首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The characteristics of 30-60 day oscillation (hereafter called LFO ) of the outgoing longwave radiation data (OLR) and its relations to the interannual oscillations of the sea surface temperature (SST) are investigated by using the daily OLR data for the period from January, 1979 to December, 1987 and the corresponding monthly SST data. It is found that the LFO the band the interannual oscillations of the SST monthly anomaly (SSTA) interact each other and they all relate to the occurrence and development of El Nino events closely. Before El Nino event happens, it contributes to the SST's wanning up and to the SST's quasi-biennial oscillation (called QBO for brevity) and three and half years oscillation (called SO for short) being in warm water phase in the equatorial central and eastern Pacific (ECP and EEP) that the LFO in the equatorial western Pacific (EWP) enhances and propagates eastward; When El Nino event takes place, the LFO, SSTA and SSTA's QBO and SO in the EEP interact and strengthen each oth  相似文献   

2.
By using the upper-wind data from July 1980 to June 1983,the variations of the low-frequency oscillation(LFO)in the atmosphere before and during 1982 El Nino have been investigated.Before the El Nino,the LFOpropagates from west to east over the equator of the Eastern Hemisphere and from east to west over 20°N.The eastward propagating LFO over the equator consists of zonal wavenumber 1 propagating eastward andzonal wavenumber 2 with a character of stationary wave.The oscillation of zonal wavenumber 2 can modulatethe oscillation strength.After the onset of the El Nino,the propagating directions of the LFO over the equatorand 20°N of the Eastern Hemisphere change to be westward and eastward,respectively.The LFO over thewestern Pacific weakens rapidly and one coming from middle and high latitudes propagates to the equator.From the phase compositions of streamline fields for the zonal wavenumber 1 of equatorial westward propa-gatirg LFO,it is found that the atmospheric heat source in the equator of the eastern Pacific(EEP)excites aseries of the equatorial cyclones and anticyclones which move northward and westward and form the westwardpropagating LFO over the equator.With the wavelength of 20000km,this kind of equatorial wave is similarto the mixing Rossby-gravity wave.In its westward and northward movement,the circulation in East Asiais modified.This may be the mechanism of the influence of El Nino on the climate of China.  相似文献   

3.
Investigated statistically is the interrelation between East Asian winter monsoon(EAWM)and SST over sensitive areas of the Indian and Pacific Oceans.with focus on the relation of EAWMto strong ENSO signal area.i.e.,the equatorial eastern Pacific(EEP)SST.Evidence suggeststhat the EAWM variation is intimately associated not only with the EEP SST but with theequatorial western Pacific“warm pool”and equatorial Indian/northwestern Pacific Kuroshio SSTas well:the EAWM and ENSO interact strongly with each other on the interannual time scales,exhibiting pronounced interdecadal variation mainly under the joint effect of the monsoon QBO andthe monsoon/SST background field features on an interdecadal basis—when both fields are in thesame phase(anti-phase).strong EAWM contributes to EEP SST rise(drop)in the followingwinter,corresponding to a warm(cold)ENSO cycle;the EAWM QBO causes ENSO cycle to bestrong phase-locked with seasonal variation,making the EEP SST rise lasting from April—May toMay—June of the next year,which plays an important role in maintaining a warm ENSO phase.  相似文献   

4.
Warm and cold phases of El Nino–Southern Oscillation (ENSO) exhibit a significant asymmetry in their decay speed. To explore the physical mechanism responsible for this asymmetric decay speed, the asymmetric features of anomalous sea surface temperature (SST) and atmospheric circulation over the tropical Western Pacific (WP) in El Nino and La Nina mature-to-decay phases are analyzed. It is found that the interannual standard deviations of outgoing longwave radiation and 850 hPa zonal wind anomalies over the equatorial WP during El Nino (La Nina) mature-to-decay phases are much stronger (weaker) than the intraseasonal standard deviations. It seems that the weakened (enhanced) intraseasonal oscillation during El Nino (La Nina) tends to favor a stronger (weaker) interannual variation of the atmospheric wind, resulting in asymmetric equatorial WP zonal wind anomalies in El Nino and La Nina decay phases. Numerical experiments demonstrate that such asymmetric zonal wind stress anomalies during El Nino and La Nina decay phases can lead to an asymmetric decay speed of SST anomalies in the central-eastern equatorial Pacific through stimulating di erent equatorial Kelvin waves. The largest negative anomaly over the Nino3 region caused by the zonal wind stress anomalies during El Nino can be threefold greater than the positive Nino3 SSTA anomalies during La Nina, indicating that the stronger zonal wind stress anomalies over the equatorial WP play an important role in the faster decay speed during El Nino.  相似文献   

5.
The time series of sea surface temperature(SST), sea level pressure (SLP), zonal wind (U) and total cloudiness (CA), for the period of 1950-1979, over a 8°×8° grid-point latitudinal belt between 32° S and 32°N are made from COADS (Comprehensive Ocean-Atmosphere Data Set). The time harmonic analysis and power spectra analysis show that there exist quasi-biennial oscillation (QBO), three and half years oscillation (SO), five and half years oscillation (FYO) and eleven years oscillation (EYO) in these time series. The main propagation characteristics of these interannual low-frequency oscillations are as follows:(1) The variance analysis of SST shows that there is an active region of QBO and SO (with maximum variance), coming from the southwestern part of the subtropical Pacific, stretching eastward up to the west coast of South America, and then northward to the eastern equatorial Pacific. The QBO and SO disturbances of SST follow the same route and cause the anomaly of SST (El Nino and period of col  相似文献   

6.
Optimal precursor perturbations of El Nino in the Zebiak-Cane model were explored for three different cost functions. For the different characteristics of the eastern-Pacific (EP) El Nino and the central-Pacific (CP) El Nino, three cost functions were defined as the sea surface temperature anomaly (SSTA) evolutions at prediction time in the whole tropical Pacific, the Nino3 area, and the Nino4 area. For all three cost functions, there were two optimal precursors that developed into El Nino events, called Precursor Ⅰ and Precursor Ⅱ. For Precursor Ⅰ, the SSTA component consisted of an east-west (positive-negative) dipole spanning the entire tropical Pacific basin and the thermocline depth anomaly pattern exhibited a tendency of deepening for the whole of the equatorial Pacific. Precursor Ⅰ can develop into an EP-El Nino event, with the warmest SSTA occurring in the eastern tropical Pacific or into a mixed El Nino event that has features between EP-El Nino and CP-El Nino events. For Precursor Ⅱ, the thermocline deepened anomalously in the eastern equatorial Pacific and the amplitude of deepening was obviously larger than that of shoaling in the central and western equatorial Pacific. Precursor Ⅱ developed into a mixed El Nino event. Both the thermocline depth and wind anomaly played important roles in the development of Precursor Ⅰ and Precursor Ⅱ.  相似文献   

7.
By making full use of GMS TBB data, diagnosis and analysis of the formation and development of El Nino event in 2002 and 2003 were made. It suggests that the first clue of the El Nino event appeared in December 2001. The event was formed at the end of 2002 after five phases of development, and came into the phase of flourishing in the winter of 2002. From the analysis the dynamics, it is noted that that the position of the ascending branch of Walker cell was moving from the equatorial west Pacific to the equatorial central Pacific in the phase of formation and development of the El Nino event. The process of diagnosis shows that it can provide an important clue for forecasting the genesis and development of the El Nino episodes.  相似文献   

8.
Analysis has been implemented of 1970-1992 tropical Pacific wind stress anomaly and sea surface temperature anomaly (SSTA) datasets, indicating that quasi-biennial oscillation (QBO) of the tropical Pacific WS and SSTA is featured both by a standing and a progressive form, the former emerging in the most intense centers of action and the latter travelling east- or west-ward out of the SSTA sources. Results show that the SSTA is in the warm (cold) phase as zonal component of euqatorial wind stress anomaly gets weakened (reinforced) and the QBO of wind stress anomaly is well related to the El Nino cycle.  相似文献   

9.
From the COADS (Comprehensive Ocean-Atmosphere Data Set) I and the COADS II, we got a monthly data set of sea surface temperature (SST). zonal and meridional wind components at sea level (U,V) and sea level pressure (SLP) with 4o × 4o grid system covering the period from Jan. 1950 to Dec. 1987 to study the evolutional features of the quasi-biennial oscillation (QBO) in the air-sea system. The analytic method of complex empirical orthogonal function (CEOF) is used to obtain the composite temporal sequences of amplitude (six phases for half a period) for the first and the second main components of SST, U, V and SLP. It is shown from the results that the main character-istics for different phases of the sea surface temperature anomaly’s (SSTA) QBO are warm water / cold water in the equator of the eastern Pacific (EEP). There are two warm or cold water centers of the SSTA in the EEP, which are lo-cated in the equator of the central Pacific (ECP) and the east part of the EEP. The features of the source propagation and the influence of these two centers on atmospheric circulation are discussed and it can be seen that in the forma-tion of these two centers, there are different features in oceanic and atmospheric circulations and air-sea coupled pro-cess.  相似文献   

10.
According to me lime cross-section or SSI in me equatorial eastern racing and me historical data on typhoon actions over the western Pacific (including the South China Sea), a composite analysis of the actions of typhoon over the western Pacific in El Nino year (SST in the equatorial eastern Pacific are continuously higher than normal) and in the inverse El Nino year (there are continuative negative anomalies of SST in the equatorial eastern Pacific) is carried out. The results show that the actions of typhoon are in close relation with El Nino: The annual average number of typhoons over the western Pacific and South China Sea is less than normal in El Nino year and more in the inverse El Nino year; The annual average number of the landing typhoon on the continent of China bears the same relationship with El Nino; The anomalies of typhoon actions mainly occur during July-November and their starting are behind the anomaly of SST in the equatorial eastern Pacific.Based on the generation and development co  相似文献   

11.
One of the fundamental questions concerning the nature and prediction of the oceanic states in the equatorial eastern Pacific is how the turnabout from a cold water state (La Nina) to a warm water state (El Nino) takes place, and vice versa. Recent studies show that this turnabout is directly linked to the interannual thermocline variations in the tropical Pacific Ocean basin. An index, as an indicator and precursor to describe interannual thermocline variations and the turnabout of oceanic states in our previous paper (Qian and Hu, 2005), is also used in this study. The index, which shows the maximum subsurface temperature anomaly (MSTA), is derived from the monthly 21-year (1980-2000) expendable XBT dataset in the present study. Results show that the MSTA can be used as a precursor for the occurrences of El Nino (or La Nina) events. The subsequent analyses of the MSTA propagations in the tropical Pacific suggest a one-year potential predictability for El Nino and La Nina events by identifying ocean temperature anomalies in the thermocline of the western Pacific Ocean. It also suggests that a closed route cycle with the strongest signal propagation is identified only in the tropical North Pacific Ocean. A positive (or negative) MSTA signal may travel from the western equatorial Pacific to the eastern equatorial Pacific with the strongest signal along the equator. This signal turns northward along the tropical eastern boundary of the basin and then moves westward along the north side of off-equator around 16°N. Finally, the signal returns toward the equator along the western boundary of the basin. The turnabout time from an El Nino event to a La Nina event in the eastern equatorial Pacific depends critically on the speed of the signal traveling along the closed route, and it usually needs about 4 years. This finding may help to predict the occurrence of the El Nino or La Nina event at least one year in advance.  相似文献   

12.
Many previous studies have demonstrated that the boreal winters of super El Nino events are usually accompanied by severely suppressed Madden-Julian oscillation(MJO) activity over the western Pacific due to strong descending motion associated with a weakened Walker Circulation. However, the boreal winter of the 2015/16 super El Nino event is concurrent with enhanced MJO activity over the western Pacific despite its sea surface temperature anomaly(SSTA)magnitude over the Nino 3.4 region being comparable to the SSTA magnitudes of the two former super El Nino events(i.e.,1982/83 and 1997/98). This study suggests that the MJO enhanced over western Pacific during the 2015/16 super El Nino event is mainly related to its distinctive SSTA structure and associated background thermodynamic conditions. In comparison with the previous super El Nino events, the warming SSTA center of the 2015/16 super El Nino is located further westward, and a strong cold SSTA is not detected in the western Pacific. Accordingly, the low-level moisture and air temperature(as well as the moist static energy, MSE) tend to increase in the central-western Pacific. In contrast, the low-level moisture and MSE show negative anomalies over the western Pacific during the previous super El Nino events.As the MJO-related horizontal wind anomalies contribute to the further westward warm SST-induced positive moisture and MSE anomalies over the western tropical Pacific in the boreal winter of 2015/16, stronger moisture convergence and MSE advection are generated over the western Pacific and lead to the enhancement of MJO convection.  相似文献   

13.
Complex Singular Value Decomposition(CSVD)analysis technique was applied to study theQuasi Four year Oscillation(QFO)of air sea interaction and its coupled pattern evolution duringdifferent phases.Results show that:(1)CSVD method can better reveal phase relation betweentwo physical fields:(2)Not only northerly anomalies from Northern Hemisphere but alsosoutherly anomalies from Southern Hemisphere contribute to EI Nino.They converge in westernequatorial Pacific,leading to outburst of strong equatorial westerly anomalies,and result in strongEl Nino event onset:(3)An abnormal subtropical anticyclone circulation appears overnorthwestern Pacific while El Nino developing.It favors transitions from the warm SST(EINino)to the cold SST(La Nina),just as the tropical westerly anomalies produced by abnormalcyclone during a decaying La Nina.which encourage the development of El Nino:(4)Thewesterly anomalies in equatorial Pacific are mainly induced by eastward abnormal subtropicalcyclone pairs,which are located in north and south Pacific respectively,and are not the eastwardwesterly anomalies from equatorial Indian Ocean.  相似文献   

14.
From the COADS (Comprehensive Ocean-Atmosphere Data Set) I and the COADS II, we got a monthly data set of sea surface temperature (SST), zonal and meridional wind components at sea level (U,V) and sea level pressure (SLP) with 4°× 4° grid system covering the period from Jan. 1950 to Dec. 1987 to study the evolutional features of the quasi-biennial oscillation (QBO) in the air-sea system. The analytic method of complex empirical orthogonal function (CEOF) is used to obtain the composite temporal sequences of amplitude (six phases for half a period) for the first and the second main components of SST, U, V and SLP. It is shown from the results that the main characteristics for different phases of the sea surface temperature anomaly's (SSTA) QBO are warm water / cold water in the equator of the eastern Pacific (EEP). There are two warm or cold water centers of the SSTA in the EEP, which are located in the equator of the central Pacific (ECP) and the east part of the EEP. The features of the source propa  相似文献   

15.
The interaction between anomalous winter monsoon in East Asia and El Nino is further stud-ied in this paper.The new results still more proved a previous conclusion:there are clear interac-tions between El Nino and winter monsoon in East Asia.The continual westerly burst andstronger cumulus convection over the equatorial central-western Pacific caused by stronger wintermonsoon in East Asia can respectively excite anomalous oceanic Kelvin wave and stronger atmo-spheric intraseasonal oscillation in the tropics,then excite the El Nino event through air-sea inter-action.In El Nino winter,there are warmer and weaker winter monsoons in East Asia.The El Ni-no will still reduce the intensity of intraseasonal oscillation and leads it to be barotropic structure.  相似文献   

16.
The role of halted "baroclinic modes" in the central equatorial Pacific is analyzed. It is found that dominant anomaly signals corresponding to "baroclinic modes" occur in the upper layer of the equatorial Pacific, in a two-and-a-half layer oceanic model, in assimilated results of a simple OGCM and in the ADCP observation of TAO. A second "baroclinic mode" is halted in the central equatorial Pacific corresponding to a positive SST anomaly while the first "baroclinic mode" propagates eastwards in the eastern equatorial Pacific. The role of the halted second "baroclinic mode" in the central equatorial Pacific is explained by a staged ocean-atmosphere interaction mechanism in the formation of El Nino: the westerly bursts in boreal winter over the western equatorial Pacific generate the halted second "baroclinic mode" in the central equatorial Pacific, leading to the increase of heat content and temperature in the upper layer of the central Pacific which induces the shift of convection from over the western equatorial Pacific to the central equatorial Pacific; another wider, westerly anomaly burst is induced over the western region of convection above the central equatorial Pacific and the westerly anomaly burst generates the first "baroclinic mode" propagating to the eastern equatorial Pacific, resulting in a warm event in the eastern equatorial Pacific. The mechanism presented in this paper reveals that the central equatorial Pacific is a key region in detecting the possibility of ENSO and, by analyzing TAO observation data of ocean currents and temperature in the central equatorial Pacific, in predicting the coming of an El Nino several months ahead.  相似文献   

17.
The climatology and interannual variability of sea surface salinity(SSS) and freshwater flux(FWF) in the equatorial Pacific are analyzed and evaluated using simulations from the Beijing Normal University Earth System Model(BNU-ESM).The simulated annual climatology and interannual variations of SSS, FWF, mixed layer depth(MLD), and buoyancy flux agree with those observed in the equatorial Pacific. The relationships among the interannual anomaly fields simulated by BNU-ESM are analyzed to illustrate the climate feedbacks induced by FWF in the tropical Pacific. The largest interannual variations of SSS and FWF are located in the western-central equatorial Pacific. A positive FWF feedback effect on sea surface temperature(SST) in the equatorial Pacific is identified. As a response to El Ni ?no–Southern Oscillation(ENSO),the interannual variation of FWF induces ocean processes which, in turn, enhance ENSO. During El Ni ?no, a positive FWF anomaly in the western-central Pacific(an indication of increased precipitation rates) acts to enhance a negative salinity anomaly and a negative surface ocean density anomaly, leading to stable stratification in the upper ocean. Hence, the vertical mixing and entrainment of subsurface water into the mixed layer are reduced, and the associated El Ni ?no is enhanced. Related to this positive feedback, the simulated FWF bias is clearly reflected in SSS and SST simulations, with a positive FWF perturbation into the ocean corresponding to a low SSS and a small surface ocean density in the western-central equatorial Pacific warm pool.  相似文献   

18.
Statistically different precursory air–sea signals between a super and a regular El Ni no group are investigated, using observed SST and rainfall data, and oceanic and atmospheric reanalysis data. The El Ni no events during 1958–2008 are first separated into two groups: a super El Ni no group(S-group) and a regular El Ni no group(R-group). Composite analysis shows that a significantly larger SST anomaly(SSTA) tendency appears in S-group than in R-group during the onset phase[April–May(0)], when the positive SSTA is very small. A mixed-layer heat budget analysis indicates that the tendency difference arises primarily from the difference in zonal advective feedback and the associated zonal current anomaly(u).This is attributed to the difference in the thermocline depth anomaly(D) over the off-equatorial western Pacific prior to the onset phase, as revealed by three ocean assimilation products. Such a difference in D is caused by the difference in the wind stress curl anomaly in situ, which is mainly regulated by the anomalous SST and precipitation over the Maritime Continent and equatorial Pacific.  相似文献   

19.
The normal mode method is adopted to decompose the differences between simulations with SST(seasurface temperature)anomahes over centra-eastern Pacific and normal SST by use of a nine-layer global spec-tral model in order to investigate short-range climatic oscillation with various time scales forced by ElNino during the northern summer.Investigation shows that El Nino may have the following influence onatmosphere on various space-time scales.Extra-long wave components of Rossby mode forced by convectiveanomaly over equatorial western Pacific resulting from El Nino produce climatic oscillation on monthly(sea-sonal)time scale in middle-high latitudes of Southern and Northern Hemispheres;extra-long wave componentsof Kelvin mode forced by SST anomalies propagate along the equator,resulting in 30—60 day oscillation oftropical and subtropical atmosphere;and its long waves move eastward with westerly,resulting in quasi-biweekoscillation.  相似文献   

20.
The space-time features of major vorticity disturbances over the western North Pacific during the 1997-98 El Nino ranked as one of the strongest events on record was investigated in this study. We distinguished the different roles that these disturbances had on different timescales in causing the reversal or turnabout of the El Nino event. Remarkable differences in the various disturbances of synoptic, intraseasonal, and interannual timescales were found in the time evolution, propagation, and in their contributions to the changes in nearequatorial zonal flow, which was crucial to the demise of the warm sea surface temperature anomalies in the central-eastern Pacific. It is hypothesized that the westward-traveling synoptic and intraseasonal oscillations in the western North Pacific might be considered as a self-provided negative feedback from the El Nino and played an additional role in its reversal in comparison with other interannual internal and external forcings. In this case, the off-equatorial synoptic and intraseaonal fluctuations served as a stochastic forcing for the tropical ocean and gave rise to the aperiodicity or irregularity of the El Nino-Southern Oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号