首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Motuo area is located in the east of the Eastern Himalayan Syntaxis. There outcrops a sequence of high-grade metamorphic rocks, such as metapelites. Petrology and mineralogy data suggest that these rocks have experienced three stages of metamorphism. The prograde metamorphic mineral assemblages(M1) are mineral inclusions(biotite + plagioclase + quartz ± sillimanite ± Fe-Ti oxides) preserved in garnet porphyroblasts, and the peak metamorphic assemblages(M2) are represented by garnet with the lowest XSps values and the lowest XFe# ratios and the matrix minerals(plagioclase + quartz ± Kfeldspar + biotite + muscovite + kyanite ± sillimanite), whereas the retrograde assemblages(M3) are composed of biotite + plagioclase + quartz symplectites rimming the garnet porphyroblasts. Thermobarometric computation shows that the metamorphic conditions are 562–714°C at 7.3–7.4 kbar for the M1 stage, 661–800°C at 9.4–11.6 kbar for the M2 stage, and 579–713°C at 5.5–6.6 kbar for the M3 stage. These rocks are deciphered to have undergone metamorphism characterized by clockwise P-T paths involving nearly isothermal decompression(ITD) segments, which is inferred to be related to the collision of the India and Eurasia plates.  相似文献   

2.
High‐P metamorphic rocks that are formed at the onset of oceanic subduction usually record a single cycle of subduction and exhumation along counterclockwise (CCW) P–T paths. Conceptual and thermo‐mechanical models, however, predict multiple burial–exhumation cycles, but direct observations of these from natural rocks are rare. In this study, we provide a new insight into this complexity of subduction channel dynamics from a fragment of Middle‐Late Jurassic Neo‐Tethys in the Nagaland Ophiolite Complex, northeastern India. Based on integrated textural, mineral compositional, metamorphic reaction history and geothermobarometric studies of a medium‐grade amphibolite tectonic unit within a serpentinite mélange, we establish two overprinting metamorphic cycles (M1–M2). These cycles with CCW P–T trajectories are part of a single tectonothermal event. We relate the M1 metamorphic sequence to prograde burial and heating through greenschist and epidote blueschist facies to peak metamorphism, transitional between amphibolite and hornblende‐eclogite facies at 13.8 ± 2.6 kbar, 625 ± 45 °C (error 2σ values) and subsequent cooling and partial exhumation to greenschist facies. The M2 metamorphic cycle reflects epidote blueschist facies prograde re‐burial of the partially exhumed M1 cycle rocks to peak metamorphism at 14.4 ± 2 kbar, 540 ± 35 °C and their final exhumation to greenschist facies along a relatively cooler exhumation path. We interpret the M1 metamorphism as the first evidence for initiation of subduction of the Neo‐Tethys from the eastern segment of the Indus‐Tsangpo suture zone. Reburial and final exhumation during M2 are explained in terms of material transport in a large‐scale convective circulation system in the subduction channel as the latter evolves from a warm nascent to a cold and more mature stage of subduction. This Neo‐Tethys example suggests that multiple burial and exhumation cycles involving the first subducted oceanic crust may be more common than presently known.  相似文献   

3.
Eclogites and related high‐P metamorphic rocks occur in the Zaili Range of the Northern Kyrgyz Tien‐Shan (Tianshan) Mountains, which are located in the south‐western segment of the Central Asian Orogenic Belt. Eclogites are preserved in the cores of garnet amphibolites and amphibolites that occur in the Aktyuz area as boudins and layers (up to 2000 m in length) within country rock gneisses. The textures and mineral chemistry of the Aktyuz eclogites, garnet amphibolites and country rock gneisses record three distinct metamorphic events (M1–M3). In the eclogites, the first MP–HT metamorphic event (M1) of amphibolite/epidote‐amphibolite facies conditions (560–650 °C, 4–10 kbar) is established from relict mineral assemblages of polyphase inclusions in the cores and mantles of garnet, i.e. Mg‐taramite + Fe‐staurolite + paragonite ± oligoclase (An<16) ± hematite. The eclogites also record the second HP‐LT metamorphism (M2) with a prograde stage passing through epidote‐blueschist facies conditions (330–570 °C, 8–16 kbar) to peak metamorphism in the eclogite facies (550–660 °C, 21–23 kbar) and subsequent retrograde metamorphism to epidote‐amphibolite facies conditions (545–565 °C and 10–11 kbar) that defines a clockwise P–T path. thermocalc (average P–T mode) calculations and other geothermobarometers have been applied for the estimation of P–T conditions. M3 is inferred from the garnet amphibolites and country rock gneisses. Garnet amphibolites that underwent this pervasive HP–HT metamorphism after the eclogite facies equilibrium have a peak metamorphic assemblage of garnet and pargasite. The prograde and peak metamorphic conditions of the garnet amphibolites are estimated to be 600–640 °C; 11–12 kbar and 675–735 °C and 14–15 kbar, respectively. Inclusion phases in porphyroblastic plagioclase in the country rock gneisses suggest a prograde stage of the epidote‐amphibolite facies (477 °C and 10 kbar). The peak mineral assemblage of the country rock gneisses of garnet, plagioclase (An11–16), phengite, biotite, quartz and rutile indicate 635–745 °C and 13–15 kbar. The P–T conditions estimated for the prograde, peak and retrograde stages in garnet amphibolite and country rock are similar, implying that the third metamorphic event in the garnet amphibolites was correlated with the metamorphism in the country rock gneisses. The eclogites also show evidence of the third metamorphic event with development of the prograde mineral assemblage pargasite, oligoclase and biotite after the retrograde epidote‐amphibolite facies metamorphism. The three metamorphic events occurred in distinct tectonic settings: (i) metamorphism along the hot hangingwall at the inception of subduction, (ii) subsequent subduction zone metamorphism of the oceanic plate and exhumation, and (iii) continent–continent collision and exhumation of the entire metamorphic sequences. These tectonic processes document the initial stage of closure of a palaeo‐ocean subduction to its completion by continent–continent collision.  相似文献   

4.
The metamorphic rocks of the Ivrea Zone in NW Italy preserve a deep crustal metamorphic field gradient. Application of quantitative phase equilibria methods to metapelitic rocks provides new constraints on the P–T conditions recorded in Val Strona di Omegna, Val Sesia and Val Strona di Postua. In Val Strona di Omegna, the metapelitic rocks show a structural and mineralogical change from mica‐schists with the common assemblage bi–mu–sill–pl–q–ilm ± liq at the lowest grades, through metatexitic migmatites (g–sill–bi–ksp–pl–q–ilm–liq) at intermediate grades, to complex diatexitic migmatites (g–sill–ru–bi–ksp–pl–q–ilm–liq) at the highest grades. Partial melting in the metapelitic rocks is consistent with melting via the breakdown of first muscovite then biotite. The metamorphic field gradient in Val Strona di Omegna is constrained to range from conditions of ~3.5–6.5 kbar at ≈650 °C to ~10–12 kbar at >900 °C. The peak P–T estimates, particularly for granulite facies conditions, are significantly higher than those of most earlier studies. In Val Sesia and Val Strona di Postua, cordierite‐bearing rocks record the effects of contact metamorphism associated with the intrusion of a large mafic body (the Mafic Complex). The contact metamorphism occurred at lower pressures than the regional metamorphic peak and overprints the regional metamorphic assemblages. These relationships are consistent with the intrusion of the Mafic Complex having post dated the regional metamorphism and are inconsistent with a model of magmatic underplating as the cause of granulite facies metamorphism in the region.  相似文献   

5.
The Malpica–Tui Unit (Galicia, NW Spain) records eclogite‐ and blueschist‐facies metamorphism during the onset of the Variscan orogeny in Europe. Petrological analysis involving pseudosections calculated using thermocalc shows that the Upper Sheet of this unit, the Ceán Schists, recorded a three‐stage metamorphic evolution involving (i) Early subduction‐related medium‐pressure/low‐temperature metamorphism (M1) constrained at ~350–380 °C, 12–14 kbar, which is only recorded in the basal part (lower metapelites, LM) of the Ceán Schists. (ii) Subduction‐related blueschist facies prograde metamorphism (M2) going from ~19 kbar, 420 °C to 21 kbar, 460 °C in the LM, and from 16 kbar 430 °C to 21–22 kbar, 520 °C in the structurally upper metapelites (UM). (iii) Exhumation‐related metamorphism (M3) is characterized by a decompression to 8–10 kbar, 470–490 °C in the LM. This decompression is also recorded in the UM, but it was not possible to estimate precise P–T conditions. The calculations indicate that (i) the prograde evolution in subduction zones may occur in fluid‐undersaturated conditions due to the crystallization of lawsonite, even in metapelitic rocks. This significantly influences phase equilibria and hence the P–T estimates. (ii) The proportion of ferric iron also has a strong influence on phase equilibria, even in metapelites. However, the analysed values of Fe2O3 may not reflect the oxidation state during the main metamorphic evolution and are probably easily modified by superficial alteration even in apparently fresh samples. The use of PTX(Fe2O3) pseudosections together with petrographic observations is then necessary to estimate the real oxidation state of the rocks and correctly evaluate the P–T conditions.  相似文献   

6.
Almora Nappe in Uttarakhand, India, is a Lesser Himalayan representative of the Himalayan Metamorphic Belt that was tectonically transported over the Main Central Thrust (MCT) from Higher Himalaya. The Basal Shear zone of Almora Nappe shows complicated structural pattern of polyphase deformation and metamorphism. The rocks exposed along the northern and southern margins of this nappe are highly mylonitized while the degree of mylonitization decreases towards the central part where the rocks eventually grade into unmylonitized metamorphics.Mylonitized rocks near the roof of the Basal Shear zone show dynamic metamorphism (M2) reaching upto greenschist facies (~450 °C/4 kbar). In the central part of nappe the unmylonitized schists and gneisses are affected by regional metamorphism (M1) reaching upper amphibolite facies (~4.0–7.9 kbar and ~500–709 °C). Four zones of regional metamorphism progressing from chlorite–biotite to sillimanite–K-feldspar zone demarcated by specific reaction isograds have been identified. These metamorphic zones show a repetition suggesting that the zones are involved in tight F2 – folding which has affected the metamorphics. South of the Almora town, the regionally metamorphosed rocks have been intruded by Almora Granite (560 ± 20 Ma) resulting in contact metamorphism. The contact metamorphic signatures overprint the regional S2 foliation. It is inferred that the dominant regional metamorphism in Almora Nappe is highly likely to be of pre-Himalayan (Precambrian!) age.  相似文献   

7.
During the Late Palaeozoic Variscan Orogeny, Cambro‐Ordovician and/or Neoproterozoic metasedimentary rocks of the Albera Massif (Eastern Pyrenees) were subject to low‐pressure/high‐temperature (LPHT) regional metamorphism, with the development of a sequence of prograde metamorphic zones (chlorite‐muscovite, biotite, andalusite‐cordierite, sillimanite and migmatite). LPHT metamorphism and magmatism occurred in a broadly compressional tectonic regime, which started with a phase of southward thrusting (D1) and ended with a wrench‐dominated dextral transpressional event (D2). D1 occurred under prograde metamorphic conditions. D2 started before the P–T metamorphic climax and continued during and after the metamorphic peak, and was associated with igneous activity. P–T estimates show that rocks from the biotite‐in isograd reached peak‐metamorphic conditions of 2.5 kbar, 400 °C; rocks in the low‐grade part of the andalusite‐cordierite zone reached peak metamorphic conditions of 2.8 kbar, 535 °C; rocks located at the transition between andalusite‐cordierite zone and the sillimanite zone reached peak metamorphic conditions of 3.3 kbar, 625 °C; rocks located at the beginning of the anatectic domain reached peak metamorphic conditions of 3.5 kbar, 655 °C; and rocks located at the bottom of the metamorphic series of the massif reached peak metamorphic conditions of 4.5 kbar, 730 °C. A clockwise P–T trajectory is inferred using a combination of reaction microstructures with appropriate P–T pseudosections. It is proposed that heat from asthenospheric material that rose to shallow mantle levels provided the ultimate heat source for the LPHT metamorphism and extensive lower crustal melting, generating various types of granitoid magmas. This thermal pulse occurred during an episode of transpression, and is interpreted to reflect breakoff of the underlying, downwarped mantle lithosphere during the final stages of oblique continental collision.  相似文献   

8.
The Fuping Complex and the adjoining Wutai and Hengshan Complexes are located in the central zone of the North China craton. The dominant rock types in the Fuping Complex are high‐grade tonalitic–trondhjemitic–granodioritic (TTG) gneisses, with minor amounts of mafic granulites, syntectonic granitic rocks and supracrustal rocks. The petrological evidence from the mafic granulites indicates three stages of metamorphic evolution. The M1 stage is represented by garnet porphyroblasts and matrix plagioclase, quartz, orthopyroxene, clinopyroxene and hornblende. Orthopyroxene+plagioclase symplectites and clinopyroxene+plagioclase±orthopyroxene coronas formed in response to decompression during M2 following the peak metamorphism at M1. Hornblende+plagioclase symplectites formed as a result of further isobaric cooling and retrograde metamorphism during M3. The P–T estimates using TWQ thermobarometry are: 900–950 °C and 8.0–8.5 kbar for the peak assemblage (M1), based on the core compositions of garnet, matrix pyroxene and plagioclase; 700–800 °C and 6.0–7.0 kbar for the pyroxene+plagioclase symplectites or coronas (M2); and 550–650 °C and 5.3–6.3 kbar for the hornblende+plagioclase symplectites (M3), based on garnet rim and corresponding symplectic mineral compositions. These P–T estimates define a clockwise P–T path involving near‐isothermal decompression for the Fuping Complex, similar to the P–T path estimated for the metapelitic gneisses. The inferred P–T path suggests that the Fuping Complex underwent initial crustal thickening, subsequent exhumation, and finally cooling and retrogression. This tectonothermal path is similar to P–T paths inferred for the Wutai and Hengshan Complexes and other tectonic units in the central zone of the North China craton, but different from anti‐clockwise P–T paths estimated for the basement rocks in the eastern and western zones of the craton. Based on lithological, structural, metamorphic and geochronological data, the eastern and western zones of the craton are considered to represent two different Archean to Paleoproterozoic continental blocks that amalgamated along the central zone at the end of Paleoproterozoic. The P–T paths of the Fuping Complex and other tectonic units in the central zone record the collision between the eastern and western zones that led to the final assembly of the North China craton at c. 1800 Ma.  相似文献   

9.
The evolution of the mineral assemblages and P–T conditions during partial melting of upper‐amphibolite facies paragneisses in the Orue Unit, Epupa Complex, NW Namibia, is modelled with calculated P–T–X phase diagrams in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O system. The close concordance of predictions from the phase diagrams to petrographic observations and thermobarometric results documents that quantitative phase diagrams are suitable to explain the phase relationships in migmatitic upper‐amphibolite facies low‐ and medium‐pressure metapelites, which occur in many high‐grade metamorphic terranes worldwide. Different mineral assemblages in the migmatitic metapelites of the Orue Unit reflect regional discrepancies in the metamorphic grade: in a Northern Zone, early biotite–sillimanite–quartz assemblages were replaced via melt‐producing reactions by cordierite‐bearing assemblages. In a Southern Zone, they were replaced via melt‐producing reactions by garnet‐bearing assemblages while cordierite is restricted to rare metapelitic granofelses, which preserve Grt–Sil–Crd–Bt peak assemblages. Peak‐metamorphic conditions of 700–750 °C at 5.5–6.7 kbar in the Southern Zone and of ~750 °C at 4.5 kbar in the Northern Zone are estimated by integrating thermobarometric calculations with data from calculated mineral composition isopleths. Retrograde back‐reactions between restite and crystallizing melt are recorded by the replacement of garnet by biotite–sillimanite and/or biotite–muscovite intergrowths. Upper‐amphibolite facies metamorphism and partial melting (c. 1340–1320 Ma) in the rocks of the Southern Zone of the Orue Unit, which underwent probably near‐isobaric heating–cooling paths, are attributed to contact metamorphism induced by the coeval (c. 1385–1319 Ma) emplacement of the Kunene Intrusive Complex, a huge massif‐type anorthosite body. The lower‐pressure metapelites of the Northern Zone are interpreted to record contact metamorphism at an upper crustal level.  相似文献   

10.
The Bajgan Complex, one of the basement constituents of the arc massif in Iranian Makran forms a rugged, deeply incised terrain. The complex consists of pelitic schists with minor psammitic and basic schists, calc silicate rocks, amphibolites, marbles, metavolcanosediments, mafic and felsic intrusives as well as ultramafic rocks. Metapelitic rocks show an amphibolite facies regional metamorphism and contain garnet, biotite, white mica, quartz, albite ± rutile ± apatite. Thermobarometry of garnet schist yields pressure of more than 9 kbar and temperatures between 560 and 675 °C. The geothermal gradient obtained for the peak of regional metamorphism is 19 °C/km, corresponding to a depth of ca. 31 km. Replacement of garnet by chlorite and epidote suggest greenschist facies metamorphism due to a decrease in temperature and pressure through exhumation and retrograde metamorphism (370–450 °C and 3–6 kbar). The metapelitic rocks followed a ‘clockwise’ P–T path during metamorphism, consistent with thermal decline following tectonic thickening. The formation of medium-pressure metamorphic rocks is related to presence of active subduction of the Neotethys Oceanic lithosphere beneath Eurasia in the Makran.  相似文献   

11.
Monazite is a key accessory mineral for metamorphic geochronology, but interpretation of its complex chemical and age zoning acquired during high-temperature metamorphism and anatexis remains a challenge. We investigate the petrology, pressure–temperature and timing of metamorphism in pelitic and psammitic granulites that contain monazite from the Greater Himalayan Crystalline Complex (GHC) in Dinggye, southern Tibet. These rocks underwent isothermal decompression from pressure of >10 kbar to ~5 kbar at temperatures of 750–830 °C, and recorded three metamorphic stages at kyanite (M1), sillimanite (M2) and cordierite-spinel grade (M3). Monazite and zircon crystals were dated by microbeam techniques either as grain separates or in thin sections. U–Th–Pb ages are linked to specific conditions of mineral growth on the basis of zoning patterns, trace element signatures, index mineral inclusions (melt inclusions, sillimanite and K-feldspar) in dated domains and textural relationships with co-existing minerals. The results show that inherited domains (500–400 Ma) are preserved in monazite even at granulite-facies conditions. Few monazites or zircon yield ages related to the M1-stage (~30–29 Ma), possibly corresponding to prograde melting by muscovite dehydration. During the early stage of isothermal decompression, inherited or prograde monazites in most samples were dissolved in the melt produced by biotite dehydration-melting. Most monazite grains crystallized from melt toward the end of decompression (M3-stage, 21–19 Ma) and are chemically related to garnet breakdown reactions. Another peak of monazite growth occurred at final melt crystallization (~15 Ma), and these monazite grains are unzoned and are homogeneous in composition. In a regional context, our pressure–temperature–time data constrains peak high-pressure metamorphism within the GHC to ~30–29 Ma in Dinggye Himalaya. Our results are in line with a melt-assisted exhumation of the GHC rocks.  相似文献   

12.
Reports of shoshonitic rocks in Precambrian terrains are relatively rare. Pl-Grt amphibolites and Hbl-Bt mafic granulites occurring in the migmatitic gneisses of the Chhotanagpur Gneissic Complex(CGC) show calc-alkaline and shoshonitic characteristics. Relict porphyritic, sub-ophitic and poikilitic textures are noted in these rocks. Their parent magma was emplaced during the waning phase of the regional metamorphism. Geochemically, these metamafics are similar to the Group Ⅲ potassic and ultrapo...  相似文献   

13.
The Qinling‐Tongbai‐Dabie‐Sulu orogenic belt comprises a Palaeozoic accretion‐dominated system in the north and a Mesozoic collision‐dominated system in the south. A combined petrological and geochronological study of the medium‐to‐high grade metamorphic rocks from the diverse Palaeozoic tectonic units in the Tongbai orogen was undertaken to help elucidate the origins of Triassic ultrahigh‐pressure metamorphism and collision dynamics between the Sino‐Korean and Yangtze cratons. Peak metamorphic conditions are 570–610 °C and 9.3–11.2 kbar for the lower unit of the Kuanping Group, 630–650 °C and 6.6–8.9 kbar for the upper unit of the Kuanping Group, 550–600 °C and 6.3–7.7 kbar for the Erlangping Group, 770–830 °C and 6.9–8.5 kbar for the Qinling Group and 660–720 °C and 9.1–11.5 kbar for the Guishan complex. Reaction textures and garnet compositions indicate clockwise P–T paths for the amphibolite facies rocks of the Kuanping Group and Guishan complex, and an anticlockwise P–T path for the granulite facies rocks of the Qinling Group. Sensitive high‐resolution ion microprobe U–Pb zircon dating on metamorphic rocks and deformed granite/pegmatites revealed two major Palaeozoic tectonometamorphic events. (i) During the Silurian‐Devonian (c. 440–400 Ma), the Qinling continental arc and Erlangping intra‐oceanic arc collided with the Sino‐Korean craton. The emplacement of the Huanggang diorite complex resulted in an inverted thermal gradient in the underlying Kuanping Group and subsequent thermal relaxation during the exhumation. Meanwhile, the oceanic subduction beneath the Qinling continental arc produced magmatic underplating and intrusion, leading to granulite facies metamorphism followed by a near‐isobaric cooling path. (ii) During the Carboniferous (c. 340–310 Ma), the northward subduction of the Palaeo‐Tethyan ocean generated a medium P/T Guishan complex in the hangingwall and a high P/T Xiongdian eclogite belt in the footwall. The Guishan complex and Xiongdian eclogite belt are therefore considered to be paired metamorphic belts. Subsequent separation of the paired belts is inferred to be related to the juxtaposition of the Carboniferous eclogites with the Triassic HP metamorphic complex during continental subduction and exhumation.  相似文献   

14.
The Fosdick migmatite–granite complex in West Antarctica records evidence for two high‐temperature metamorphic events, the first during the Devonian–Carboniferous and the second during the Cretaceous. The conditions of each high‐temperature metamorphic event, both of which involved melting and multiple melt‐loss events, are investigated using phase equilibria modelling during successive melt‐loss events, microstructural observations and mineral chemistry. In situ SHRIMP monazite and TIMS Sm–Nd garnet ages are integrated with these results to constrain the timing of the two events. In areas that preferentially preserve the Devonian–Carboniferous (M1) event, monazite grains in leucosomes and core domains of monazite inclusions in Cretaceous cordierite yield an age of c. 346 Ma, which is interpreted to record the timing of monazite growth during peak M1 metamorphism (~820–870 °C, 7.5–11.5 kbar) and the formation of garnet–sillimanite–biotite–melt‐bearing assemblages. Slightly younger monazite spot ages between c. 331 and 314 Ma are identified from grains located in fractured garnet porphyroblasts, and from inclusions in plagioclase that surround relict garnet and in matrix biotite. These ages record the growth of monazite during garnet breakdown associated with cooling from peak M1 conditions. The Cretaceous (M2) overprint is recorded in compositionally homogeneous monazite grains and rim domains in zoned monazite grains. This monazite yields a protracted range of spot ages with a dominant population between c. 111 and 96 Ma. Rim domains of monazite inclusions in cordierite surrounding garnet and in coarse‐grained poikiloblasts of cordierite yield a weighted mean age of c. 102 Ma, interpreted to constrain the age of cordierite growth. TIMS Sm–Nd ages for garnet are similar at 102–99 Ma. Mineral equilibria modelling of the residual protolith composition after Carboniferous melt loss and removal of inert M1 garnet constrains M2 conditions to ~830–870 °C and ~6–7.5 kbar. The modelling results suggest that there was growth and resorption of garnet during the M2 event, which would facilitate overprinting of M1 compositions during the M2 prograde metamorphism. Measured garnet compositions and Sm–Nd diffusion modelling of garnet in the migmatitic gneisses suggest resetting of major elements and the Sm–Nd system during the Cretaceous M1 overprint. The c. 102–99 Ma garnet Sm–Nd ‘closure’ ages correspond to cooling below 700 °C during the rapid exhumation of the Fosdick migmatite–granite complex.  相似文献   

15.
The Makran accretionary prism in SE Iran and SW Pakistan is one of the most extensive subduction accretions on Earth. It is characterized by intense folding, thrust faulting and dislocation of the Cenozoic units that consist of sedimentary, igneous and metamorphic rocks. Rock units forming the northern Makran ophiolites are amalgamated as a mélange. Metamorphic rocks, including greenschist, amphibolite and blueschist, resulted from metamorphism of mafic rocks and serpentinites. In spite of the geodynamic significance of blueschist in this area, it has been rarely studied. Peak metamorphic phases of the northern Makran mafic blueschist in the Iranshahr area are glaucophane, phengite, quartz±omphacite+epidote. Post peak minerals are chlorite, albite and calcic amphibole. Blueschist facies metasedimentary rocks contain garnet, phengite, albite and epidote in the matrix and as inclusions in glaucophane. The calculated P–T pseudosection for a representative metabasic glaucophane schist yields peak pressure and temperature of 11.5–15 kbar at 400–510 °C. These rocks experienced retrograde metamorphism from blueschist to greenschist facies (350–450 °C and 7–8 kbar) during exhumation. A back arc basin was formed due to northward subduction of Neotethys under Eurasia (Lut block). Exhumation of the high‐pressure metamorphic rocks in northern Makran occurred contemporarily with subduction. Several reverse faults played an important role in exhumation of the ophiolitic and HP‐LT rocks. The presence of serpentinite shows the possible role of a serpentinite diapir for exhumation of the blueschist. A tectonic model is proposed here for metamorphism and exhumation of oceanic crust and accretionary sedimentary rocks of the Makran area. Vast accretion of subducted materials caused southward migration of the shore.  相似文献   

16.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

17.
Mineral assemblages in Al2O3‐rich, SiO2‐ and K2O‐poor metapelitic rocks from the western Odenwald Crystalline Complex (Variscan Mid‐German Crystalline Rise, southern Germany) include corundum, spinel, cordierite, sillimanite, garnet and staurolite. Quartz is absent from almost all samples. Therefore, the applicability of conventional geothermobarometry is very limited or even impossible. Detailed petrographic investigation on selected samples permits inference of the sequence of appearance and disappearance of several mineral assemblages. The recognition of such partial re‐equilibration stages and their associated mineral assemblages, together with mineral stabilities predicted from KFMASH pseudosections, enables the determination of the pressure‐temperature (P–T) trajectories experienced by these rocks during the Variscan metamorphism. The rocks were metamorphosed under low‐P/high‐T conditions and underwent an anti‐clockwise P–T evolution. A pressure increase from about 2 kbar to 4 ± 0.5 kbar was accompanied by heating. Peak metamorphic conditions were reached at pressures of 4 ± 0.5 kbar and temperatures of at least 640 °C, probably even higher. The retrograde evolution is characterised by near‐isobaric cooling from ≥ 640 °C to approximately 550 °C. The rocks underwent the anti‐clockwise evolution in a subduction‐related magmatic arc setting. The close spatial association of the low‐P/high‐T rocks with recently discovered metabasic eclogites in the eastern part of the Odenwald Crystalline Complex may indicate a fossil paired metamorphic belt in the Central European Variscides.  相似文献   

18.
ABSTRACT The high-grade rocks (metapelite, quartzite, metagabbro) of the Hisøy-Torungen area represent the south-westernmost exposures of granulites in the Proterozoic Bamble sector, south Norway. The area is isoclinally folded and a metamorphic P–T–t path through four successive stages (M1-M4) is recognized. Petrological evidence for a prograde metamorphic event (M1) is obtained from relict staurolite + chlorite + albite, staurolite + hercynite + ilmenite, cordierite + sillimanite, fine-grained felsic material + quartz and hercynite + biotite ± sillimanite within metapelitic garnet. The phase relations are consistent with a pressure of 3.6 ± 0.5 kbar and temperatures up to 750–850°C. M1 is connected to the thermal effect of the gabbroic intrusions prior to the main (M2) Sveconorwegian granulite facies metamorphism. The main M2 granulite facies mineral assemblages (quartz+ plagioclase + K-feldspar + garnet + biotite ± sillimanite) are best preserved in the several-metre-wide Al-rich metapelites, which represent conditions of 5.9–9.1 kbar and 790–884°C. These P–T conditions are consistent with a temperature increase of 80–100°C relative to the adjacent amphibolite facies terranes. No accompanying pressure variations are recorded. Up to 1-mm-wide fine-grained felsic veinlets appear in several units and represent remnants of a former melt formed by the reaction: Bt + Sil + Qtz→Grt + lq. This dehydration reaction, together with the absence of large-scale migmatites in the area, suggests a very reduced water activity in the rocks and XH2O = 0.25 in the C–O–H fluid system was calculated for a metapelitic unit. A low but variable water activity can best explain the presence or absence of fine-grained felsic material representing a former melt in the different granulitic metapelites. The strongly peraluminous composition of the felsic veinlets is due to the reaction: Grt +former melt ± Sil→Crd + Bt ± Qtz + H2O, which has given poorly crystalline cordierite aggregates intergrown with well-crystalline biotite. The cordierite- and biotite-producing reaction constrains a steep first-stage retrograde (relative to M2) uplift path. Decimetre- to metre-wide, strongly banded metapelites (quartz + plagioclase + biotite + garnet ± sillimanite) inter-layered with quartzites are retrograded to (M3) amphibolite facies assemblages. A P–T estimate of 1.7–5.6 kbar, 516–581°C is obtained from geothermobarometry based on rim-rim analyses of garnet–biotite–plagioclase–sillimanite–quartz assemblages, and can be related to the isoclinal folding of the rocks. M4 greenschist facies conditions are most extensively developed in millimetre-wide chlorite-rich, calcite-bearing veins cutting the foliation.  相似文献   

19.
The Rogaland-Vest Agder Sector of southwestern Norway comprises high-grade metamorphic rocks intruded by voluminous plutonic bodies that include the ~1000 km~2 Rogaland Igneous Complex(RIC).New petrographic observations and thermodynamic phase equilibria modelling of three metapelitic samples collected at various distances(30 km,10 km and ~ 10 m) from one of the main bodies of RIC anorthosite were undertaken to assess two alternative P-T-t models for the metamorphic evolution of the area.The results are consistent with a revised two-phase evolution.Regional metamorphism followed a clockwise P-T path reaching peak conditions of ~ 850-950 ℃ and ~7-8 kbar at ~1035 Ma followed by high-temperature decompression to ~5 kbar at ~950 Ma,and resulted in extensive anatexis and melt loss to produce highly residual rocks.Subsequent emplacement of the RIC at ~930 Ma caused regional-scale contact metamorphism that affected country rocks 10 km or more from their contact with the anorthosite.This thermal overprint is expressed in the sample proximal to the anorthosite by replacement of sillimanite by coarse intergrowths of cordierite plus spinel and growth of a second generation of garnet,and in the intermediate(10 km) sample by replacement of sapphirine by coarse intergrowths of cordierite,spinel and biotite.The formation of late biotite in the intermediate sample may suggest the rocks retained small quantities of melt produced by regional metamorphism and remained at temperatures above the solidus for up to 100 Ma.Our results are more consistent with an accretionary rather than a collisional model for the Sveconorwegian Orogen.  相似文献   

20.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号