首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highly siderophile elements (HSE) pose a challenge for planetary geochemistry. They are normally strongly partitioned into metal relative to silicate. Consequently, planetary core segregation might be expected to essentially quantitatively remove these elements from planetary mantles. Yet the abundances of these elements estimated for Earth's primitive upper mantle (PUM) and the martian mantle are broadly similar, and only about 200 times lower than those of chondritic meteorites. In contrast, although problematic to estimate, abundances in the lunar mantle may be more than twenty times lower than in the terrestrial PUM. The generally chondritic Os isotopic compositions estimated for the terrestrial, lunar and martian mantles require that their long-term Re/Os ratios were within the range of chondritic meteorites. Further, most HSE in the terrestrial PUM also appear to be present in chondritic relative abundances, although Ru/Ir and Pd/Ir ratios are slightly suprachondritic. Similarly suprachondritic Ru/Ir and Pd/Ir ratios have also been reported for some lunar impact melt breccias that were created via large basin forming events.Numerous hypotheses have been proposed to account for the HSE present in Earth's mantle. These hypotheses include inefficient core formation, lowered metal-silicate D values resulting from metal segregation at elevated temperatures and pressures (as may occur at the base of a deep magma ocean), and late accretion of materials with chondritic bulk compositions after the cessation of core segregation. Synthesis of the large database now available for HSE in the terrestrial mantle, lunar samples, and martian meteorites reveals that each of the main hypotheses has flaws. Most difficult to explain is the similarity between HSE in the Earth's PUM and estimates for the martian mantle, coupled with the striking differences between the PUM and estimates for the lunar mantle. More complex, hybrid models that may include aspects of inefficient core formation, HSE partitioning at elevated temperatures and pressures, and late accretion may ultimately be necessary to account for all of the observed HSE characteristics. Participation of aspects of each process may not be surprising as it is difficult to envision the growth of a planet, like Earth, without the involvement of each.  相似文献   

2.
The Tagish Lake meteorite is a primitive C2 chondrite that has undergone aqueous alteration shortly after formation of its parent body. Previous work indicates that if this type of material was part of a late veneer during terrestrial planetary accretion, it could provide a link between atmophile elements such as H, C, N and noble gases, and highly siderophile element replenishment in the bulk silicate portions of terrestrial planets following core formation. The systematic Re-Os isotope and highly siderophile element measurements performed here on five separate fractions indicate that while Tagish Lake has amongst the highest Ru/Ir (1.63 ± 0.08), Pd/Ir (1.19 ± 0.06) and 187Os/188Os (0.12564-0.12802) of all carbonaceous chondrites, these characteristics still fall short of those necessary to explain the observed siderophile element systematics of the primitive upper mantles of Earth and Mars. Hence, a direct link between atmophile and highly siderophile elements remains elusive, and other sources for replenishment are required, unless an as yet poorly constrained process fractionated Re/Os, Ru/Ir, and Pd/Ir following late accretion on both the Earth and Mars mantles.The unique elevated Ru/Ir combined with elevated 187Os/188Os of Tagish Lake may be attributed to Ru and Re mobility during aqueous alteration very early in its parent body history. The Os, Ir, Pt, and Pd abundances of Tagish Lake are similar to CI chondrites. The elevated Ru/Ir and the higher Re/Os and consequent 187Os/188Os in Tagish Lake, are balanced by a lower Ru/Ir and lower Re/Os and 187Os/188Os in CM-chondrites, relative to CI chondrites. A model that links Tagish Lake with CI and CM chondrites in the same parent body may explain the observed systematics. In this scenario, CM chondrite material comprises the exterior, grading downward to Tagish Lake material, which grades to CI material in the interior of the parent body. Aqueous alteration intensifies towards the interior with increasing temperature. Ruthenium and Re are mobilized from the CM layer into the Tagish Lake layer. This model may thus provide a potential direct parent body relationship between three separate groups of carbonaceous chondrites.  相似文献   

3.
The concentrations of Rh, Au and other highly siderophile elements (HSE: Re, Os, Ir, Ru, Pt, Rh, Pd and Au), and 187Os/188Os isotope ratios have been determined for samples from peridotite massifs and xenoliths in order to further constrain HSE abundances in the Earth's mantle and to place constraints on the distributions processes accounting for observed HSE variations between fertile and depleted mantle lithologies. Concentrations of Re, Os, Ir, Ru, Pt and Pd were determined by isotope dilution ICP-MS and N-TIMS. The monoisotopic elements Rh and Au were quantified by standardization relative to the concentrations of Ru and Ir, respectively, and were determined from the same digestion aliquot as other HSE. The measurement precision of the concentration data under intermediate precision conditions, as inferred from repeated analyses of 2 g test portions of powdered samples, is estimated to be better than 10% for Rh and better than 15% for Au (1 s).Fertile lherzolites display non-systematic variation of Rh concentrations and constant Rh/Ir of 0.34 ± 0.03 (1 s, n = 57), indicating a Rh abundance for the primitive mantle of 1.2 ± 0.2 ng/g. The data also suggest that Rh behaves as a compatible element during low to moderate degrees of partial melting in the mantle or melt–mantle interaction, but may be depleted at higher degrees of melting. In contrast, Au concentrations and Au/Ir correlate with peridotite fertility, indicating incompatible behaviour of Au during magmatic processes in the mantle. Fertile lherzolites display Au/Ir ranging from 0.20 to 0.65, whereas residual harzburgites have Au/Ir < 0.20. Concentrations of Au and Re are correlated with each other and suggest similar compatibility of both elements. The primitive mantle abundance of Au calculated from correlations displayed by Au/Ir with Al2O3 and Au with Re is 1.7 ± 0.5 ng/g (1 s).The depletion of Pt, Pd, Re and Au relative to Os, Ir, Ru and Rh displayed by residual harzburgites, suggests HSE fractionation during partial melting. However, the HSE abundance variations of fertile and depleted peridotites cannot be explained by a simple fractionation process. Correlations displayed by Pd/Ir, Re/Ir and Au/Ir with Al2O3 may reflect refertilization of previously melt depleted mantle rocks due to reactive infiltration of silicate melts.Relative concentrations of Rh and Au inferred for the primitive mantle model composition are similar to values of ordinary and enstatite chondrites, but distinct from carbonaceous chondrites. The HSE pattern of the primitive mantle is inconsistent with compositions of known chondrite groups. The primitive mantle composition may be explained by late accretion of a mixture of chondritic with slightly suprachondritic materials, or alternatively, by meteoritic materials mixed into mantle with a HSE signature inherited from core formation.  相似文献   

4.
The largest occurrence of natural metallic iron on Earth is on the island of Disko, Greenland. Metallic iron is found there in a variety of different types, from small metal particles in basalts to large meter-sized blocks. We have studied three different types of metallic iron: small metal spherules (< 300 m) in basaltic magma; larger metal grains (300 m-3 mm), often composed of aggregates of smaller particles, in similar host rocks; and massive iron lumps (up to several tons). Analytical data for 13 siderophile elements in samples from these three types are presented. All metals analysed have a distinctly crustal pattern of siderophile elements. High Co/Ni, Re/Ir or W/Ir ratios clearly demonstrate that a meteoritic origin for the metallic iron must be excluded. Since the Co/Ni and Re/Ir ratios are approximately chondritic in the upper mantle of the Earth, a mantle origin for the Disko metals can also be ruled out. This supports earlier petrological and geological evidence that the metallic iron was formed through reduction of basaltic magma by carbon derived from Tertiary shales and coals. Significant differences in absolute and relative abundances of siderophile elements occur among the three kinds of metals. The strongly siderophile elements (e.g. Ir, Re, Ni) increase in concentration from the small metal spherules through the larger grains to the massive iron lumps. The contents of less strongly siderophile elements (P, W, Ga) decrease in the same sequence. Evidence is presented that the small metal spherules are formed by in situ reduction. Larger iron metal grains and massive iron lumps are composed of small spherules, accumulated by gravitational settling in a magma reservoir. These metal cumulates have extracted highly siderophile elements from a larger volume of basaltic melt.Part of a Ph.D. thesis by W. Klöck  相似文献   

5.
New bulk-compositional data, including trace siderophile elements such as Ir, Os, Au, and Ni, are presented for 25 ureilites. Without exception, ureilites have siderophile abundances too high to plausibly have formed as cumulates. Ureilites undoubtedly underwent a variety of “smelting,” by which C was oxidized to CO gas while olivine FeO was reduced to Fe-metal. However, pressure-buffered equilibrium smelting is not a plausible model for engendering the wide range (75-96 mol%) of mafic-silicate core mg among ureilites. The smelting reaction produces too much CO gas. Even supposing a disequilibrium process with the smelt-gas leaking out of the mantle, none of the ureilites, least of all the ureilite with the most “reduced” (highest) olivine-core mg (ALH84136), has the high Fe-metal abundance predicted by the smelted-cores model. In principle, the Fe-metal generated by smelting could have been subsequently lost, but siderophile data show that ureilites never underwent efficient depletion of Fe-metal. Ureilites display strong correlations among siderophile ratios such as Au/Ir, Ni/Ir, Co/Ir, As/Ir, Se/Ir, and Sb/Ir. Ureilite siderophile depletion patterns loosely resemble siderophile fractionations, presumably nebular in origin, among carbonaceous chondrites. However, Zn, for an element of moderate volatility, is anomalously high in ureilites. A tight correlation between Au and Ni extrapolates to the low-Ni/Au side of the compositional range of carbonaceous chondrites. From this mismatch, mild but nonetheless significant depletions of refractory siderophile elements such as Ir and Os, and moderate depletions of strongly siderophile, weakly chalcophile elements such as Ni and Au, we infer that the ureilite siderophile fractionations are largely the result of a non-nebular process, i.e., removal of S-rich metallic melt, possibly with minor entrainment of Fe-metal. Several lines of trace-element evidence indicate that melt porosity during ureilite anatexis was at least moderate. The ureilite pattern of very mild depletions of extremely siderophile elements, but much deeper depletions of moderately siderophile, chalcophile elements, suggests that asteroidal core formation probably occurs in two discrete stages. In general, separation of a considerable proportion (several wt%) of S-rich metallic melt probably occurs long before, and at a far lower temperature than, separation of the remaining S-poor Fe-metal. Apart from the Fe-metal itself, only extremely siderophile elements wait until the second stage to sequester mainly into the core.  相似文献   

6.
Seven well-documented and fresh glassy selvages from ocean floor basalt pillows were analyzed by radiochemical neutron activation analysis for Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Ni, Os, Pd, Rb, Re, Sb, Se, Te, Tl, U and Zn. The samples came from active spreading centers in the Indian and Atlantic Ocean. Glasses from DSDP Leg 24, site 238 (Indian Ocean) have a somewhat peculiar trace element pattern, but this is thought to reflect secondary processes operating at shallow depth, not an anomalous source region in the mantle. Our data rather indicate that heterogeneities in the mantle are confined to the highly incompatible lithophile elements.Chemical fractionations during petrogenesis of tholeiitic basalts are discussed in the light of literature data for primitive peridotitic upper mantle nodules. (Ir, Os), Au, Pd, Ni and Re are strongly fractionated from each other in igneous processes; the unfractionated chondritic mantle pattern thus imposes firm constraints on mantle evolution models. The potentially chalcophile elements Ag, Cd, In and Zn do not behave differently from lithophile elements of the same valency and comparable ionic radius. Residual sulfides are not abundant enough to efficiently control the partitioning of these elements during basalt petrogenesis. However, the poor coherence of Tl to Rb and U in ocean floor basalts could point to retention of Tl by residual sulfides during depletion of the MORB source regions. Sb is strongly depleted in the source regions of ocean ridge basalts; most likely, it was present as a highly incompatible Sb5+ cation. The limited Rb/Cs fractionation in oceanic tholeiites, as opposed to continental tholeiites and acidic rocks, appears to reflect the low abundance of volatile constituents and hydrous silicates in normal ocean ridge basalts.  相似文献   

7.
The highly siderophile elements (HSE's: Ru, Rh, Pd, Re, Os, Ir, Pt and Au) and those elements with distribution coefficients between Fe-rich metal and silicate phases which exceed 104. The large magnitude of these distribution coefficients makes them exceedingly difficult to measure experimentally. We describe a new experimental campaign aimed at obtaining reliable values of DMmets/sil melt for selected HSE's indirectly, by measuring the solubilities of the pure metals (or simple HSE alloys) in haplobasaltic melts as a function of oxygen fugacity.

Preliminary results for Pd, Au, Ir and Re indicate that the HSE's may dissolve in silicate melts in unusually low valence states, e.g., 2+ for Ir and 1+ for the others. These unusual valence states may be important in understanding the geochemical properties of the HSE's. Inferred values of DMmet/sil melt from the solubility data at 1400°C and IW −1 are 107 for Pd and Au, and 109−1012 for Ir. Metal/silicate partition coefficients are thus confirmed to be very large, and are also different for the different HSE's.

A review of the abundance of the HSE's in the Earth's upper mantle shows that they are all present at 0.8% of chondritic, i.e. they have the same relative abundance, and the ratios of their concentrations are chondritic (e.g., Re/Os). Both the low degree of depletion (compared to the high values of DMmet/sil melt) and the chondritic relative abundances support the idea that the mantle's HSE's were added in a “late veneer” after the cessation of core formation. Sulfur is even more depleted in the mantle relative to CI chondrites than the HSE's: this implies a late veneer which was depleted in volatile elements, and which was added to a mantle stripped of S. Since considerable S dissolves in silicate melt, this further implies that core formation in the Earth either occurred under P−T conditions below the solicate solidus, or, if the process occurred over a range of temperatures in a cooling Earth, then the process continued down to conditions below the silicate solidus.

The chondritic relative abundances of the HSE's in the upper mantle argue for a chemically unstratified primitive mantle, unless the late veneer was mixed only into the upper mantle.  相似文献   


8.
《Geochimica et cosmochimica acta》1999,63(11-12):1865-1875
Noble metals, Mo, W, and 24 other elements were determined in six SNC meteorites of presumably Martian origin. Based on element correlations, representative siderophile element concentrations for the silicate mantle of Mars were inferred. From a comparison with experimentally determined metal/silicate partition coefficients of the moderately siderophile elements: Fe, Ni, Co, W, Mo, and Ga, it is concluded that equilibrium between core forming metal and silicates in Mars has occurred at high temperatures (around 2200°C) and low pressures (<1 GPa). This suggests that metal segregation occurred concurrently with rapid accretion of Mars, which is consistent with the inference from excess 182W in Martian meteorites (Lee and Halliday, 1997). Concentrations of Ir, Os, Ru, Pt, and Au in the analyzed Martian meteorites, except ALH84001, are at a level of approximately 10−2–10−3 × CI. The comparatively high abundances of noble metals in Martian meteorites require the addition of chondritic material after core formation. The similarity in Au/La and Pt/Ca ratios between ALH84001 and the other Martian meteorites suggests crystallization of ALH84001 after complete accretion of Mars.  相似文献   

9.
An attempt has been made to estimate the chemical composition of the earth's primitive mantle by a critical evaluation of data derived from ultramafic mantle samples and partial melting model calculations for mafic and ultramafic magmas of various ages.Compatible (Al, Ca, Si, Mg, Fe) and moderately incompatible (Ti, Zr, heavy and middle rare earth) elements in basaltic magma sources have not changed significantly since the early Archaean (~3.5 Byr). Estimated abundances for refractory lithophile elements (such as Al, Ca, Ti, Zr, Y, Se, REE etc.) in the primitive mantle are about 2.0 times ordinary chondrites (~ 1.1 times Cl chondrites relative to Mg). Highly incompatible volatile elements (K, Rb, Cs, Tl, Pb etc.) are depleted in the mantle throughout geological time. Abundances of Fe, Ni and Co are obtained on the basis of values for ultramafic nodules and model calculations using komatiites of various ages. The results show little (? 20%?) dispersion and there is no obvious secular variation since 3.5 Byr. Noble metals show similar effects. These data permit constraints to be placed on the timing of core formation.The estimated elemental abundances for the primitive mantle are normalized to Cl chondrites relative to Mg and plotted against the solar condensation temperature at 10?4 atm. Above 700 K there are two parallel trends which are defined by lithophile elements (Al, Ca, REE, Ti, Mg, Si, Cr, Mn, Na, K, Rb, F, Zn etc.) and siderophile elements (W, Ni, Co, P, As, Ag, Sb and Ge) respectively. The depletion factor for the siderophile trend relative to the lithophile trend is about 0.085. Within each trend there is a continuous depletion towards lower temperature. A third trend is defined by noble metals (Ir, Os, Re, Pd, Pt and Au) with a depletion factor of about 0.003 relative to Cl chondrites. These trends are interpreted in terms of core-mantle differentiation and volatility-controlled processes operating before and during earth accretion.  相似文献   

10.
铂族元素(Os,Ir,Pt,Ru,Rh,Pd)具有强亲铁性和强亲铜性,为一组地球化学性质相近的相容元素,铂族元素包含两个同位素衰变体系(^190Pt-^186Os和^187Re-^187Os)。近年来,铂族元素和Re-Os同位素在研究各类不同地持作用过程中,尤其是在地幔岩石的研究中,作用独特,效果显著。由于地幔岩石的铂族元素含量较低,因此高精度,高灵敏度的分析测试方法的研究就显得十分重要。以往的分析方法(如常规的ICP-MS和中子活化分析方法),对含10^-9-10^012级低含量铂族元素的产品分析精度一般较差(>15%-100%)。所采用的分析流程通常也无法同时获得样品的铂族元素含量和Os同位素比值。本文采用新的熔样方法(HAP-S高温高压釜酸溶法),新的化学流程(溶剂萃取和阴离子交换树脂柱)和新的分析仪器(多接收等离子体质谱MC-ICPMS和负离子热电离质谱N-TIMS)。用同位素稀释法对低含量地幔橄榄岩样品同时测定的铂族元素含量和Os同位素比值,获得了高精度的分析结果。对所分析的地橄榄样品中的铂族元素分配曲线和Os同位素组成的地质意义进行了初步探讨。  相似文献   

11.
Laser ablation inductively coupled plasma mass spectrometry was used to measure abundances of P, Cr, Fe, Co, Ni, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, Sn, Sb, W, Re, Os, Ir, Pt, and Au in metal grains in the Bencubbin-like chondrites Bencubbin, Weatherford, and Gujba to determine the origin of large metal aggregates in bencubbinites. A strong volatility-controlled signature is observed among the metal grains. The refractory siderophiles Ru, Rh, Re, Os, Ir, and Pt are unfractionated from one another, and are present in approximately chondritic relative abundances. The less refractory elements Fe, Co, Ni, Pd, and Au are fractionated from the refractory siderophiles, with a chondritic Ni/Co ratio and a higher than chondritic Pd/Fe ratio. The moderately volatile siderophile elements Ga, Ge, As, Sn, and Sb are depleted in the metal, relative to chondritic abundances, by up to 3 orders of magnitude. The trace siderophile element data are inconsistent with the following proposed origins of Bencubbin-Weatherford-Gujba metal: (1) condensation from the canonical solar nebula, (2) oxidation of an initially chondritic metal composition, and (3) equilibration with a S-rich partial melt. A condensation model for metal-enriched (×107 CI) gas is developed. Formation by condensation or evaporation in such a high-density, metal-enriched gas is consistent with the trace element measurements. The proposed model for generating such a gas is protoplanetary impact involving a metal-rich body.  相似文献   

12.
Twenty-three samples from the Ries crater, representing a wide range of shock metamorphism, were analyzed for seven siderophile elements (Au, Ge, Ir, Ni, Os, Pd, Re) and five volatile elements (Ag, Cd, Sb, Se, Zn). Taking Ir as an example, we found siderophile enrichments over the indigenous level of 0.015 ppb Ir occur in only eight samples. The excess is very modest; even the most enriched samples (a weakly shocked biotite gneiss and a metal-impregnated amphibolite) have Ir, Os corresponding to ~4 × 10?4 C1 chondrite abundances. Of five flädle glasses analyzed only one shows excess Ir. Suevite matrix and vesicular glass have slight enrichment, but homogenous glass from the same rock does not. In flädle glasses, Ni and Se are strongly correlated and apparently reside in Ir, Os-poor Sulfides [pyrrhotite, chalcopyrite, pentlandite(?)]of terrestrial, probably sedimentary, origin. The Ir, Os and Ni enrichments of the metal-bearing amphibolite are compatible with chondritic ratios, but these are ill-defined because of uncertainty in Ni. In the other samples enriched in siderophiles Ir(Os), Ni and Se are mutually correlated; NiIr and NiOs ~ 11 × C1 and are much higher than any chondritic ratios; SeNi ~ 2 × C1 and suggests a sulfide phase, rather than metal may be the host of the correlated elements. Lacking a plausible local source, this material is apparently meteoritic in origin. The unusual elemental ratios, coupled with the very low enrichments, tend to exclude chondrites and most irons as likely projectile material. Of the achondrites, aubrites seem slightly preferable. Ratios of excess siderophiles in Ries materiel match tolerably those of an aubrite (possibly atypical) occurring as an inclusion in the Bencubbin meteorite, Australia. The Hungaria group of Mars-crossing asteroids may be a source of aubritic projectiles.  相似文献   

13.
Sulfur is a potential light element in the liquid outer core of the Earth. Its presence in segregating metal may have had an influence in distribution of metal-loving (siderophile) elements during early accretion and core formation events in the Earth. The observed “excess” abundance of siderophile elements in the terrestrial mantle, relative to an abundance expected from simple core-mantle equilibrium at low temperature and pressure, may indicate a reduction in the iron-loving tendency of siderophile elements in the presence of sulfur in the metallic phase. The present experimental partitioning study between iron-carbon-sulfur-siderophile element bearing liquid metal and liquid silicate shows that for some siderophile elements this sulfur effect may be significant enough to even change their character to lithophile. Large and intricate variations in metal-silicate partition coefficients (Dmet/sil) have been observed for many elements, e.g., Ni, Co, Ge, W, P, Au, and Re as a function of sulfur content. Moderately siderophile elements Ge, P, and W show the most significant response (sulfur-avoidance) by an enhanced segregation into the associated sulfur-deficient phases. Highly siderophile elements Ir, Pt, and Re show a different style of sulfur-avoidance (alloy-preference) by segregating as sulfur-poor, siderophile element-rich alloys. Both groups are chalcophobic. Dmet/sil for Ni, Co, and Au moderately decreases with increasing sulfur-content in the liquid metal. Dmet/sil for chalcophile element, Cr, in contrast, increases with sulfur. Irrespective of the sulfur-content, in the presence of a carbon-saturated liquid metal, P is always lithophile. The general nonmetal-avoidance tendency of siderophile elements (and acceptance of chalcophile elements) in the liquid metal, postulated by Jones and Malvin (1990) in the FeNiS(sulfur)M (siderophile) system is found to be present in the metal-silicate system as well. A sulfur-bearning liquid metal segregation can potentially reduce the metal-loving nature of many elements to explain the excess paradox. Sulfur-bearing core segregation, however, might require an efficient draining of exsolved immiscible sulfide liquids from the molten silicate, or an increasing siderophility of sulfur at high pressure to reduce the mantle sulfur content to the observed (<300 ppm) value. Moreover, the chondritic relative abundance pattern of many moderately or highly siderophile elements in the upper mantle is not explained by the presence of sulfur in the segregating metals. Core formation is more complex and intricate than equilibrium segregation.  相似文献   

14.
Initial 187Os/188Os isotopic compositions for geochronologically and geologically well -constrained 3.8-Ga spinel peridotites from the Itsaq Gneiss Complex of southern West Greenland and chromite separates from 3.46-Ga komatiites from the Pilbara region of Western Australia have been determined to investigate the osmium isotopic evolution of the early terrestrial mantle. The measured compositions of 187Os/188Os(0) = 0.10262 ± 2, from an olivine separate, and 0.10329 ± 3, for a spinel separate from ∼3.8-Ga peridotite G93/42, are the lowest yet reported from any terrestrial sample. The corrections for in situ decay over 3.8 Ga for these low Re/Os phases are minimal and change the isotopic compositions by only 0.5 and 2.2% for the spinel and the olivine, respectively, resulting in 187Os/188Os(3.8 Ga) = 0.1021 ± 0.0002 and 0.1009 ± 0.0002, respectively. These data extend direct measurement of Os isotopic compositions to much earlier periods of Earth history than previously documented and provide the best constraints on the Os isotopic composition of the early Archean terrestrial mantle. Analyses of Pilbara chromites yield 3.46-Ga mantle compositions of 0.1042 ± 0.0002 and 0.1051 ± 0.0002.These new data, combined with published initial Os isotopic compositions from late Archean and early Proterozoic samples, are compatible with the mantle, or at least portions of it, evolving from a solar system initially defined by meteorites to a modern composition of 187Os/188Os(0) = 0.1296 ± 0.0008 as previously suggested from peridotite xenolith data ( Meisel et al., 2001); the associated 187Re/188Os(0) = 0.435 ± 0.005. Thus, chondritic 187Os/188Os compositions were a feature of the upper mantle for at least 3.8 billion years, requiring chondritic Re/Os ratios to have been a characteristic of the very early terrestrial mantle. In contrast, nonchondritic initial compositions of some Archean komatiites demonstrate that Os isotopic heterogeneity is an ancient feature of plume materials, reflecting the development of variable Re/Os mantle sources early in Earth history.The lower average 187Os/188Os = 0.1247 for abyssal peridotites (Snow and Reisberg, 1995) indicate that not all regions of the modern mantle have evolved with the same Re/Os ratio. The relative sizes of the various reservoirs are unknown, although mass balance considerations can provide some general constraints. For example, if the unradiogenic 187Os/188Os modern abyssal peridotite compositions reflect the prevalent upper mantle composition, then the complementary high Re/Os basaltic reservoir must represent 20 to 40% by mass of the upper mantle (taken here as 50% of the entire mantle), depending on the mean storage age. The difficulties associated with efficient long-term storage of such large volumes of subducted basalt suggest that the majority of the upper mantle is not significantly Re-depleted. Rather, abyssal peridotites sample anomalous mantle regions.The existence of 3.8-Ga mantle peridotites with chondritic 187Os/188Os compositions and with Os concentrations similar to the mean abundances measured in modern peridotites places an upper limit on the timing of a late accretionary veneer. These observations require that any highly siderophile element -rich component must have been added to the Earth and transported into and grossly homogenized within the mantle by 3.8 Ga. Either large-scale mixing of impact materials occurred on very short (0-100 myr) timescales or (the interpretation preferred here) the late veneer of highly siderophile elements is unrelated to the lunar terminal cataclysm estimated to have occurred at ∼3.8 to 3.9 Ga.  相似文献   

15.
Osmium isotopic compositions, abundances of highly siderophile elements (HSE: platinum group elements, Re and Au), the chalcogen elements S, Se and Te and major and minor elements were analysed in physically separated size fractions and components of the ordinary chondrites WSG 95300 (H3.3, meteorite find) and Parnallee (LL3.6, meteorite fall). Fine grained magnetic fractions are 268-65 times enriched in HSE compared to the non-magnetic fractions. A significant deviation of some fractions of WSG 95300 from the 4.568 Ga 187Re-187Os isochron was caused by redistribution of Re due to weathering of metal. HSE abundance patterns show that at least four different types of HSE carriers are present in WSG 95300 and Parnallee. The HSE carriers display (i) CI chondritic HSE ratios, (ii) variable Re/Os ratios, (iii) lower than CI chondritic Pd/Ir and Au/Ir and (iv) higher Pt/Ir and Pt/Ru than in CI chondrites. These differences between components clearly indicate the loss of refractory HSE carrier phases before accretion of the components. Tellurium abundances correlate with Pd and are decoupled from S, suggesting that most Te partitioned into metal during the last high-temperature event. Tellurium is depleted in all fractions compared to CI chondrite normalized Se abundances. The depletion of Te is likely associated with the high temperature history of the metal precursors of H and LL chondrites and occurred independent of the metal loss event that depleted LL chondrites in siderophile elements. Most non-magnetic and slightly magnetic fractions have S/Se close to CI chondrites. In contrast, the decoupling of Te and Se from S in magnetic fractions suggests the influence of volatility and metal-silicate partitioning on the abundances of the chalcogen elements. The influence of terrestrial weathering on chalcogen element systematics of these meteorites appears to be negligible.  相似文献   

16.
In order to constrain the highly siderophile elements (HSE: Re and platinum group elements (PGE: Os, Ir, Ru, Pt and Pd)) host mineral(s) in refractory, base metal sulfide-free mantle residues, four very depleted spinel-harzburgites from the Lherz massif (France) have been analyzed for HSE in whole-rock and in major mineral separates (olivine, orthopyroxene, clinopyroxene and spinel) by isotope dilution. In addition, HSE host minerals have been separated and analyzed with a scanning electron microscope. Olivine and spinel show the highest HSE concentration especially for Os, Ir, Ru and Pt (up to 10 ppb) among the modally-major minerals, while the pyroxenes are 1-2 orders of magnitude poorer in HSE. The major minerals account for less than 30% of the whole-rock platinum group element budget. On the other hand, rare, micron to submicron platinum group minerals (PGM), such as Ru-Os ± Ir sulfides and Pt-Ir ± Os alloys, likely located in the intergranular spaces of the refractory depleted harzburgite, account for 50-100% of the HSE budget. The PGM grains are interpreted to be residual, having formed in response to the complete consumption of the base-metal sulfides by the high degree of partial melting (i.e. 23-24%) experienced by these samples. As they sequester the compatible platinum group elements (Os, Ir, Ru and Pt) in the mantle residue, these PGM provide key constraints for the modelling of PGE contents in terrestrial basalts (e.g. the solid/liquid partition coefficients needed to account for the compatible behavior of these elements in the mantle residue) and for understanding the long-lived Os isotope heterogeneities of the upper mantle, especially the old Re-Os ages found in young oceanic mantle. In fact, because of their Os-rich compositions and high melting temperatures, these microphases are likely to preserve their initial Os isotopic compositions unmodified over multiple events of mantle melting and mixing, and therefore generate, through recycling, heterogeneous Os isotopic signatures at different scales in the convecting mantle.  相似文献   

17.
Hypotheses for the origin of the Moon involve variants on capture, double-planet, and fission processes. Double-planet and fission hypotheses are examined in the light of siderophile trace elements. The siderophile trace elements chosen (W, Re, Mo, P, Ga, Ge) have well understood geochemical behavior such that appropriate metal/silicate partition coefficients are available and their abundances in the lunar and terrestrial mantles 4.4–4.5 × 109 years ago may be reasonably inferred. The fission hypothesis of Ringwood (1979) is not consistent with the behavior of Re, Mo, and P. The hybrid fission hypothesis of Wankeet al. (1983) overcomes many of the deficiencies of ringwood's hypothesis, but is not readily reconcilable with the behavior of Re and Ir. The double-planet hypothesis as most recently advanced by Newsom and Drake (1982, 1983) appears to be consistent with siderophile element behavior in the Moon.  相似文献   

18.
Re-Os同位素体系是理解月球强亲铁元素的分布规律和示踪月球的后期增生历史的重要手段。目前人们对月球物质Re-Os同位素成分的了解还是十分有限的,已有的Re-Os同位素数据显示一些能代表月幔成分特征的月海玄武岩具有很低的Re和Os的浓度,以及类似于球粒陨石的187Os/188Os成分特征,而月球火山玻璃和月壤等表现出相对高的Re-Os丰度和相对富放射成因Re-Os同位素成分。一般认为月球月幔的Re、0s和其他强亲铁元素相对球粒陨石是非常亏损的,而地球地幔则具有相对较高的强亲铁元素丰度(0.008倍CI球粒陨石的丰度)。新的Re-Os同位素结果证明月幔确实是亏损的,但是月球和地球在太阳系演化的较晚时期都有外来的球粒陨石物质的大量加入,即后期增生(late accretion)过程,导致了月球和地球上部物质(如月球火山玻璃、月壤等)相对地富集Os同位素和强亲铁元素,这些外来物质的后期增生可能是长期和持续的,增生过程主要发生在3.9~4.4Ga。但目前仍不清楚后期增生的陨石物质是被逐渐加入的,还是在一个相对较短的时期大量加入的,因此尚需对更多的月球物质做进一步的Re-Os同位素和强亲铁元素成分的研究。  相似文献   

19.
Osmium, Ru, Ir, Pt, Pd and Re abundances and 187Os/188Os data on peridotites were determined using improved analytical techniques in order to precisely constrain the highly siderophile element (HSE) composition of fertile lherzolites and to provide an updated estimate of HSE composition of the primitive upper mantle (PUM). The new data are used to better constrain the origin of the HSE excess in Earth’s mantle. Samples include lherzolite and harzburgite xenoliths from Archean and post-Archean continental lithosphere, peridotites from ultramafic massifs, ophiolites and other samples of oceanic mantle such as abyssal peridotites. Osmium, Ru and Ir abundances in the peridotite data set do not correlate with moderately incompatible melt extraction indicators such as Al2O3. Os/Ir is chondritic in most samples, while Ru/Ir, with few exceptions, is ca. 30% higher than in chondrites. Both ratios are constant over a wide range of Al2O3 contents, but show stronger scatter in depleted harzburgites. Platinum, Pd and Re abundances, their ratios with Ir, Os and Ru, and the 187Os/188Os ratio (a proxy for Re/Os) show positive correlations with Al2O3, indicating incompatible behavior of Pt, Pd and Re during mantle melting. The empirical sequence of peridotite-melt partition coefficients of Re, Pd and Pt as derived from peridotites () is consistent with previous data on natural samples. Some harzburgites and depleted lherzolites have been affected by secondary igneous processes such as silicate melt percolation, as indicated by U-shaped patterns of incompatible HSE, high 187Os/188Os, and scatter off the correlations defined by incompatible HSE and Al2O3. The bulk rock HSE content, chondritic Os/Ir, and chondritic to subchondritic Pt/Ir, Re/Os, Pt/Re and Re/Pd of many lherzolites of the present study are consistent with depletion by melting, and possibly solid state mixing processes in the convecting mantle, involving recycled oceanic lithosphere. Based on fertile lherzolite compositions, we infer that PUM is characterized by a mean Ir abundance of 3.5 ± 0.4 ng/g (or 0.0080 ± 0.0009*CI chondrites), chondritic ratios involving Os, Ir, Pt and Re (Os/IrPUM of 1.12 ± 0.09, Pt/IrPUM = 2.21 ± 0.21, Re/OsPUM = 0.090 ± 0.002) and suprachondritic ratios involving Ru and Pd (Ru/IrPUM = 2.03 ± 0.12, Pd/IrPUM = 2.06 ± 0.31, uncertainties 1σ). The combination of chondritic and modestly suprachondritic HSE ratios of PUM cannot be explained by any single planetary fractionation process. Comparison with HSE patterns of chondrites shows that no known chondrite group perfectly matches the PUM composition. Similar HSE patterns, however, were found in Apollo 17 impact melt rocks from the Serenitatis impact basin [Norman M.D., Bennett V.C., Ryder G., 2002. Targeting the impactors: siderophile element signatures of lunar impact melts from Serenitatis. Earth Planet. Sci. Lett, 217-228.], which represent mixtures of chondritic material, and a component that may be either of meteoritic or indigenous origin. The similarities between the HSE composition of PUM and the bulk composition of lunar breccias establish a connection between the late accretion history of the lunar surface and the HSE composition of the Earth’s mantle. Although late accretion following core formation is still the most viable explanation for the HSE abundances in the Earth’s mantle, the “late veneer” hypothesis may require some modification in light of the unique PUM composition.  相似文献   

20.
Composition of terrestrial planets records planetary accretion, core–mantle and crust–mantle differentiation, and surface processes. Here we compare the compositional models of Earth and Mars to reveal their characteristics and formation processes. Earth and Mars are equally enriched in refractory elements (1.9 × CI), although Earth is more volatile-depleted and less oxidized than Mars. Their chemical compositions were established by nebular fractionation, with negligible contributions from post-accretionary losses of moderately volatile elements. The degree of planetary volatile element depletion might correlate with the abundances of chondrules in the accreted materials, planetary size, and their accretion timescale, which provides insights into composition and origin of Mercury, Venus, the Moon-forming giant impactor, and the proto-Earth. During its formation before and after the nebular disk's lifetime, the Earth likely accreted more chondrules and less matrix-like materials than Mars and chondritic asteroids, establishing its marked volatile depletion. A giant impact of an oxidized, differentiated Mars-like (i.e., composition and mass) body into a volatile-depleted, reduced proto-Earth produced a Moon-forming debris ring with mostly a proto-Earth's mantle composition. Chalcophile and some siderophile elements in the silicate Earth added by the Mars-like impactor were extracted into the core by a sulfide melt (∼0.5% of the mass of the Earth's mantle). In contrast, the composition of Mars indicates its rapid accretion of lesser amounts of chondrules under nearly uniform oxidizing conditions. Mars’ rapid cooling and early loss of its dynamo likely led to the absence of plate tectonics and surface water, and the present-day low surface heat flux. These similarities and differences between the Earth and Mars made the former habitable and the other inhospitable to uninhabitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号