首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This work is based on a systematic analysis of images of comet 1P/Halley collected during its penultimate and ultimate approaches, i.e., in 1910 and 1986. This research has identified, characterized, classified, and compared tail structures of comet 1P/Halley, namely disconnection events (DEs), wavy structures, and solitons. The images of the comet during its 1910 passage, as illustrated in the Atlas of Comet Halley 1910 II (Donn et al. 1986), were compared with those of its approach in 1986 as illustrated in The International Halley Watch Atlas of Large‐Scale Phenomena (Brandt et al. 1992). Two onsets of DEs were discovered after the perihelion passage in 1910 with an average value of the corrected cometocentric velocity (Vc) of 57 ± 15 km s?1. Ten onsets of DEs were discovered after the perihelion passage in 1986 with an average Vc equal to 130 ± 37 km s?1. The mean value of the corrected wavelength λc of wavy structures in 1910 is equal to 1.7 ± 0.1 × 10km, as compared to 2.2 ± 0.2 × 106 km in 1986. The mean value of the amplitude A of the wave in 1910 is equal to 1.4 ± 0.1 × 105 km and 2.8 ± 0.5 × 105 km in 1986. The goals of this research were to report the results obtained from the analysis of the P/Halley's images from 1910 and 1986, to provide empirical data for comparison, and to form the input for future physical/theoretical work.  相似文献   

2.
A very long series of photographic observations of the comet Hale-Bopp has been made during January–April 1997 at the double astrograph (400/2000) of the Main Astronomical Observatory (Kyiv, Ukraine). Some of the cometary photos were obtained with two wide-band filter combinations. One of these combinations isolates C2 emission, another — the nearby dust continuum. The images were digitized by means of AMDPH-XY machine and then calibrated following the standard procedure. After subtraction of the dust continuum the distribution of surface brightness in the C2 emission coma of comet Hale-Bopp was studied. We found an asymmetric brightness distribution both pre- and post-perihelion. On 21.77 April 1997 a secondary brightness peak is found at the distance of 1.03 × 105 km from the nucleus. It is possible that this peak is related to the extended source of the C2 molecules. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
《Icarus》1986,68(2):266-275
Condensation of ice particles in the vicinity of a cometary nucleus as pointed out by Yamamoto and Ashihara (1985, Astron. Astrophys. 152, L17–L20) is fully studied by solving the hydrodynamic equations for ice particles and H2O gas. Formulation is presented for the hydrodynamics including condensation and sublimation of ice particles, and energy exchange between ice particles and the gas in a dustless comet. It is shown that sublimation of ice particles condensed leads to heating of the ambient gas, resulting in the higher gas temperature than those predicted by the models proposed so far. Compared with the previous calculation carried out under the conditions at the encounter of the spacecraft to Halley's Comet, the present results have revealed that the survival distance of ice particles against sublimation is longer, but that their size, which attains its maximum of 6.4 Å at 51 km from the center of the nucleus, is smaller, resulting in a larger fraction of uncondensed H2O gas. Discussion is given on the physical conditions under which condensation of ice particles can take place in cometary comae.  相似文献   

4.
We present an analysis of the results of photometric investigations of two distant comets, C/2002 VQ94 (LINEAR) and 29P/Schwassmann-Wachmann-1, obtained with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. The comets under study demonstrate sufficient activity out of the zone of water ice sublimation (at heliocentric distances longer than 5 AU). In the spectra of the investigated comets, we found the CO+ and N2+ emission. The presence of this emission may say that the comets were formed in the outer parts of the Solar System, in a protoplanetary cloud at a temperature ≤25 K. We found that the photometric maximum of the ionosphere (in the CO+ filter) of the comet C/2002 VQ94 (LINEAR) is shifted relative to the photometric center of the dust coma by 1.4″ (7.44 × 103 km) in the direction deflected by 63° from the direction to the Sun. Using special filters to process the images, we picked out active structures (jets) in the dust coma of the 29P/Schwassmann-Wachmann-1 comet.  相似文献   

5.
《Icarus》1987,70(2):264-268
We used the VLA2 to search for continuum emission from icy grains in a halo around Comet Halley in mid November 1985. We found the 3σ upper limit to the 2-cm flux density from the comet to be 1 × 10−4 Jy, which is consistent with the detections at 1.3 and 3.5 mm by W.J. Altenhoff et al. (1986, Astron. Astrophys., in press) only if the emission comes from particles which do not radiate efficiently at centimeter wavelengths. These particles could be slightly dirty submillimeter-sized icy grains or small refractory grains.  相似文献   

6.
We present the analysis of the photometric and spectroscopic data obtained for comet C/2010 X1 (Elenin) when it was at a distance of 2.92 AU from the Sun. The observations were made at the prime focus of the 6-m BTA telescope with the SCORPIO focal reducer. The magnitude of the comet, measured in the R c -band with an 9?? aperture radius amounted to 16?8 ± 0?1. The computed dust production rate was estimated to be about 6 kg/s. The cometary coma manifested the emissions in the (0?C0) band of the CN molecule violet system, and a number of emission band heads of the C3 molecule. The gas production rate of the molecules is determined using the Haser model and amounts to 1.41 × 1024 and 4.20 × 1023 molecules per second for CN and C3, respectively. The ratio of gas production rates log[Q(C3)/Q(CN)] is equal to ?0.85, which is close to the mean value, determined for a significant number of comets. A normalized gradient of the cometary dust reflectivity, calculated for the 4430?C6840 ? spectral range amounts to 14.3 ± 1.2%.  相似文献   

7.
Lis  D. C.  Mehringer  D. M.  Benford  D.  Gardner  M.  Phillips  T. G.  Bockelée-Morvan  D.  Biver  N.  Colom  P.  Crovisier  J.  Despois  D.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):13-20
We present millimeter-wave observations of HNCO, HC3N, SO, NH2CHO, H13CN, and H3O+ in comet C/1995 O1 (Hale-Bopp)obtained in February–April, 1997 with the Caltech Submillimeter Observatory (CSO). HNCO, first detected at the CSO in comet C/1996B2 (Hyakutake), is securely confirmed in comet Hale-Bopp via observations of three rotational transitions. The derived abundance with respect to H2O is (4-13) × 10-4. HC3N, SO, and NH2CHO are detected for the first time in a comet. The fractional abundance of HC3N based on observations of three rotational lines is (1.9 ± 0.2) × 10-4. Four transitions of SO are detected and the derived fractional abundance, (2-8) ×10-3, is higher than the upper limits derived from UV observations of previous comets. Observations of NH2CHO imply a fractional abundance of (1-8) × 10-4. H3O is detected for the first time from the ground. The H13CN (3-2)transition is also detected and the derived HCN/H13CN abundance ratio is 90 ± 15, consistent with the terrestrial12C/13C ratio. In addition, a number of other molecular species are detected, including HNC, OCS, HCO+, CO+, and CN(the last two are first detections in a comet at radio wavelengths). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Observations of the solar eclipse on March 29, 2006, at the Laboratory of Radio Astronomy of the CrAO showed that the radio radius of the Sun at a wavelength of 1 m in the direction of the first contact was R d = 1.12 R during solar activity minimum between cycles 23 and 24. The brightness temperature of the undisturbed Sun was T d = (0.6 ± 0.06) × 106 K. There was a noise storm source above the sunspot group NOAA 0865 whose bright nucleus had a size of 1′.3 and a brightness temperature T b = 16 × 106 K. The noise storm bursts were emitted from the region of the bright nucleus above the group NOAA 0865 and were absent during its covering by the disk of the Moon. Thermal radiation from a coronal condensation with a brightness temperature of (1?2) × 106 K extending out from the visible solar disk to 2′.7 was observed during the eclipse above the eastern limb sunspot group NOAA 0866. The bright nucleus in this limb source appeared 42 min after eclipse termination and persisted in the ensuing days. This may be indicative of the time of its emergence from behind the radio horizon formed by regular refraction of radio waves in the corona. The refractive displacement was measured by comparison with the eclipse observations at a shorter wavelength of 12 cm. Its value of 0′.96 is close to the calculated value of 0′.8.  相似文献   

9.
The radiative lifetimes of cometary OH are calculated as a function of the heliocentric velocity of the comet and the velocity distributions of the product atoms are determined. At a distance of 1 AU from the Sun, the lifetimes vary between 1.2×105 and 1.9×105 sec at solar minimum and between 1.0×105 and 1.4×105 sec at solar maximum, depending upon velocity. Continuous absorption into the repulsive 12Σ- state is major destruction path. The calculated lifetimes are generally consistent with the lifetimes inferred from observations, but suggest some elaboration of the models is necessary. Photodissociation of OH produces a low-velocity component of hydrogen atoms at 8 km sec?1 relative to the parent OH molecule and a high-velocity component between 17 and 27 km sec?1. Photodissociation of OH leads to metastable O(1D) and O(1S) and is an additional source of the red and green line emission of atomic oxygen. The lifetime of OD is estimated to be about 4.3× 105 sec at solar minimum and 2.6×105 sec at solar maximum so that the OD/OH ratio in comets is enhanced relative to the HDO/H2O production ratio by a factor between 2 and 3. Photodissociation of OD produces only high-velocity D atoms with a mean value of 17 km sec?1.  相似文献   

10.
Extensive observations of comet 260P/McNaught were carried out between August 2012 and January 2013. The images obtained were used to analyze the comet’s inner coma morphology at resolutions ranging from 250 to about 1000 km/pixel. A deep investigation of the dust features in the inner coma allowed us to identify only a single main active source on the comet’s nucleus, at an estimated latitude of ?50°±15°. A thorough analysis of the appearance and of the motion of the morphological structures, supported by graphic simulations of the geometrical conditions of the observations, allowed us to determine a pole orientation located within a circular spot of a 15°-radius centered at RA=60°, Dec=0°. The rotation of the nucleus seems to occur on a single axis and is not chaotic, furthermore no precession effects could be estimated from our measurements. The comet’s spin axis never reached the plane of the sky from October 2012 to January 2013; during this period it did not change its direction significantly (less than 30°), thus giving us the opportunity to observe mainly structures such as bow-shaped jets departing from the single active source located on the comet’s nucleus. Only during the months of August 2012 and January 2013 the polar axis was directed towards the Earth at an angle of about 45° from the plane of the sky; this made it possible to observe the development of faint structures like fragments of shells or spirals. A possible rotation period of 0.340±0.01 days was estimated by means of differential photometric analysis.  相似文献   

11.
《Planetary and Space Science》1999,47(6-7):735-744
Understanding the power balance at the surface of the nucleus is essential to study the chemical and physical evolution of a comet. Therefore, we present a detailed energy budget analysis for the surface of a model comet in the orbit of 46P/Wirtanen, target comet of the European space craft mission Rosetta, for a variety of parameters and assumptions. We will show that for a fast spinning Jupiter-family comet such as 46P/Wirtanen with a rotation period of about 6 h, a fast rotator approximation underestimates the effective energy input. This yields lower gas fluxes from the surface. For an 100% active, non-dust covered surface we obtain a water gas flux on the order of about 1.5×1028 molecules s−1 at perihelion, assuming a radius of 600 m. The calculated gas flux of water is within the order of measured values for comet 46P/Wirtanen. But our calculated values are maximum gas fluxes at noon—not averaged over one cometary day or taking the lesser insolation at the polar areas into account. Therefore, we conclude that either the radius of comet 46P/Wirtanen may be much larger than the accepted value of 600 m. A radius in the order of 2 km seems more likely to explain the measurements. Or, an other possibility could be that water-ice particles are blown off from the surface like dust particles. This may also increase the effective surface area of sublimation.  相似文献   

12.
The historical documents of ancient Korea contain abundant records on various astronomical phenomena. The historical documents of the Joseon dynasty contain observational values based on Chinese equatorial coordinate system (i.e., angular distances from the reference star of a lunar mansion and the North Pole). However, quantitative analysis of the observational values has not been carried out. In this study, we investigate the observational accuracy during the Joseon dynasty by comparing the astronomical records of Joseonwangjo Sillok (Annals of the Joseon Dynasty) and Seungjeongwon Ilgi (Daily Records of the Royal Secretariat) with modern astronomical calculations. Consequently, we find that the observational accuracy during the early Joseon dynasty was approximately 1°.2 and 0°.3 in the right ascension and declination, respectively. On the other hand, we find that the observational accuracy during the later Joseon dynasty was considerably poor. Observations of Halley's comet in 1759 were off by approximately 7° in declination. We believe that further investigation is required to verify the reason for this poor accuracy. Thus, we list the complete records used for this study in the appendix. We believe that these records also can contribute to modern studies on phenomena such as supernovae or Halley's comet. In conclusion, we believe that this study is useful for understanding ancient Korean astronomical records, even though we have considered a small number of astronomical events (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Comet Bowell (1980b) was observed to pass within 0.25 ± 0.09 arc sec of a star (about 540 km at the comet), where the absorption of starlight by the dust coma was found to be 3% (±1%). The implied optical thickness of 0.03 differs greatly from other determinations and gives a mass of 3 × 1013 g for the coma within 1 × 104 km of the nucleus. Coupled with absolute continuum filter photometry, these results indicate a very low particle albedo consistent with fluffy carbonaceous material. This experiment indicates the need to observe nearly central occulations by several observers to measure the optical thickness profile of a comet. The advantages of using a charge-coupled device area photometer for such observations are discussed.  相似文献   

14.
Zdenek Sekanina 《Icarus》1976,27(1):123-133
A theory of the probability of encounter of the Sun with an interstellar comet at a distance comparable to the Earth-Sun distance is formulated, and a general expression is derived establishing the relationship among the influx rate of interstellar comets, the perihelion distance, the space density of the comets, the Maxwellian distribution of comet velocities in the interstellar cloud, and the cloud's systematic velocity relative to the Sun. The fact that no comet with a strongly hyperbolic orbit has so far been observed is used to determine an upper limit of 6 × 10?4 solar masses per cubic parsec (4 × 10?26 gcm?3) for the space density of interstellar comets. The theoretical distribution of semimajor axes of interstellar comets is derived to show that a strong hyperbolic excess must be present in the orbits of a majority of interstellar comets regardless of the dynamical characteristics of the comet cloud, except when the cloud is moving along with the Sun and the distribution of individual velocities has a very low dispersion. This case, however, implies a possibility of capture by the Sun and thus becomes a problem of an Oort-type cloud.  相似文献   

15.
《Icarus》1986,66(1):154-164
A program that computes gas and dust production rates and idealized nongravitational force components has been developed and applied to the case of Comet Halley. We use a modified form of our earlier comet model (F.P. Fanale and J.R. Salvali[(1984) Icarus 60, 476–511] to which coma effects and a section on nongravitational forces have been added. The possibility of grain cohesion is also included. These models are used together with observations from 1910 and semiempirically derived data to investigate the effects of obliquity and thermal conductivity of the near thermal conductivity of the nucleus on gas and dust production. The results indicate that the thermal conductivity of the nucleus is of the order of 105 ergs/cm-s-°K, which implies that the ice near the surface is in the crystalline form. A general method is presented for calculating the radii of cometary nuclei using theoretically derived and semiempirically derived nongravitational force components. This method is used to calculate possible radii for Comet Halley that depend on the model variation chosen. The method used and the results presented herein should have greater significance and value when the observational data from Halley's current perihelion passage become available.  相似文献   

16.
Sample 14307,30, a gas-rich breccia (Group 1 of Warner, 1972) has been studied by coupling track method and light noble gas isotopic analysis. The breccia is made of a glassy dark matrix with embedded millimeter to sub-millimeter sized angular ligth xenoliths. These ones are breccia fragments of higher grade metamorphic facies (Group ? 2). A lighter strata (~ 0.5 cm thick) intersects the dark matrix. Noble gas analysis have shown the dark matrix (36Ar = 5.4 × 10?4 cc STP/g) to be enriched in solar type gases with respect to the light fractions (36Ar ? 2.2 × 10?4 cc STP/g). Themean value of the bulk ‘exposure age’ for different samplings is 180 ± 20 × 106 yr, as calculated from spallogenic3He,21Ne and126Xe contents, using our data and those of Bogard and Nyquist (1972). After appropriate correction for radiogenic40Ar, the ratio40Arexc/36Artr is about 5. A total of 390 crystals coming from 11 locations either in the dark matrix, the lighter strata or a light xenolith (0.25 cm diam), have been studied by track analysis using optical and scanning electron microscopy. 181 crystals were thoroughly investigated by means of the latter technique. The following results were obtained:
  1. 72 crystals (70-300µm diam) from one location (No. 12) in the matrix show aminimum track density distribution spreading over 3 orders of magnitude (from 2 × 106 up to 2 × 109 cm?2). The spectrum has at its lower edge a well defined peak (~ 50% of total crystal number) around 3 × 106 cm?2). Grains with track density variations over a factor of 3 have a low abundance as compared to average lunar soils. Moreover the mineralogy of this location is peculiar due to its large abundance in orthopyroxenes. Considering the lower edge of the track density distribution amaximum surface residence time of 5 × 106 yr can be set for rock 14307 in itspresent shape;
  2. 11 feldspars (1-15µm diam) and 22 clinopyroxenes (70-130µm) have been studied in the light xenolith. All crystals have minimum track densities larger than 108 cm?2. No spatial variation of track-densities (2.5 ± 0.5 × 109 cm?2) were found in feldspars inside a millimeter-sized polished section. Clearly these tracks were not acquired by an irradiation of the xenolith as an individual entity, but survived its own formation as a breccia of Group 2. Therefore, solar energetic iron particle tracks have not been erased despite a complex mechanical and thermal history involved by two subsequent brecciation processes;
  3. in the 10 other locations, crystals (70-200µm diam) either from the dark matrix or the lighter strata show a significant departure from the pattern observed in lunar soils; namely:
  1. the minimum track density distribution is strongly peaked at high values (~ 1-4 × 109 cm?2) for ~ 95% of the crystals, the remaining ~ 5% having low-values (0.2-1 × 107 cm?2);
  2. the abundance (2%) of crystals with track density variation over a factor of 3 is about one order of magnitude less than in average lunar soils;
  3. the magnitude of track density gradients within single crystals is small. In fact, thelargest track density variation versus depth found can be described by the relation? α D?0.5, in contrast with soil grains which generally exhibit a variation of the form? α D?1.1±0.4.
The above observations imply that the peculiar irradiation characteristics of these fossilized soils are more likely to be attributed to some wide scale process rather than to some accidental or local phenomena. Attempts to account for these findings by present solar VH particle flux and energy distribution (as determined by Crozaz and Walker, 1971; Fleischeret al., 1971b; Priceet al., 1971), current estimates of lunar fine scale erosion, accumulation and turn-over rates, have proven essentially negative. The bulk ‘exposure age’ of the breccia, rather low by lunar soil standards, makes things even worse. For lack of any better explanation, the above observations could be more easily understood by postulating a higher flux (by factors from ~ 10 up to 200) and a harder energy spectrum (at least for particles with rigidity less than 0.3 GV) for the solar cosmic rays at the time the constituents of the breccia were part as loose grains of the lunar regolith.  相似文献   

17.
Abstract— Among the samples returned from comet 81P/Wild 2 by the Stardust spacecraft is a suite of particles from one impact track (Track 25) that are Ca‐, Al‐rich and FeO‐free. We studied three particles from this track that range in size from 5.3 × 3.2 μ to 15 × 10 μ. Scanning and transmission electron microscopy show that they consist of very fine‐grained (typically from ?0.5 to ?2 μ) Al‐rich, Ti‐bearing and Ti‐free clinopyroxene, Mg‐Al spinel and anorthite, with trace amounts of fine perovskite, FeNi metal and osbornite (TiN) grains. In addition to these phases, the terminal particle, named “Inti”, also contains melilite. All of these phases, with the exception of osbornite, are common in refractory inclusions and are predicted to condense at high temperature from a gas of solar composition. Osbornite, though very rare, has also been found in meteoritic refractory inclusions, and could have formed in a region of the nebula where carbon became enriched relative to oxygen compared to solar composition. Compositions of Ti‐pyroxene in Inti are similar, but not identical, to those of fassaite from Allende inclusions. Electron energy loss spectroscopy shows that Ti‐rich pyroxene in Inti has Ti3+/Ti4+within the range of typical meteoritic fassaite, consistent with formation under reducing conditions comparable to those of a system of solar composition. Inti is 16O‐rich, with δ18O?δ17O?‐40%0, like unaltered phases in refractory inclusions and refractory IDPs. With grain sizes, mineralogy, mineral chemistry, and an oxygen isotopic composition like those of refractory inclusions, we conclude that Inti is a refractory inclusion that formed in the inner solar nebula. Identification of a particle that formed in the inner solar system among the comet samples demonstrates that there was transport of materials from the inner to the outer nebula, probably either in a bipolar outflow or by turbulence.  相似文献   

18.
The University of Wisconsin–Madison and NASA–Goddard conducted acomprehensive multi-wavelength observing campaign of coma emissionsfrom comet Hale–Bopp, including OH 3080 Å, [O I] 6300 Å H2O+ 6158 Å, H Balmer-α 6563 Å, NH2 6330 Å, [C I] 9850 ÅCN 3879 Å, C2 5141 Å, C3 4062 Å,C I 1657 Å, and the UV and optical continua. In thiswork, we concentrate on the results of the H2O daughter studies.Our wide-field OH 3080 Å measured flux agrees with other, similarobservations and the expected value calculated from published waterproduction rates using standard H2O and OH photochemistry.However, the total [O I] 6300 Å flux determined spectroscopically overa similar field-of-view was a factor of 3-4 higher than expected.Narrow-band [O I] images show this excess came from beyond theH2O scale length, suggesting either a previously unknown source of[O I] or an error in the standard OH + ν→ O(1 D) + H branching ratio. The Hale–Bopp OH and[O I] distributions, both of which were imaged tocometocentric distances >1 × 106 km, were more spatiallyextended than those of comet Halley (after correcting for brightnessdifferences), suggesting a higher bulk outflow velocity. Evidence ofthe driving mechanism for this outflow is found in the Hα lineprofile, which was narrower than in comet Halley (though likelybecause of opacity effects, not as narrow as predicted by Monte-Carlomodels). This is consistent with greater collisional coupling betweenthe suprathermal H photodissociation products and Hale–Bopp's densecoma. Presumably because of mass loading of the solar wind by ionsand ions by the neutrals, the measured acceleration of H2O+ downthe ion tail was much smaller than in comet Halley. Tailwardextensions in the azimuthal distributions of OH 3080 Å,[O I], and [C I] , as well as a Doppler asymmetry in the[O I] line profile, suggest ion-neutral coupling. While thetailward extension in the OH can be explained by increased neutralacceleration, the [O I] 6300 Å and [C I] 9850 Å emissions show 13%and >200% excesses in this direction (respectively), suggesting anon-negligible contribution from dissociative recombination of CO+and/or electron collisional excitation. Thus, models including theeffects of photo- and collisional chemistry are necessary for the fullinterpretation of these data.  相似文献   

19.
Images of comet Halley's nucleus taken by the HMC camera during the GIOT-TO encounter in 1986 show that a major part of the total dust production is localized in a few active areas which are the sources of gas-dust jets. The global dust distribution in the inner coma is dominated by two main jets roughly directed to the sun. A combination of a 1D thermal nucleus model with an axisymmetric continuum model of the jet outflow was used to investigate the properties of the inner coma. Detailed investigations show that the characteristics of the observed jets can be reproduced by outgassing from free sublimating active areas of a few km in diameter, a dust to gas ratio of 1–2.5 and a size distribution dominated by the larger grains. It is further shown that most of the observational constraints provided by the HMC data can be met simultaneously by a model of three jets superimposed on a weak background.  相似文献   

20.
We performed a series of CCD observations in BVRI bands of a celestial region in cluster M67 (NGC 2682) to study the photometric system of the Kyiv network telescope. The signal recording system consists of a CGE-1400 telescope, Celestron #94175 focal reducer, an automatic turret with a set of UBVRI filters, and a Rolera Mgi CCD camera. The operating field of the system is 10.62′ × 10.62′. CCD images are processed in the MIDAS/ROMAFOT package. The reduction coefficients of the instrumental photometric system relative to Johnson’s BVRI system are determined. The resulted value of the module of distance to cluster M67 V ? M V = 9.63 m does not contradict the results of other researchers. The mean square errors for one determination of stellar magnitude for different bands are 0.02–0.12 m . The errors in determining equatorial coordinates in the TYCHO-2 catalog system are ± 1″.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号