首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Curonian Lagoon is the biggest fresh water basin in Lithuania influenced by the exchange of the fresh Nemunas and other smaller rivers’ water and saline water of the Baltic Sea. The lagoon ecosystem is influenced by fresh, brackish and brackish water masses. A long-term water balance of the Curonian Lagoon was calculated for the period of 1960–2009. The sum river inflow is 21.784 km3/year, precipitation—1.199 km3/year, evaporation—1.007 km3/year, inflow of brackish water from the Baltic Sea to the Curonian Lagoon—6.171 km3/year, and fresh water runoff from the Curonian Lagoon to the Baltic Sea—27.642 km3/year. The lagoon water balance elements have been influenced by climate change. The water balance forecasting has been performed for the period of 2011–2100. The climate change impact on the water balance of the Lagoon has been evaluated using Global Climate Models (ECHAM5 and HadCM3), greenhouse gas emission scenarios (A2, A1B and B1), and hydrological modelling by Hydrologiska Byrans Vattenbalansavdelning (HBV) software. One scenario was selected for the prediction of the Baltic Sea water level. Considerable changes of the Curonian Lagoon water balance are forecasted in the 21st century. Increase of weather temperature and changes in precipitation will influence the elements of water balance of the Curonian Lagoon. In the period of 2011–2100, the river inflow and outflow from the Baltic Sea into the Lagoon will decrease respectively by 20.4 and 16.6% in comparison with the baseline period (1961–1990). The amount of precipitation and evaporation will increase respectively by 3.8 and 25.1%, while inflow from the Baltic Sea into the Curonian Lagoon will increase up to 39.7% in comparison with the baseline period.  相似文献   

2.
The relationship between many-year variations in zoobentbos of the Sea of Azov and the largescale variations in atmospheric circulation (G.Ya. Vangengeim typification) from the mid-XX to the early XXI century has been considered. It has been shown that the western form facilitates an increase in zoobentbos biomass of the Sea of Azov and the eastern form, its growth. The effect of the northern type of macroprocesses is controversial. The change from eastern to western form in the mid-1980s caused a freshening in the Sea of Azov and reduced the total zoobentbos biomass, especially mollusk. The farther predominance of the western form will facilitate the preservation of the present-day structure of benthic communities up to the end of the first quarter of the XXI century.  相似文献   

3.
In this paper, we quantify the terrestrial flux of freshwater runoff from East Greenland to the Greenland‐Iceland‐Norwegian (GIN) Seas for the periods 1999–2004 and 2071–2100. Our analysis includes separate calculations of runoff from the Greenland Ice Sheet (GrIS) and the land strip area between the GrIS and the ocean. This study is based on validation and calibration of SnowModel with in situ data from the only two long‐term permanent automatic meteorological and hydrometric monitoring catchments in East Greenland: the Mittivakkat Glacier catchment (65°N) in SE Greenland, and the Zackenberg Glacier catchment (74°N) in NE Greenland. SnowModel was then used to estimate runoff from all of East Greenland to the ocean. Modelled glacier recession in both catchments for the period 1999–2004 was in accordance with observations, and dominates the annual catchment runoff by 30–90%. Average runoff from Mittivakkat, ~3·7 × 10?2 km3 y?1, and Zackenberg, ~21·9 × 10?2 km3 y?1, was dominated by the percentage of catchment glacier cover. Modelled East Greenland freshwater input to the North Atlantic Ocean was ~440 km3 y?1 (1999–2004), dominated by contributions of ~40% from the land strip area and ~60% from the GrIS. East Greenland runoff contributes ~10% of the total annual freshwater export from the Arctic Ocean to the Greenland Sea. The future (2071–2100) climate impact assessment based on the Intergovernmental Panel on Climate Change (IPCC) A2 and B2 scenarios indicates an increase of mean annual East Greenland air temperature by 2·7 °C from today's values. For 2071–2100, the mean annual freshwater input to the North Atlantic Ocean is modelled to be ~650 km3 y?1: ~30% from the land strip area and ~70% from the GrIS. This is an increase of approximately ~50% from today's values. The freshwater runoff from the GrIS is more than double from today's values, based largely on increasing air temperature rather than from changes in net precipitation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Water budget analyses are important for the evaluation of the water resources in semiarid and arid regions. The lack of observed data is the major obstacle for hydrological modelling in arid regions. The aim of this study is the analysis and calculation of the natural water resources of the Western Dead Sea subsurface catchment, one which is highly sensitive to rainfall resulting in highly variable temporal and spatial groundwater recharge. We focus on the subsurface catchment and subsequently apply the findings to a large‐scale groundwater flow model to estimate the groundwater discharge to the Dead Sea. We apply a semidistributed hydrological model (J2000g), originally developed for the Mediterranean, to the hyperarid region of the Western Dead Sea catchment, where runoff data and meteorological records are sparsely available. The challenge is to simulate the water budget, where the localized nature of extreme rainstorms together with sparse runoff data results in few observed runoff and recharge events. To overcome the scarcity of climate input data, we enhance the database with mean monthly rainfall data. The rainfall data of 2 satellites are shown to be unsuitable to fill the missing rainfall data due to underrepresentation of the steep hydrological gradient and temporal resolution. Hydrological models need to be calibrated against measured values; hence, the absence of adequate data can be problematic. Therefore, our calibration approach is based on a nested strategy of diverse observations. We calculate a direct surface runoff of the Western Dead Sea surface area (1,801 km2) of 3.4 mm/a and an average recharge (36.7 mm/a) for the 3,816 km2 subsurface drainage basin of the Cretaceous aquifer system.  相似文献   

5.
The spatial and temporal changes in the Lena River runoff over the last 9 thousand years are reconstructed through studying the freshwater microfossils in sediment cores obtained from the Laptev Sea inner shelf immediately adjacent to the Lena delta and subject to the freshening effect of river water inflowing the sea through the main arms of the delta (the Trofimovskaya, Bykovskaya, and Tumatskaya arms), the sediments having been thoroughly AMS 14C dated. The freshwater species of diatoms (predominantly the river ones) and green algae that enter the shelf with river water served as indicators of river runoff. The reconstruction of paleosalinity of the sea surface water in the regions under study is based on the relationships (established earlier) between the distribution of freshwater diatoms in the surface layers of sediments in the Arctic seas and the gradients of water salinity in summer. Data on variations in the composition of aquatic microfossil associations in sediments and the reconstructed paleosalinity in the regions of the eastern and western paleovalleys of the Lena River are used to determine the main paleohydrologic events that controlled the variations in the Lena runoff into the shelf zone of the Laptev Sea during the Holocene.  相似文献   

6.
The atmospheric chemistry and deposition model has been applied for calculation of nitrogen and sulphur depositions to the entire North Sea area for the year 1999. The total atmospheric nitrogen and sulphur depositions to the North Sea area were determined to 709 kton (kt) N and 551 kt S, respectively. Since the North Sea area was calculated to be 747,988 km2, this is equivalent to an average deposition of 0.9 ton N km?2 and 0.7 ton S km?2, respectively. The depositions decrease strongly from the south end (about 2–3 kt N km?2) to the north end (about 0.2 kt N km?2) of the North Sea, due to increasing distance to the large source areas in the northern part of the European continent. The territorial waters of Belgium, the Netherlands and Germany receive about 50% higher deposition densities than the average value for the entire North Sea area. For the remaining territorial waters of the North Sea the depositions follow more or less the fraction of the area. The results furthermore show that about 60% of the total nitrogen deposition is related to emissions from combustion sources (nitrogen oxides) and about 40% from emissions related to agricultural activities (ammonia).  相似文献   

7.
Gargopa  Yu. M. 《Water Resources》2002,29(6):690-697
Correlation is established between the long-term variations in the frequency of the atmospheric circulation forms, water balance elements, and the Sea of Azov water salinity. It is found that the river runoff into the sea and the sea freshwater balance increase and the sea salinity decreases in the periods, when northern and western forms of atmospheric processes develop; in the periods with a greater frequency of the eastern type of atmospheric macroprocesses, the situation is reverse. It is also found that the effect of atmospheric circulation on the sea salinity tends to strengthen, whereas the effect of the human-induced decrease in river runoff tends to diminish. The current desalination of the Sea of Azov down to 10.5 is shown to be mainly due to the development of western and northern forms of atmospheric circulation in the cold season of a year during the last 10–15 years.  相似文献   

8.
Hydrochemical data collected in field studies in the near-mouth area and delta of the Don R. (Aksay T.—the mouths of Don delta branches) in 2006–2015 are analyzed. The seasonal dynamics is demonstrated, and the average annual concentrations were evaluated for mineral, total dissolved, and total forms of nitrogen, phosphorus, silica; dissolved and particulate organic carbon; and total suspended solids in river water. The export of dissolved and particulate organic carbon and nutrients by the Don River into the Sea of Azov in the low-water period of 2007–2015 is evaluated. Retrospective analysis of nutrient export into the Sea of Azov with river runoff in the XX–early XXI century is given.  相似文献   

9.
Studies of long-term water level variations at marine hydrometeorological stations in the eastern Sea of Azov established a rise in the sea level which accelerated in the past 40 years. Allowance for the tectonic component permitted assessing the average rate of eustatic rise in the level. Oppositely directed long-term level variations were established in the mouth area of the Don River. Water level was found to rise at the downstream gages because of the backwater effect caused by the Sea of Azov level rise and delta deposits subsidence and to drop at the upstream gages mainly because of bed erosion owing to a reduction in sediment runoff after the construction of the Tsimlyanskoe Reservoir.  相似文献   

10.
A water harvesting system for research purposes has been established in the Lisan Peninsula of the Dead Sea in the middle of the Jordan Rift Valley, where no authorized guideline is available for designing water harvesting systems. Rainfall and runoff, which occurred as flash floods, were observed at the downstream end of a gorge with a 1.12 km2 barren catchment area from October 2014 through July 2019. Due to the extremely arid environment, runoff from the catchment is ephemeral, and the flash flood events can be clearly distinguishable from each other. Thirteen flash flood events with a total runoff volume of more than 100 m3 were successfully recorded during the five rainy seasons. Pearson and Spearman correlations between duration, total rainfall depths at two points, total runoff volume, maximum runoff discharge, bulk runoff coefficient, total variation in runoff discharge and maximum variation in runoff discharge of each flash flood event were examined, revealing no straightforward relationship between rainfall and runoff. The performance of the conventional SCS runoff curve number method was also deficient in reproducing any rainfall–runoff relationship. Therefore, probability distribution fitting was performed for each random variable, focusing on the lognormal distribution with three parameters and the generalized extreme value distribution. The maximum goodness-of-fit estimation turns out to be a more rational and efficient method in obtaining the parameter values of those probability distributions rather than the standard maximum likelihood estimation, which has known disadvantages. Results support the design of the water harvesting system and provide quantitative information for designing and operating similar systems in the future.  相似文献   

11.
In this paper the reaction of the salt‐/freshwater interface due to the changes in the Dead Sea level are elaborated at in details by using the inflows into the Dead Sea, the outflows due to evaporation losses and artificial discharges, and the hydrographic registrations of the Dead Sea level. The analyses show that the interface seaward migration resulted in a groundwater discharge of around 423 Mio m3 per meter drop in the level of the Dead Sea in the period 1994–1998 and of around 525 Mio m3/m in the period 1930–1937. The additional amount of groundwater joining the Dead Sea due to the interface seaward migration was 51 Mio m3 per one square kilometer of shrinkage in the area of the Dead Sea in the period 1930–1937 and 91 Mio m3/km2 in the period 1994–1998. The riparian states of the Dead Sea are nowadays loosing 370 Mio m3/a of freshwater to the Dead Sea through the interface readjustment mechanisms as a result of their over exploitation of waters which formerly fed the Dead Sea.  相似文献   

12.
The hydrogen sulfide rich waters of the Black Sea pose a potential danger for the surrounding land regions. The impact of an asteroid exceeding tens of meters in size may cause both a tsunami wave and a catastrophic poisonous gas release in the atmosphere. Some effects of this last phenomenon on the Southern Black Sea coastal regions are evaluated in this paper. The initial surface area of the poisonous cloud depends on asteroid size. The initial thickness of the cloud depends, in addition, on sea depth at impact location. The wind speed plays an important role in H2S cloud dynamics. At 10 m/s wind speed, the cloud margins reach 185 km from the impact location in about 3 h. The maximum distance traveled by the hydrogen sulfide cloud increases by increasing the asteroid size and wind speed. The influence of the impact position on the distance traveled by hydrogen sulfide clouds is rather weak, as long as the seawater depth does not change significantly. The land surface area covered by the H2S cloud generated by a 1,000 m size asteroid ranges between about 6,400 and 12,000 km2. This may affect up to 3,000,000 people. When a 250 m size asteroid is considered, the covered land surface area ranges between about 1,400 and 2,100 km2 and up to 120,000 people may be affected. In case of a 70 m size asteroid, the cloud covers up to 280 km2 of land. This may affect up to about 70,000 people. These evaluations do not include the population of the towns on or near the seashore. A simple methodology to estimate the environmental risks of the potential asteroid impact was proposed. Sites less than 160 km from the impact place are at risk.  相似文献   

13.
87Sr/86Sr ratios of three hydrothermal waters collected on the East Pacific Rise at 21°N define a mixing line between seawater and a hydrothermal end-member at 0.7030 which is derived by seawater-basalt interaction at ca. 350°C and water/rock ratio of about 1.5. Sr concentrations are not affected in the process while Mg uptake from seawater is almost complete. Up to2/3 of this hydrothermal component is involved in anhydrite precipitation while the Sr isotopic ratio in sulfides (chalcopyrite + sphalerite) cannot be distinguished from that of sulfate. It is estimated that ca. 1 × 1010 moles of strontium are yearly cycled in the hydrothermal systems of mid-oceanic ridges, thereby affecting the87Sr/86Sr budget of seawater. Mass balance between river runoff, limestone precipitation and ridge basalt alteration suggests that the87Sr/86Sr ratios of the river runoff are in the range 0.7097–0.7113, and are largely dominated by limestone alteration.  相似文献   

14.
Several investigations have recently considered the possible impacts of climate change and seawater level rise on seawater intrusion in coastal aquifers. All have revealed the severity of the problem and the significance of the landward movement of the dispersion zone under the condition of seawater level rise. Most of the studies did not consider the possible effects of the seawater rise on the inland movement of the shoreline and the associate changes in the boundary conditions at the seaside and the domain geometry. Such effects become more evident in flat, low land, coastal alluvial plans where large areas might be submerged with seawater under a relatively small increase in the seawater level. None of the studies combined the effect of increased groundwater pumping, due to the possible decline in precipitation and shortage in surface water resources, with the expected landward shift of the shore line. In this article, the possible effects of seawater level rise in the Mediterranean Sea on the seawater intrusion problem in the Nile Delta Aquifer are investigated using FEFLOW. The simulations are conducted in horizontal view while considering the effect of the shoreline landward shift using digital elevation models. In addition to the basic run (current conditions), six different scenarios are considered. Scenarios one, two, and three assume a 0.5 m seawater rise while the total pumping is reduced by 50%, maintained as per the current conditions and doubled, respectively. Scenarios four, five, and six assume a 1.0 m seawater rise and the total pumping is changed as in the first three scenarios. The shoreline is moved to account for the seawater rise and hence the study domain and the seaside boundary are modified accordingly. It is concluded that, large areas in the coastal zone of the Nile Delta will be submerged by seawater and the coast line will shift landward by several kilometers in the eastern and western sides of the Delta. Scenario six represents the worst case under which the volume of freshwater will be reduced to about 513 km3 (billion m3).  相似文献   

15.
Postfire runoff and erosion are a concern, and more data are needed on the effects of wildfire at the watershed‐scale, especially in the Colorado Front Range. The goal of this study was to characterize and compare the streamflow and suspended sediment yield response of two watersheds (Bobcat Gulch and Jug Gulch) after the 2000 Bobcat fire. Bobcat Gulch had several erosion control treatments applied after the fire, including aerial seeding, contour log felling, mulching, and straw wattles. Jug Gulch was partially seeded. Study objectives were to: (1) measure precipitation, streamflow, and sediment yields; (2) assess the effect of rainfall intensity on peak discharges, storm runoff, and sediment yields; (3) evaluate short‐term hydrologic recovery. Two months after the fire, a storm with a maximum 30 min rainfall intensity I30 of 42 mm h?1 generated a peak discharge of 3900 l s?1 km?2 in Bobcat Gulch. The same storm produced less than 5 l s?1 km?2 in Jug Gulch, due to less rainfall and the low watershed response. In the second summer, storms with, I30 of 23 mm h?1 and 32 mm h?1 generated peak discharges of 1100 l s?1 km?2 and 1700 l s?1 km?2 in the treated and untreated watersheds respectively. Maximum water yield efficiencies were 10% and 17% respectively, but 18 of the 23 storms returned ≤2% of the rainfall as runoff, effectively obscuring interpretation of the erosion control treatments. I30 explained 86% of the variability in peak discharges, 74% of the variability in storm runoff, and >80% of the variability in sediment yields. Maximum single‐storm sediment yields in the second summer were 370 kg ha?1 in the treated watershed and 950 kg ha?1 in the untreated watershed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
The variation of mechanical and chemical denudation is investigated using discharge and sediment yield data from the Upper Colorado River System. Annual precipitation ranges from approximately 150 mm to 1500 mm. Mean specific yield ranges from 0-2 1/s km2 ( = 6 mm p a) to 151/s km2 ( = 475 mm p a). The hydrological-geomorphological system adjusts itself to these varying climatic conditions; in some areas, however, the effects of lithology or land use seem to override the climatic controls. It is demonstrated that the increase in the absolute and particularly the relative amount of suspended sediment is closely related to a decrease in annual runoff and to an increase in the importance of high magnitude/low frequency events. This indicates that in areas of low annual runoff and high runoff variability, soluble rocks are more resistant than in more humid areas. During high magnitude/low frequency events, suspended sediment concentrations and loads are very high in semiarid areas due to sparse vegetation cover and dominance of direct runoff. Events of moderate magnitude and frequency, which in more humid areas transport most of the dissolved load, seldom occur. The trend towards increasing mechanical denudation is even observed in areas of very low runoff (0-221/s km2 = 7 mm p a). The peak of sediment yield in dry areas seems to approximate the point of no runoff very closely. Mechanical and chemical denudation are of equal importance at a runoff of about 300 mm per year.  相似文献   

17.
The ability of the physically-based Soil Water-Atmosphere-Plants model, describing the processes of heat and water exchange between the land surface and the near-surface atmosphere, to reproduce hydrographs of daily river runoff is examined and compared with the Sacramento conceptual hydrological model, which has demonstrated the best performance in the International Model Parameter Estimation Experiment. Model simulations were carried out for 12 river basins with the area of ~103 km2 in the southeastern USA for the period of 1960–1998, of which the first 20 years were used to calibrate both models, while the last 19 years were used to validate them. The daily runoff hydrographs reproduced by the Soil Water-Atmosphere-Plants model, calibrated using different methods with the aim to maximize its accuracy, were compared with observational data and the results from the Sacramento model.  相似文献   

18.
The range of relative sea level rise in the northwestern South China Sea since the Last Glacial Maximum was over 100 m. As a result, lowland regions including the Northeast Vietnam coast, Beibu Gulf, and South China coast experienced an evolution from land to sea. Based on the principle of reconstructing paleogeography and using recent digital elevation model, relative sea level curves, and sediment accumulation data, this paper presents a series of paleogeographic scenarios back to 20 cal. ka BP for the northwestern South China Sea. The scenarios demonstrate the entire process of coastline changes for the area of interest. During the late glacial period from 20 to 15 cal. ka BP, coastline slowly retreated, causing a land loss of only 1×104 km2, and thus the land-sea distribution remained nearly unchanged. Later in 15–10 cal. ka BP coastline rapidly retreated and area of land loss was up to 24×104km2, causing lowlands around Northeast Vietnam and South China soon to be underwater. Coastline retreat continued quite rapidly during the early Holocene. From 10 to 6 cal. ka BP land area had decreased by 9×104km2, and during that process the Qiongzhou Strait completely opened up. Since the mid Holocene, main controls on coastline change are from vertical crustal movements and sedimentation. Transgression was surpassed by regression, resulting in a land accretion of about 10×104km2. Supported by Key Laboratory of Marginal Sea Geology, Chinese Academy of Sciences (Grant No. MSGL0711), the Guangdong Natural Science Foundation (Grant No. 04001309) and Open Fund of the Key Laboratory of Marine Geology and Environment, Chinese Academy of Sciences (Grant No. MGE2007KG04)  相似文献   

19.
The recession of bomb tritium in river discharge of large basins indicates a contribution of slowly moving water. For an appropriate interpretation it is necessary to consider different runoff components (e.g. direct runoff and ground water components) and varying residence times of tritium in these components. The spatially distributed catchment model (tracer aided catchment model, distributed; TACD) and a tritium balance model (TRIBIL) were combined to model process‐based tritium balances in a large German river basin (Weser 46 240 km2) and seven embedded sub‐basins. The hydrological model (monthly time step, 2 × 2 km2) estimated the three major runoff components: direct runoff, fast‐moving and slow‐moving ground water for the period of 1950 to 1999. The model incorporated topography, land use, geomorphology, geology and hydro‐meteorological data. The results for the different basins indicated a contribution of direct runoff of 30–50% and varying amounts for fast and slow ground water components. Combining these results with the TRIBIL model allowed us to estimate the residence time of the components. Mean residence times of 8 to 14 years were found for the fast ground water component, 21 to 93 years for the slow ground water component and 14 to 50 years for an overall mean residence time within these basins. Balance calculations for the Weser basin indicate an over‐estimation of loss of tritium through evapotranspiration (more than 60%) and decay (10%). About 28% were carried in stream‐flow where direct runoff contributed about 12% and ground water runoff 13% in relation to precipitation input over the studied 50‐year period. Neighbouring basins and nuclear power plants contributed about 1% each over this time period. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The spatial-temporal variations in the amount and biochemical composition of organic matter and the rates of its transformations in the ecosystems of the Russian part of the Sea of Azov are analyzed. Maximum OM concentrations are typical for Taganrog Bay. A characteristic feature of the Sea of Azov is a large proportion of particulate organic matter, which in summer in Taganrog Bay exceeded 35%. It is shown that not only the concentration of organic matter changes from season to season, but also its elementary (Corg, Norg, and Porg) and biochemical composition (proteins, carbohydrates, and lipids). The major biochemical compound of dissolved organic matter is shown to be carbohydrates (13–28%), and that of particulate matter is protein (44–51%). The hydrolytic (phosphatase and protease) and oxidation-reduction enzymes of electron-transport system demonstrate a high activity in summer. The estimated short turnover times of phosphates and protein suggest the rapid and complete utilization of organic matter in the Sea of Azov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号