共查询到6条相似文献,搜索用时 0 毫秒
1.
We develop techniques of numerical wave generation in the time-dependent extended mild-slope equations of Suh et al. [1997. Time-dependent equations for wave propagation on rapidly varying topography. Coastal Engineering 32, 91–117] and Lee et al. [2003. Extended mild-slope equation for random waves. Coastal Engineering 48, 277–287] for random waves using a source function method. Numerical results for both regular and irregular waves in one and two horizontal dimensions show that the wave heights and the frequency spectra are properly reproduced. The waves that pass through the wave generation region do not cause any numerical disturbances, showing usefulness of the source function method in avoiding re-reflection problems at the offshore boundary. 相似文献
2.
This paper presents a technique to generate waves at oblique angles in finite difference numerical models in a rectangular grid system by using internal generation technique [Lee, C., Suh, K.D., 1998. Internal generation of waves for time-dependent mild-slope equations. Coast. Eng. 34, 35–57.] along an arc-shaped line source. Tests were made for four different types of wave generation layouts. Quantitative experiments were conducted under the following conditions: the propagation of waves on a flat bottom, the refraction and shoaling of waves on a planar slope, and the diffraction of waves to a semi-infinite breakwater. Numerical experiments were conducted using the extended mild-slope equations of Suh et al. [Suh, K.D., Lee, C., Park, W.S., 1997. Time-dependent equations for wave propagation on rapidly varying topography. Coast. Eng. 32, 91–117.]. The fourth layout type consisting of two parallel lines connected to a semicircle showed the best solutions, especially for a small grid size. This technique is useful for the numerical simulation of irregular waves with broad-banded directional spectrum using conventional spectral wave models for the reasonable estimation of bottom friction and wave-breaking. 相似文献
3.
A method for generating waves in Boussinesq-type wave models is described. The method employs a source term added to the governing equations, either in the form of a mass source in the continuity equation or an applied pressure forcing in the momentum equations. Assuming linearity, we derive a transfer function which relates source amplitude to surface wave characteristics. We then test the model for generation of desired incident waves, including regular and random waves, for both one and two dimensions. We also compare some model results with analytical solution and available experiment data. 相似文献
4.
Internal inlet for wave generation and absorption treatment 总被引:1,自引:0,他引:1
A new method of implementing, in two-dimensional (2-D) Navier–Stokes equations, a numerical internal wave generation in the finite volume formulation is developed. To our knowledge, the originality of this model is on the specification of an internal inlet velocity defined as a source line for the generation of linear and non-linear waves. The use of a single cell to represent the source line and its transformation to an internal boundary condition proved to be an interesting alternative to the common procedure of adding a mass source term to the continuity equation within a multi-cell rectangular region. Given the reduction of the source domain to a one-dimensional region, this simple new type of source introduced less perturbation than the 2-D source type. This model was successfully implemented in the PHOENICS code (Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series). In addition, the volume of fluid (VOF) fraction was used to describe the free surface displacements. A friction force term was added to the momentum transport equation in the vertical direction, in order to enhance wave damping, within relatively limited number of cells representing the sponge layers at the open boundaries. For monochromatic wave, propagating on constant water depth, numerical and analytical results showed good agreements for free surface profiles and vertical distribution of velocity components. For solitary wave simulation, the wave shape and velocity were preserved; while, small discrepancy in the tailing edge of the free surface profiles was observed. The suitability of this new numerical wave generation model for a two source lines extension was investigated and proven to be innovative. The comparisons between numerical, analytical and experimental results showed that the height of the merging waves was correctly reproduced and that the reflected waves do not interact with the source lines. 相似文献
5.
In this study the evolution of internal solitary waves shoaling onto a shelf is considered. The results of high resolution two-dimensional numerical simulations of the incompressible Euler equations are compared with the predictions of several weakly-nonlinear shoaling models of the Korteweg–de Vries family including the Gardner equation and the cubic regularized long wave (or Benjamin–Bona–Mahoney) equation. Wave models in both physical x–t space and in s–x space are considered where s is a commonly used characteristic time variable. The effects of rotation, background currents and damping are ignored. The Boussinesq and rigid lid approximations are also used. The shoaling internal solitary waves generally fission into several waves. Reflected waves are negligible in the cases considered here. Several hyperbolic tangent stratifications are considered with and without a critical point. Among the equations in x–t space the cubic regularized long wave equation gives the best predictions. The Gardner equation in s–x space gives the best predictions of the shape of the leading waves on the shelf, but for many stratifications it predicts a propagation speed that is too large. 相似文献