素的精细结构不同 ,低分子肝素结构的复杂性 ,使得各产品的生物活性 ,例如抗蛋白酶活性不同 ,从而导致其临床使用的标准不同。该文将对低分子肝素的制备方法及其结构和抗蛋白酶活性的差异进行报导  相似文献   

4.
采取捕食者-猎物间捕食效应研究方法,研究了黑暗条件下缢蛏对牟氏角毛藻、青岛大扁藻的滤食效应。结果表明,缢蛏滤食牟氏角毛藻和青岛大扁藻的功能反应均属Holling-Ⅱ型,拟合的圆盘方程分别为Na=0.981×N0/1 0.00039×N0和Na=0.7949×N0/1 0.00636×N0;缢蛏自身密度对滤食牟氏角毛藻、青岛大扁藻功能反应影响的数学模型分别为E=0.985P-1.0256和E=0.778P-1.1819;缢蛏自身密度与牟氏角毛藻、青岛大扁藻藻浓度间的联合反应方程分别为Na=0.9663XP-0.1819×N0/1 0.00039×N0和Na=0.6182×P-0.1819×N0/1 0.00636XN0分析了缢蛏的滤藻速率、滤藻功能反应类型及滤藻效应特征。  相似文献   

5.
本文利用实验室波浪水槽观测规则长波对风浪的影响。谱分析显示,较之纯风浪谱,除已被广泛关注的长波抑制风浪这一现象外,当长波波陡较小,且频率远离风浪峰频时,长波还使得风浪谱向低频移动。本文利用Longuet-HigginsStewart(1960)理论,并考虑到风浪破碎的约束,计算了规则长波的存在对风浪谱的影响,发现可以较好地解释这一现象。这一工作表明,当长波波陡小且频率远离风浪峰频时,长波对短波的二阶调制及其引起的破碎加强可能是长波影响风浪的主要机制。  相似文献   

6.
1 .Introduction1ThispaperwasfinanciallysupportedbytheNationalNaturalScienceFoundationofChina (GrantNo .5 980 90 0 4 ) . Correspondingauthor.E mail:hliu @jlonline .com  Largegrounddeformationinducedbyliquefactionduetocyclicloading ,suchasearthquakesorseawaveloading ,ca…  相似文献   

7.
This article presents a laboratory study of static behavior of silty-sand soils. The objective of this laboratory investigation is to study the effect of initial confining pressures and fines content on the undrained shear strength (known as liquefaction resistance) response, pore pressure, and hydraulic conductivity of sand–silt mixtures. The triaxial tests were conducted on reconstituted saturated silty-sand samples at initial relative density Dr = 15% with fines content ranging from 0 to 50%. All the samples were subjected to a range of initial confining pressures (50, 100, and 200 kPa). The obtained results indicate that the presence of low plastic fines in sand–silt mixture leads to a more compressible soil fabric, and consequently to a significant loss in the soil resistance to liquefaction. The evaluation of the data indicates that the undrained shear strength can be correlated to fines content (Fc), inter-granular void ratio (eg), and excess of pore pressure (Δu). The undrained shear strength decreases with the decrease of saturated hydraulic conductivity and the increase of fines content for all confining pressures under consideration. There is a relatively high degree of correlation between the peak shear strength (qpeak) and the logarithm of the saturated hydraulic conductivity (ksat) for all confining pressures.  相似文献   

8.
To reveal the influence of material composition on mechanical properties of light-weight soil, stress-strain -volumetric strain characteristics and Poisson's ratio of mixed soil were researched by consolidated drained shear tests. The results show that light-weight soil is a kind of structural soil, so its mechanical properties are affected by mixed ratio and confining pressure, and mixed soil possesses structural yield stress. When confining pressure is less than the structural yield stress, strain softening occurs; when confining pressure is more than the structural yield stress, strain hardening is observed. There are two kinds of volume change behavior: shear contraction and shear dilatancy. Shear dilatancy usually leads to strain softening, but there isn't an assured causal relationship between them. Poisson's ratio of mixed soil is a variational state parameter with the change of stress state, it decreases with increased confining pressure, and it increases with increased stress level. When axial strain is near 5%, Poisson’ ratio is gradually close to a steady value. The main range of Poisson's ratio is 0.25~0.50 when confining pressure changes from 50 to 300 kPa. When unconfined compressive strength of mixed soil is less than 328 kPa, its stress-strain-volumetric strain characteristics can be predicted very well by Duncan-Chang model (E-B model). However, when the range of unconfined compressive strength is [328 kPa, 566 kPa], the model can't predict stress-strain characteristics accurately when confining pressure is under 200 kPa, and it also can't predict the strong shear dilatancy phenomenon of mixed soil under low confining pressure.  相似文献   

9.
Due to the viscous nature, especially the swelling property, bentonite is selected as buffer and backfill material for marine radioactive waste disposal. This article presents experimental results from one-dimensional oedometric compression tests with multi-stage loading and unloading/reloading on specimens of bentonite mixed with different sand contents. The sand contents are 50%, 60%, 70%, 80%, and 90%, respectively, in terms of the dry mass of sand over the dry mass of the mixture. Influences of sand contents on time-dependent stress-strain behavior of the bentonite-sand mixture under 1-D straining are examined with special attention to the nonlinear creep and swelling behavior. It is found that the bentonite-sand mixtures exhibit distinct nonlinear creep and swelling behavior that cannot be neglected. Moreover, a nonlinear creep function proposed by Yin (1999 Yin , J.-H. 1999 . Non-linear creep of soils in oedometer tests . Geotechnique 49 ( 5 ): 699707 .[Crossref], [Web of Science ®] [Google Scholar]) for Hong Kong Marine Deposits has been modified to describe the nonlinear creep behavior of the bentonite-sand mixture.  相似文献   

10.
In order to accurately design a sand compaction pile (SCP) with low replacement area ratio, it is important to understand the mechanical interaction between the sand pile and clay ground and its mechanism during consolidation process in composite ground. In this article, therefore, a series of numerical analyses on composite ground improved by SCP with low replacement area ratio were carried out. The applicability of numerical analyses, in which an elasto-viscoplastic consolidation finite element method was applied, were confirmed by comparing the results obtained from a series of laboratory model tests with the composite ground improved by SCP. Through the results of the numerical analyses, mechanical behavior of the sand pile and clay in composite ground during consolidation is elucidated, together with a stress sharing mechanism between sand pile and clay.  相似文献   

11.
In order to accurately design a sand compaction pile (SCP) with low replacement area ratio, it is important to understand the mechanical interaction between the sand pile and clay ground and its mechanism during consolidation process in composite ground. In this article, therefore, a series of numerical analyses on composite ground improved by SCP with low replacement area ratio were carried out. The applicability of numerical analyses, in which an elasto-viscoplastic consolidation finite element method was applied, were confirmed by comparing the results obtained from a series of laboratory model tests with the composite ground improved by SCP. Through the results of the numerical analyses, mechanical behavior of the sand pile and clay in composite ground during consolidation is elucidated, together with a stress sharing mechanism between sand pile and clay.  相似文献   

12.
The design of sand mats should be reviewed on the basis of excess pore pressure behavior, which can be obtained by combining the characteristics of soft ground with the permeability of the mats. In this study, a banking model test was performed using dredged sand as the mat material to investigate the hydraulic gradient distribution of sand mats. The results were compared with numerical analysis results utilizing Terzaghi's one-dimensional consolidation equation. The results showed that the pore pressure was influenced by an increase in the amount of settlement at the central part of the sand mat as the height of the embankment increased. The measured decrease of the pressure head due to the residing water pressure in the sand mat was delayed compared to the numerical analysis results. Accordingly, sand mats should be laid to reduce the increased hydraulic gradient at the central part of the embankment.  相似文献   

13.
A stress path with continuous rotation of the principal stress direction and continuous alteration of amplitude of deviatoric stress difference under the interaction of wave and earthquake loading was proposed based on the characteristics of the stress path under wave and earthquake loading, respectively. Using a GDS dynamic hollow cylinder apparatus, a series of cyclic triaxial-torsional coupling shear tests were performed on Nanjing saturated fine sand via the stress path mentioned previously under different relative densities, effective initial confining pressures, plastic fines contents, and loading frequencies to study the development of excess pore water pressure (EPWP) of saturated sand under the interaction of wave and earthquake loading. It was found that the development of EPWP follows the trend of fast-steady-mutative-drastic, which is different from that under the cyclic triaxial test or wave loading. The number of cycles causing initial liquefaction (NL) of saturated sand increases remarkably with relative densities. However, the relationships between NL and effective initial confining pressures, plastic fines content, or loading frequencies are more complex.  相似文献   

14.
The post-cyclic behavior of biogenic carbonate sand was evaluated using cyclic triaxial testing through a stress control method under different confining pressures between 50 to 600 kPa. The testing program included a series of isotropically and anisotropically consolidated, undrained triaxial compression and extension tests on samples of remolded calcareous Bushehr sand. Grading analyses (before and after each test) were used to examine the influence of particle breakage on post-cyclic behavior of Bushehr sand. The particle breakage commonly occurred in these soils even in lower values of confining pressure, yet there was not a clear correlation between the post-cyclic responses and particle breakage. Based on the present study, a concept is suggested for post-cyclic behavior of carbonate sand. It was observed that post-cyclic strength has a good correlation with cyclic stress ratio, type of consolidation, and value of residual cyclic strain. For all specimens, it is clear that the post-cyclic strength is greater than monotonic strength, irrespective of confining pressure and relative density.  相似文献   

15.
Cyclic vertical-torsional coupling tests were performed on saturated Nanjing fine sand with a relative density of 50% using a hollow cylinder apparatus. The effect of complex initial stress conditions on undrained dynamic strength of saturated Nanjing fine sand was investigated. It is shown that the initial confining pressure, p0, the initial stress ratio, R0, and the initial angle of maximum principal stress direction, α0, have great effects on the characteristics of the dynamic strength of Nanjing fine sand. The dynamic strength increases with p0 and R0, while it decreases with α0. The effect of initial intermediate principal stress parameter b0 on the dynamic strength is slight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号