首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Research on abrupt paleoclimatic and paleoenvironmental change provides a scientific basis for evaluating future climate. Because of spatial variability in monsoonal rainfall, our knowledge about climate change during the mid-to lateHolocene in southern China is still limited. We present a multi-proxy record of paleoclimatic change in a crater lake, Lake Shuangchi. Based on the age-depth model from 210 Pb, 137 Cs and AMS14 C data, high-resolution mid-to late-Holocene climatic and environmental records were reconstructed using multiple indices(TOC, TN, C/N, δ13 C and grain size). Shuangchi underwent a marked change from a peat bog to a lake around 1.4 kaBP. The C3 plants likely dominated during 7.0–5.9 ka and 2.5–1.4 kaBP, while C4 plants dominated between 5.9–3.2 and 3.0–2.5 kaBP. Algae were dominant sources of organic matter in the lake sediments after 1.4 kaBP. Several intervals with high concentrations of coarser grain sizes might be due to flood events. These results reveal that several abrupt paleoclimatic events occurred around 6.6 ka, 6.1 ka, 5.9 ka, 3.0 ka, 2.5 ka and 1.4 kaBP. The paleoclimatic change recorded in the lake may be related to the migration of the Intertropical Convergence Zone(ITCZ) and El Ni?o-Southern Oscillation(ENSO) activity.  相似文献   

2.
With accelerated melting of alpine glaciers, understanding the future state of the cryosphere is critical. Because the observational record of glacier response to climate change is short, palaeo‐records of glacier change are needed. Using proglacial lake sediments, which contain continuous and datable records of past glacier activity, we investigate Holocene glacier fluctuations on northeastern Baffin Island. Basal radiocarbon ages from three lakes constrain Laurentide Ice Sheet retreat by ca. 10.5 ka. High sedimentation rates (0.03 cm a?1) and continuous minerogenic sedimentation throughout the Holocene in proglacial lakes, in contrast to organic‐rich sediments and low sedimentation rates (0.005 cm a?1) in neighbouring non‐glacial lakes, suggest that glaciers may have persisted in proglacial lake catchments since regional deglaciation. The presence of varves and relatively high magnetic susceptibility from 10 to 6 ka and since 2 ka in one proglacial lake suggest minimum Holocene glacier extent ca. 6–2 ka. Moraine evidence and proglacial and threshold lake sediments indicate that the maximum Holocene glacier extent occurred during the Little Ice Age. The finding that glaciers likely persisted through the Holocene is surprising, given that regional proxy records reveal summer temperatures several degrees warmer than today, and may be due to shorter ablation seasons and greater accumulation‐season precipitation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
李卓仑  王乃昂  李育  程弘毅 《冰川冻土》2013,35(6):1481-1489
通过对花海古湖泊沉积剖面8.42~0.405 m沉积物样品的矿物和化学元素测定,分析了沉积物中盐类矿物含量及化学元素K/Na比值的变化情况,结合已有的年代地层结果,重建了花海古湖泊10.47~5.5 cal ka BP湖水盐度变化. 结果表明:花海湖泊全新世湖相沉积阶段中,除个别层位以硫酸盐类矿物沉积为主外,早全新世(10.47~8.87 cal ka BP)和中全新世(8.87~5.5 cal ka BP)均以碳酸盐盐类矿物沉积为主,并且早全新世时期K/Na高于中全新世时期,揭示了早全新世时期湖水盐度高于中全新世时期. 这一结果与该湖泊沉积过程所揭示的湖泊水位变化、粒度等揭示的有效湿度变化具有一致性,表明花海湖泊早、中全新世湖水盐度的高低可以指示其湖泊水位的变化,并间接反映了有效湿度的变化. 结合花海湖泊晚全新世湖泊萎缩、气候干旱的特点,该区域早、中、晚全新世气候干湿变化变化模式可以概况为早全新世降水增强、气候呈现由干向湿的转变,中全新世有效湿度最大,晚全新世气候干旱. 这种全新世气候干湿变化模式有别于西风区,亦与季风区不完全相同,呈现出了一种季风-西风过渡带全新世气候干湿变化的模式.  相似文献   

4.
The Qarun Lake in the Faiyum Oasis (Egypt) provides a unique record of Holocene environmental and climate change in an arid area largely devoid of fossil proxy records. Multiple lithological, palaeontological and geochemical proxies and 32 radiocarbon dates from the 26‐m‐long core FA‐1 provide a time series of the lake's transformation. Our results confirm that a permanent lake appeared in the Holocene at c. 10 cal. ka BP. The finely laminated lake sediments consist of diatomite, in which diatoms and ostracods together with lower concentrations of ions indicate a freshwater environment at the end of the early and middle Holocene. This freshwater supply was closely associated with regular inflows of the Nile water during flood seasons, when the Intertropical Convergence Zone (ITCZ) migrated northwards in Africa, although it has probably never reached the Faiyum Oasis. Local rainfall, possibly connected with a northern atmospheric circulation, may have been important during winter. Several phases in the lake's evolution are recognized, represented by oscillations between deep open freshwater conditions during more humid climate and shallow fresh to brackish water during drier episodes. After a long freshwater phase, the lake setting has become more brackish since c. 6.2 cal. ka BP as indicated by diatoms and increasing contents of evaporite ions in the sediment. This clearly shows that since that time the lake has occasionally become partly desiccated. This is a result of reduced discharge of the Nile. In the late Holocene the lake was mostly brackish and then gradually turned into a saline lake. This natural process was interrupted about 2.3 cal. ka BP when a man‐made canal facilitated water inflow from the Nile. The examined FA‐1 core can be used as a reference age model of climate change in the Holocene and its impact on the development and decline of ancient civilizations in northeastern Africa.  相似文献   

5.
Lake Ladoga in northwestern Russia is Europe's largest lake. The postglacial history of the Ladoga basin is for the first time documented continuously with high temporal resolution in the upper 13.3 m of a sediment core (Co1309) from the northwestern part of the lake. We applied a multiproxy approach including radiographic imaging, (bio‐)geochemical and granulometric analyses. Age control was established combining radiocarbon dating with varve chronology, the latter anchored to a correlated radiocarbon age from a lake close by. The age‐depth model reveals the onset of glacial varve sedimentation at 13 910±140 cal. a BP, when Lake Ladoga was part of the Baltic Ice Lake. Linear extrapolation of published retreat rates of the Scandinavian Ice Sheet provides a formation age of the Luga moraine close to Lake Ladoga's southern shore of 14.5–15.9 cal. ka BP, older than previously assumed. Varve sedimentation covers the Bølling/Allerød interstadial, the Younger Dryas stadial and the Early Holocene. Varve‐thickness variations, conjoined with grain‐size and geochemical variations, inform about the relative position of the Scandinavian Ice Sheet and the climate during the deglaciation phase. The upper limit of the varved succession marks the change from glaciolacustrine to normal lacustrine sedimentation and post‐dates the drainage of the Baltic Ice Lake as well as the formation of the Salpausselkä II moraine north of Lake Ladoga, by c. 250 years. The Holocene sediment record is divided into three periods in the following order: (i) a lower transition zone between the Holocene boundary and c. 9.5 cal. ka BP, characterized by mostly massive sediments with low organic content, (ii) a phase with increased organic content from c. 9.5 to 4.5 cal. ka BP corresponding to the Holocene Thermal Maximum, and (iii) a phase with relatively stable sedimentation in a lacustrine environment from c. 4.5 cal. ka BP until present.  相似文献   

6.
In arid regions, because of spatial variability, using single climate records is difficult to reconstruct the past climate change for the drainage basins. Holocene environmental records were collected from the upper, middle and lower regions of the Shiyang River drainage basin in the marginal area of the Asian monsoon (northwest China). The main objective of this paper was to compare the records from the terminal lake and the middle and upper reaches of the basin to study the basin-wide environmental changes. During the early Holocene the vegetation was sparse, and the effective moisture was relatively low in the basin. The Holocene Climatic Optimum started between 7.0 and 8.0 cal ka BP, during which the lake level reached the highest level in the terminal lake; the vegetation density and the effective moisture reached the highest level during the Holocene in the drainage basin. From 4.7 cal ka BP the terminal lake began to shrink, while the vegetation density decreased dramatically. In the middle and upper regions of the drainage, the effective moisture began to decrease since 3.5 cal ka BP, and the arid tendency was earlier in the terminal lake than it was in the middle and upper regions of the drainage basin. During the early Holocene the relatively arid environment was affected by the gradually intensifying East Asian monsoon and the dry westerly winds. The mid-Holocene Optimum benefited from the intensive East Asian monsoon and the humid westerly winds. Then, the East Asian monsoon retreated since the late-Holocene. In the basin the arid tendency may be related to the retracting of the East Asian monsoon. However, the intensifying acidification after 1.5 cal ka BP may be correlated to the increasing dryness of the westerly winds.  相似文献   

7.
The late Pleistocene–Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene‐7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake‐levels were low and the area was surrounded by paramo and subparamo vegetation. Late‐glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake‐level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late‐glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake‐level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
德令哈盆地尕海湖DG03孔岩芯矿物组合与古环境变化   总被引:4,自引:2,他引:2  
对气候敏感区德令哈盆地尕海湖DG03孔岩芯的矿物学分析表明,DG03孔岩芯的矿物主要包括石英、斜长石、微斜长石、绿泥石、伊利石、方解石、文石、白云石、石膏及石盐等。岩芯记录了尕海湖约11 ka以来(AMS 14C年龄)的古环境变化。根据矿物、碳酸盐含量及岩性的变化,整个岩芯可划分为三个部分:Ⅰ. 约11 ka~10 ka BP,晚冰期末期;Ⅱ. 10 ka~4 ka BP,全新世早中期;Ⅲ.4 ka至今,全新世晚期。矿物组合表明,自晚冰期以来,尕海湖先后经历了湖泊演化的逆向和正向演化阶段,即尕海湖先后经历了晚冰期的干冷气候,早全新世的暖干气候,中全新世的暖湿气候以及晚全新世以来的逐渐干冷的气候。岩性分析还表明,尕海湖沉积环境复杂,存在多种微相沉积。  相似文献   

9.
A continuous sediment record since 12.3 cal ka bp from Lake Wuxu (south‐eastern Tibetan Plateau) was investigated in terms of the Holocene evolution of the Indian Summer Monsoon. The molar C/N ratio and stable C isotope were used to identify the source of the organic matter as well as climate conditions. The evolution of Lake Wuxu was summarized wihtin two periods. During the first period (early to mid‐Holocene), the lake received increased fluvially transported materials, reflecting variation in the summer monsoon with solar insolation. The lake level declined and water residence time increased because of reduced river discharge during the second period (late Holocene) corresponding to a weakening of the summer monsoon. The organic material revealed a major contribution from lake primary productivity, which showed identical patterns with a high‐resolution isotope record from Dongge Cave, as well as total solar irradiance. Our record from Lake Wuxu indicates that the Holocene evolution of the Indian Summer Monsoon has been driven by the solar forcing at decadal/centennial to millennial time scales. Furthermore, an abrupt decline in the monsoon was detected at around 4.0 cal ka bp , which is probably caused by an increased frequency of EI Nino‐Southern Oscillation events. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
Sediment cores from Lake Pupuke in Auckland City, New Zealand, contain a high‐resolution millennial to centennial‐scale record of changing climate and catchment hydrology spanning the past ca. 10 000 years. Here, we focus on the period between 9500 ± 25 and 7000 ± 155 cal. yr BP during which grain size, diatom palaeoecology, biogenic silica concentrations, sediment elemental and carbon isotope geochemistry reflect changes in sediment sources and lake conditions, with a significant event commencing at ca. 8240 cal. yr BP, commensurate with a lowering of lake level, faster erosion rates and increased sediment influx with a duration of ca. 360 yrs. However, the changes in the lake are not reflected in the terrestrial vegetation, where the pollen record indicates that podocarp forest dominated the Auckland region, with apparent environmental stability during this part of the early Holocene. The synchronous change in most of the proxies between ca. 8240 and 7880 cal. yr BP at Lake Pupuke indicates the presence of a sustained episode of relatively low lake level and concomitant increased rate of erosion in the early Holocene that appears to be at least partly coeval with the 8200 cal. yr BP meltwater event proposed for the North Atlantic region. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Previous research has shown that speleothems from the northern rim of the European Alps captured submillennial-scale climate change during the last glacial period with exceptional sensitivity and resolution, mimicking Greenland ice-core records. Here we extend this so-called NALPS19 record across the Late Glacial using two stalagmites which grew continuously into the Holocene. Both specimens show the same high-amplitude δ18O signal as Greenland ice cores down to decadal resolution. The start of the warming at the onset of the equivalent of Greenland Interstadial (GI) GI-1e at 14.66 ± 0.18 ka agrees with the North Greenland Ice Core Project (NGRIP) (14.64 ± 0.28 ka) and comprised a temperature rise of about 5–6 °C. The transition from the equivalent of GI-1a into the equivalent of Greenland Stadial (GS) GS-1 (broadly equivalent to the Younger Dryas) commenced at 13.02 ± 0.13 ka which is consistent with NGRIP (12.80 ± 0.26 ka) within errors. The onset of the Holocene started at 11.78 ± 0.14 ka (11.65 ± 0.10 ka at NGRIP) and involved a warming of about 4–5 °C. In contrast to δ18O, δ13C values show no response to (sub)millennial climate shifts due to strong rock-buffering and only record a long-term trend of soil development starting with the rapid warming at 14.7 ka.  相似文献   

12.
Thermokarst lakes are a widespread feature of the Arctic tundra, in which highly dynamic processes are closely connected with current and past climate changes. We investigated late Quaternary sediment dynamics, basin and shoreline evolution, and environmental interrelations of Lake El'gene‐Kyuele in the NE Siberian Arctic (latitude 71°17′N, longitude 125°34′E). The water‐body displays thaw‐lake characteristics cutting into both Pleistocene Ice Complex and Holocene alas sediments. Our methods are based on grain size distribution, mineralogical composition, TOC/N ratio, stable carbon isotopes and the analysis of plant macrofossils from a 3.5‐m sediment profile at the modern eastern lake shore. Our results show two main sources for sediments in the lake basin: terrigenous diamicton supplied from thermokarst slopes and the lake shore, and lacustrine detritus that has mainly settled in the deep lake basin. The lake and its adjacent thermokarst basin rapidly expanded during the early Holocene. This climatically warmer than today period was characterized by forest or forest tundra vegetation composed of larches, birch trees and shrubs. Woodlands of both the HTM and the Late Pleistocene were affected by fire, which potentially triggered the initiation of thermokarst processes resulting later in lake formation and expansion. The maximum lake depth at the study site and the lowest limnic bioproductivity occurred during the longest time interval of ~7 ka starting in the Holocene Thermal Maximum and lasting throughout the progressively cooler Neoglacial, whereas partial drainage and an extensive shift of the lake shoreline occurred ~0.9 cal. ka BP. Correspondingly, this study discusses different climatic and environmental drivers for the dynamics of a thermokarst basin.  相似文献   

13.
李金锁  刘喜方  牛新生  商斌  李国臣 《地质学报》2020,94(10):3130-3143
通过对西藏藏北高原多格错仁盐湖湖岸3101cm高度剖面进行地形地貌、地层沉积特征、矿物学特征及粒度、频率磁化率等气候环境变化指标的分析研究发现,整个剖面反映出大致6个较大的气候变化过程:233. 3kaBP~223. 5kaBP气候波动较大,总体趋势气候趋于干冷,期间出现过两次较温暖气候,之后气候逐渐变冷;在223. 5kaBP~213. 6kaBP总体变化为气温大幅度上升,但在期间有一次较大的相对冷干过程;213. 6kaBP~170kaBP之间总体变化气候趋于变冷,中间有2次明显的气候变暖湿过程及两次冷干过程;170kaBP~117. 1kaBP气候转为明显湿热;117. 1kaBP~75. 6kaBP气候变化趋势明显降低;75. 6kaBP~56. 7kaBP气候又明显上升达到湿热状态。以上气候波动规律与极地冰芯记录及深海氧同位素记录的古气候波动规律有很好的一致性,同时本盐湖区与柴达木盆地察尔汗盐湖区的CH0310钻孔及青海湖南岸二郎剑阶地的 QH 86钻孔所揭示的中更新世晚期以来的气候变化的分析对比,发现西藏羌北的多格错仁盐湖区与青海的察尔汗盐湖区及青海湖湖区在更新世中晚期以来的气候环境变迁存在极好的可比性,说明青藏高原的气候演化在中晚更新世以来基本具有一致性,在时间上的微小超前与滞后具有区域上的细微变化,说明气候变迁在不同的区域又具有各自的独特性。  相似文献   

14.
This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (δ18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The δ18Odiatom values range from +29.8 to +35.0‰, and relatively higher δ18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower δ18Odiatom values, whereas lower lake levels cause higher δ18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high δ18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga δ18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely.  相似文献   

15.
Lake sediment, glacier extent and tree rings were used to reconstruct Holocene climate changes from Goat Lake at 550 m asl in the Kenai Mountains, south‐central Alaska. Radiocarbon‐dated sediment cores taken at 55 m water depth show glacial‐lacustrine conditions until about 9500 cal. yr BP, followed by organic‐rich sedimentation with an overall increasing trend in organic matter and biogenic silica content leading up to the Little Ice Age (LIA). Through most of the Holocene, the northern outlet of the Harding Icefield remained below the drainage divide that currently separates it from Goat Lake. A sharp transition from gyttja to inorganic mud about AD 1660 signifies the reappearance of glacier meltwater into Goat Lake during the LIA, marking the maximum Holocene (postglacial) extent. Meltwater continued to discharge into the lake until about AD 1900. A 207 yr tree‐ring series from 25 mountain hemlocks growing in the Goat Lake watershed correlates with other regional tree‐ring series that indicate an average summer temperature reduction of about 1°C during the 19th century compared with the early–mid 20th century. Cirque glaciers around Goat Lake reached their maximum LIA extent in the late 19th century. Assuming that glacier equilibrium‐line altitudes (ELA) are controlled solely by summer temperature, then the cooling of 1°C combined with the local environmental lapse rate would indicate an ELA lowering of 170 m. In contrast, reconstructed ELAs of 12 cirque glaciers near Goat Lake average only 34 ± 18 m lower during the LIA. The restricted ELA lowering can be explained by a reduction in accumulation‐season precipitation caused by a weakening of the Aleutian low‐pressure system during the late LIA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
A consensus on Holocene climate variability at the modern northern fringe of the East Asian summer monsoon (EASM) region remains elusive. Here, we present a pollen-based reconstruction of vegetation history and associated climate variations of a sediment core from Huangqihai Lake, central Inner Mongolia. During 10.7 to 8.8 cal kaBP, typical steppe with small patches of forest dominated the lake area, suggesting a moderately wet climate, followed by ameliorating climatic conditions until 8.0 cal kaBP as deduced by the expansion of forest. Typical steppe recovered the lake area between 8.0 and 7.2 cal kaBP, reflecting a deterioration of climatic conditions; in combination with other proxy records in the study region, we noticed that severe aridity was prevailed in the lake area between 8.0 and 7.6 cal kaBP. During 7.2 to 3.2 cal kaBP, abundant tree pollen indicated dominance of forest-steppe around the lake, marking regionally wet conditions. A notable absence of broadleaved trees after 5.2 cal kaBP reveals a slight drying trend, and climate deterioration from 4.5 to 4.1 cal kaBP might be linked to the 4.2 ka event. After 3.2 cal kaBP, a transition to steppe was associated with dry conditions in the region. Based on our pollen record and prior paleoclimatic reconstructions in the Huangqihai Lake region, there was a generally-accepted, stepwise shift to a wet climate during the early Holocene, an overall humid climate from 7.2 to 3.2 cal kaBP, and then severe drought for the rest of the Holocene. Moreover, regional comparisons among pollen records derived from lakes situated in the temperate steppe region suggested a roughly synchronous pattern of vegetation and climate changes during the Holocene and demonstrated an intensified EASM during the middle Holocene.  相似文献   

17.
Lake sedimentary records that allow documentation of the distinct climatic and environmental shifts during the early part of the Last Termination are scarce for northern Europe. This multi‐proxy study of the sediments of Atteköpsmosse, southwest Sweden, therefore fills an important gap and provides detailed information regarding past hydroclimatic conditions and local environmental responses to climatic shifts. Lake infilling started c. 15.5 cal. ka BP, but low aquatic productivity, cold summer lake water temperatures, unstable catchments, and scarce herb and shrub vegetation prevailed until c. 14.7–14.5 cal. ka BP. Inflow of warmer air masses and higher July air temperatures favoured a rise in aquatic productivity and lake water summer temperatures, and the establishment of a diverse herb, shrub and dwarf shrub vegetation, which also included tree birch c. 14.5 cal. ka BP. Freshening of the moisture source region c. 13.7–13.6 cal. ka BP does not seem to have had a large impact on the ancient lake and its catchment, as lake aquatic productivity increased further and lake water summer temperatures and minimum mean July air temperatures remained around 12–14 °C. In contrast, further freshening of the moisture source region c. 13 cal. ka BP triggered a decrease in lake productivity, drier conditions and lower lake water summer temperatures. Macroscopic finds of tree Betula and Pinus sylvestris at 13–12.8 cal. ka BP demonstrate the presence of these trees in the lake's catchment. The transition into the Holocene (11.6–11.5 cal. ka BP) is marked by a change in chironomid assemblages and by a rise in lake water summer temperatures and aquatic productivity. These changes were followed by the re‐establishment of a diverse aquatic and terrestrial vegetation, including tree birch and Pinus sylvestris at 11.4 cal. ka BP.  相似文献   

18.
New accelerator mass spectrometer radiocarbon ages from gastropods in shore deposits within the pluvial Lake Chewaucan basin, combined with stratigraphical and geomorphological evidence, identify an abrupt rise and fall of lake level at ca. 12 14C ka. The lake‐level high is coeval with lake‐level lows in the well‐dated records of palaeolakes Bonneville and Lahontan, and with a period of relatively wet conditions in the more southerly Owens Lake basin. This spatial pattern of pluvial lake levels in the western USA at 12 14C ka indicates a variable synoptic response to climate forcing at this time. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
A sediment core from Lake Barkol located in the eastern Xinjiang autonomous region, northwest China, provided a high-resolution record of environmental change covering the last ~8.6 cal ka BP. Three major climate stages, 8.6–7.1, 7.1–2.0 and from 2.0 cal ka BP to the present, were divided by grain size and the authigenic carbonate stable isotope of the lake sediment. Climatic drought during the period 7.1–4.5 cal ka BP, deduced from Lake Barkol, prevailed in the mid-Holocene climate in northern Xinjiang and northwest Mongolia. In contrast, it was wet in central Xinjiang, northwest India and the Middle East during the same period. The climatic difference between northern and southern arid central Asia demonstrates the southward shifting of the Westerlies, which indicates the potential contribution of the Siberian high in the mid-Holocene.  相似文献   

20.
A pollen record from Huguangyan Maar Lake documents regional palaeovegetation and palaeoclimate changes in southern China over the last 30 000 years. Huguangyan Maar Lake is located close to the South China Sea (SCS) coastline and is influenced by the East Asian Monsoon (EAM). The pollen assemblages show a succession of vegetation and climate changes. During the Last Glaciation, 30–15.8 cal. ka BP, the Huguangyan area was dominated by subtropical evergreen‐deciduous forest with grassland surrounding the lake, indicating a colder and drier climate than today. During 15.8–11 cal. ka BP, the study area experienced several climatic fluctuations. From 11 to 2 cal. ka BP, the climate shifted to warmer and wetter conditions. After the Holocene Optimum in the early Holocene, the temperature and precipitation decreased. The sediment record of the last 2000 years cannot be used to interpret natural palaeoclimate changes due to the intense anthropogenic influences. Overall, however, the Huguangyan pollen archive highlights the rapid responses of subtropical vegetation to insolation changes in southern China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号