首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 977 毫秒
1.
Conclusions In studying the degree of order (or disorder) in kaolinite, X-ray diffraction and DTA are commonly used, but spectroscopic method (as EPR, IR)has become a useful and additional tool now. The total iron content and the intensity of Fe3+(I) line are not always correlated negatively with order degree in natural kaolinite. But in the present case, they show direct correlations. So it appears that they cannot be used as an ideal parameter for measuring the order degree in kaolinite. The ratio of Fe3+(E)line and Fe3+(I)line intensities obtained directly from EPR spectrum of Fe3+at geff=4 appears to be a better EPR parameter for measuring the magnitude of order degree in kaolinite and for determining the intensity of some geological processes (such as weathering, hydrothermal alteration and so on) with aid of kaolinite. However, EPR data can only be used to qualitatively estimate the degree of order in kaolinite and related geological process for the present. There is still much work to be done in order to make EPR a method of quantitative estimation in the field.  相似文献   

2.
Hydrothermal ore deposits are typically characterised by footprints of zoned mineral assemblages that extend far beyond the size of the orebody. Understanding the mineral assemblages and spatial extent of these hydrothermal footprints is crucial for successful exploration, but is commonly hindered by the impact of regolith processes on the Earth's surface. Hyperspectral drill core (HyLogger?-3) data were used to characterise alteration mineralogy at the Mt Olympus gold deposit located 35 km southeast of Paraburdoo along the Nanjilgardy Fault within the northern margin of the Ashburton Basin in Western Australia. Mineralogy interpreted from hyperspectral data over the visible to shortwave (400–2500 nm) and thermal (6000–14500 nm) infrared wavelength ranges was validated with X-ray diffraction and geochemical analyses. Spaceborne multispectral (ASTER) and airborne geophysical (airborne electromagnetic, AEM) data were evaluated for mapping mineral footprints at the surface and sub-surface. At the deposit scale, mineral alteration patterns were identified by comparing the most abundant mineral groups detected in the HyLogger data against lithology logging and gold assays. Potential hydrothermal alteration phases included Na/K-alunite, kaolin phases (kaolinite, dickite), pyrophyllite, white mica, chlorite and quartz, representing low-T alteration of earlier greenschist metamorphosed sediments. The respective zoned mineral footprints varied depending on the type of sedimentary host rock. Siltstones were mainly characterised by widespread white-mica alteration with proximal kaolinite alteration or quartz veining. Sandstones showed (1) distal white mica, intermediate dickite, and proximal alunite + kaolinite or (2) widespread white-mica alteration with associated intervals of kaolinite. In both, sandstones and siltstones, chlorite was distal to gold mineralisation. Conglomerates showed distal kaolinite/dickite and proximal white-mica/dickite alteration. Three-dimensional visualisation of the gold distribution and spatially associated alteration patterns around Mt Olympus revealed three distinct categories: (1) several irregular, poddy, SE-plunging zones of >0.5 ppm gold intersected by the Zoe Fault; (2) sulfate alteration proximal to mineralisation, particularly on the northern side of the Mt Olympus open pit; and (3) varying AlIVAlVISiIV–1(Mg,Fe)VI–1 composition of white micas with proximity to gold mineralisation. Chlorite that developed during regional metamorphic or later hydrothermal alteration occurs distal to gold mineralisation. ASTER mineral mapping products, such as the MgOH Group Content used to map chlorite (±white mica) assemblages, showed evidence of correlation to mapped, local structural features and unknown structural or lithological contacts as indicated by inversion modelling of AEM data.  相似文献   

3.
The Rosia Poieni deposit is the largest porphyry copper deposit in the Apuseni Mountains, Romania. Hydrothermal alteration and mineralization are related to the Middle Miocene emplacement of a subvolcanic body, the Fundoaia microdiorite. Zonation of the alteration associated with the porphyry copper deposit is recognized from the deep and central part of the porphyritic intrusion towards shallower and outer portions. Four alteration types have been distinguished: potassic, phyllic, advanced argillic, and propylitic. Potassic alteration affects mainly the Fundoaia subvolcanic body. The andesitic host rocks are altered only in the immediate contact zone with the Fundoaia intrusion. Mg-biotite and K-feldspar are the main alteration minerals of the potassic assemblage, accompanied by ubiquitous quartz; chlorite, and anhydrite are also present. Magnetite, pyrite, chalcopyrite and minor bornite, are associated with this alteration. Phyllic alteration has overprinted the margin of the potassic zone, and formed peripheral to it. It is characterized by the replacement of almost all early minerals by abundant quartz, phengite, illite, variable amounts of illite-smectite mixed-layer minerals, minor smectite, and kaolinite. Pyrite is abundant and represents the main sulfide in this alteration zone. Advanced argillic alteration affects the upper part of the volcanic structure. The mineral assemblage comprises alunite, kaolinite, dickite, pyrophyllite, diaspore, aluminium-phosphate-sulphate minerals (woodhouseite-svanbergite series), zunyite, minamyite, pyrite, and enargite (luzonite). Alunite forms well-developed crystals. Veins with enargite (luzonite) and pyrite in a gangue of quartz, pyrophyllite and diaspore, are present within and around the subvolcanic intrusion. This alteration type is partially controlled by fractures. A zonal distribution of alteration minerals is observed from the centre of fractures outwards with: (1) vuggy quartz; (2) quartz + alunite; (3) quartz + kaolinite ± alunite and, in the deeper part of the argillic zone, quartz + pyrophyllite + diaspore; (4) illite + illite-smectite mixed-layer minerals ± kaolinite ± alunite, and e) chlorite + albite + epidote. Propylitic alteration is present distal to all other alteration types and consists of chlorite, epidote, albite, and carbonates. Mineral parageneses, mineral stability fields, and alteration mineral geothermometers indicate that the different alteration assemblages are the result of changes in both fluid composition and temperature of the system. The alteration minerals reflect cooling of the hydrothermal system from >400 °C (biotite), to 300–200 °C (chlorite and illite in veinlets) and to lower temperatures of kaolinite, illite-smectite mixed layers, and smectite crystallization. Hydrothermal alteration started with an extensive potassic zone in the central part of the system that passed laterally to the propylitic zone. It was followed by phyllic overprint of the early-altered rocks. Nearly barren advanced argillic alteration subsequently superimposed the upper levels of the porphyry copper alteration zones. The close spatial association between porphyry mineralization and advanced argillic alteration suggests that they are genetically part of the same magmatic-hydrothermal system that includes a porphyry intrusion at depth and an epithermal environment of the advanced argillic type near the surface.Editorial handling: B. Lehmann  相似文献   

4.
安徽庐枞盆地酸性蚀变岩帽地质地球化学特征研究   总被引:1,自引:4,他引:1  
酸性蚀变岩帽是浅成低温热液系统演化的产物,形成于酸性高氧化性流体的化学条件下;在高硫化型浅成低温热液金矿床中广泛发育,是该类矿床的显著识别特征。通过对酸性蚀变岩帽的野外地质特征、矿物共生组合和地球化学特征研究,能较好阐明浅成低温成矿热液系统的特征、性质、发生和发展演化及成矿作用过程。庐枞矿集区是长江中下游成矿带重要的矿集区之一,盆地内广泛发育以明矾石为特征蚀变矿物的酸性蚀变岩帽,面积超过30km~2,指示盆地内高硫化浅成低温热液系统的存在。目前为止,前期工作主要针对明矾石矿床地质特征和明矾石资源储量进行,该酸性蚀变岩帽的地质地球化学特征研究尚未开展。本次工作通过对酸性蚀变岩帽系统的野外采样、全岩地球化学分析和短波红外光谱测试分析技术(PNIRS测试)分析,确定其主要赋存在砖桥组火山岩中,组成矿物为石英、明矾石、高岭石、地开石,此外有少量绢云母、伊利石、珍珠陶土、叶蜡石、褐铁矿,极少数的叶腊石和黄钾铁矾等,在钻孔深部存在浸染状和半自形粒状黄铁矿。由于受到地表风化剥蚀和不同热热中心的影响,水平方向从矾山明矾石矿床向外围发育石英+明矾石带、石英+高岭石/地开石+明矾石带、石英+高岭石/地开石带、硅化带以及最外围的泥质带即高岭石±绢云母±伊利石带。根据酸性蚀变岩帽的矿物组合和主量元素特征,可将其分为三类:硅质蚀变岩、明矾石蚀变岩和粘土蚀变岩。硅质蚀变岩中SiO_2含量发生明显的富集作用,其余主量元素(K_2O、Na_2O、Al_2O_3、Fe_2O_3、P_2O5)含量显著降低;明矾石蚀变岩和粘土蚀变岩具有相似的地球化学特征,SiO_2、Al_2O_3、Fe_2O_3、P_2O_5元素含量范围变大,K_2O和Na_2O含量降低,且Na_2O降低更加明显;而钛为不活泼元素,在岩石发生蚀变过程中TiO_2含量变化很小。矾山地区的酸性蚀变岩帽的产状、蚀变类型、地球化学特征受构造和地层的双重控制。  相似文献   

5.
A widespread, intense hydrothermal alteration zone has developed in the Cretaceous Saplica volcanics as a result of the intrusion of Late Cretaceous-Paleocene granitoids. The propylitic, phyllitic (sericitic), and argillic alteration along with hematite, silica polymorphs, and two types of tourmaline mineralization developed under a wide range of Eh and pH conditions.

Alunite, kaolinite, and silica are abundant in the argillic alteration, whereas sericite dominates in the phyllic alteration. Most of the major alunite deposits are located along the periphery of the Saplica volcanic rocks and in addition contain alunite, kaolinite + quartz ± opal ± cristobalite. Illite and pyrite, barite, and gypsum also occur in small amounts.

Major and trace elements are concentrated in, or were leached from, the volcanic rocks, depending upon the alteration types. In general, Al + K and Mg + Ca + Fe were enriched in the alunitic + sericitic and propylitic alteration types, respectively. On the other hand, Ca, Mg, and Fe were leached during argillic alteration, and Fe was concentrated in hematite formation. Strong leaching of Na was determined for alteration types. Silica generally decreased in argillitic (kaolinitic and alunitic) alteration zones. Most trace elements were mobile during hydrothermal alteration. Y, Sc, Mo, Cr, Co, Ni, and Zn tend to be mobile in acid aqueous systems, and thus are nearly absent in these alunitic alteration zones. In the surrounding kaolinitic envelope, these elements are present at background (average) or slightly higher concentrations. Rb and Sr contents are high in the alunitic and kaolinitic zones. Barium is highest near the alunite zone because of the relative insolubility of barite in acidic solutions. Pb and Cu contents increase in the propylitic zone. Such hydrothermal alteration zones can be used effectively in the exploration and evaluation of mineral resources of the eastern Black Sea region.  相似文献   

6.
Geology of the Gasa Island (Gasado), Korea, consists mainly of tuffaceous rocks, rhyolite and andesitic rocks related to Cretaceous volcanic activity. These rocks are hydrothermally altered, and are classified into the following four alteration zones based on the alteration mineral assemblages: advanced argillic alteration (alunite‐pyrophyllite‐kaolinite‐pyrite); sericitic alteration (sericite‐kaolinite‐quartz); propylitic alteration (quartz‐chlorite‐carbonate‐pyrite); and silicified zones. Alunite in the advanced argillic zone occurred in two types; a massive or disseminated type and a vein type. Most of the massive or disseminated alunites are ≥50 μm in size, whereas the size of vein alunites is <20–30 μm. Alunite grain size is greater in the central part of disseminated or massive alunite, while it is smaller toward the margins. The gold content of each alteration zone is 21–2900 ppb, 15–88 ppb, 57–1730 ppb, and 2–231 ppb, respectively. The gold content of quartz veins developed in the alteration zones is 39–715 ppb. Gold is enriched in the minerals and rocks around faults and fissures, and is strongly concentrated in the advanced argillic alteration zone around faults. Hydrothermal solutions traveling along the fracture systems might be responsible for the comparatively high gold content in the study area. δ34S of alunites occurring in the advanced argillic alteration zone range from +16.5 to +3.9‰, although most are in a comparatively narrow range from +8.6 to +5.2‰. There is no difference between disseminated or massive and vein alunites. The δ34S of pyrites in the advanced argillic alteration zone are from +4.8 to ?2.9‰. Oxygen and hydrogen isotope values of alunites are from +8.5 to 0‰ and from ?59.6 to ?97.3‰, respectively. With an assumed temperature of 200°C, δD and δ18O of hydrothermal solutions calculated for alunites are from ?53.6 to ?91.3‰, and from ?2.4 to ?8.1 for massive or disseminated alunites and from ?6.6 to ?10.9‰ for vein alunites, respectively. These data suggest that meteoric water dominated during the alunite formation. Isotopic data, geological setting, mineralogy, size of alunite and pure alunite composition (K end member) indicate that alunites of the study area were formed in the steam‐heated environment of acid sulfate alteration.  相似文献   

7.
In the design of hydrothermal solubility studies it is important that the system be completely defined chemically. If the solubilities of minerals containing m metallic elements are to be determined in hydrothermal NaCl solutions, the phase rule requires that a total of m + 6 independent intensive parameters be controlled or measured in order to determine completely the system.In this study the solubility of the univariant assemblage pyrite + pyrrhotite + magnetite has been determined in vapor saturated hydrothermal solutions from 200 to 350°C for NaCl concentrations ranging from 0.0 to 5.0 molal. At any temperature, oxygen and sulfur fugacities were buffered by the chosen assemblage. System pH was determined from excess CO2 partial pressures and computed ionic equilibria. Equilibrium constants were calculated by regression analysis of solubility data. The results show that more than 10 ppm of each mineral can dissolve in typical hydrothermal solutions under geologically realistic conditions. Solubilities were best represented by the species Fe2+ and FeCl+ at 200 and 250°C; Fe2+, FeCl+ and FeCl20 at 300°C; and Fe2+ and FeCl20 at 350°C. Ore deposition would occur by lowering temperature, diluting chloride concentration, or by raising pH through wall rock alteration reactions.  相似文献   

8.
孙衍东  谢桂青  陈静 《矿床地质》2022,41(3):489-505
含明矾石蚀变岩帽是斑岩-浅成低温热液成矿系统顶部的标志性蚀变,但关于其找矿指向性矿物——明矾石的特征系统地研究不够,特别是如何通过明矾石矿物学特征有效判断蚀变岩帽下伏的成矿潜力,是目前的难题。中国东南沿海地区已探明了以紫金山金-铜矿床、大矾山蚀变岩帽为代表的多个大型斑岩-浅成低温矿床和含明矾石蚀变岩帽,是探讨该问题的理想对象。文章以大矾山蚀变岩帽(面积约8 km2)为研究对象,利用短波红外光谱、电子探针、X射线衍射等技术分析手段,开展明矾石的矿物组合、类型和波谱等方面研究。结果表明,大矾山蚀变岩帽主要蚀变矿物为石英、明矾石、叶腊石、地开石、高岭石、白云母及少量蒙脱石,具有蚀变分带特征,中间主要为石英-明矾石-地开石和地开石-叶腊石蚀变带,南部主要为白云母化-蒙脱石蚀变带,北部为高岭石-白云母蚀变带。研究区的明矾石全为钾质明矾石,按晶形可分为粒状、叶片状和纤维状3种类型,明矾石颗粒普遍发育环带,暗示其形成过程中流体具脉冲式特征。明矾石的短波红外特征吸收峰在1477.69~1479.98 nm之间,具有从东南向西北逐渐变大的趋势,反映出热源可能位于西北部。结合区域地质背景,笔者认为大矾山蚀变岩帽是典型的酸性蚀变岩帽,该区的西北部靠近热源中心,其深部沿断裂带具有寻找浅成低温热液铜(金)矿床的潜力。  相似文献   

9.
西藏羊八井地热田水热蚀变   总被引:5,自引:1,他引:5       下载免费PDF全文
朱梅湘  徐勇 《地质科学》1989,(2):162-175
本文对羊八井地热田钻扎ZK-201、ZK-301和ZK-308的岩心进行了较系统的蚀变矿物学、岩石学和流体包体研究。划分出6个蚀变矿物共生组合及蚀变分带,讨论了蚀变过程中岩石化学变化的特点,并推测了蚀变的温度和酸碱度条件。研究表明,热田曾处于极度的活动状态,最高温度达220-240℃,由于冷水的入侵,热田在目前钻探所及范围已冷却了50-70℃。蚀变矿物分布模式表明,目前热田流体主通道位于北部,热田进一步的开发应以寻找北部深部高温流体为主。  相似文献   

10.
Aluminous, high-temperature clay minerals form from alteration of tholeiitic basaltic glass and calcic plagioclase during hydrothermal venting on the crest of the East Pacific Rise at 21°N. The clay alteration assemblages are layered crusts (up to 1 mm thick) completely replacing glass and calcic plagioclase adjacent to surfaces exposed to hydrothermal fluids. The interiors of the affected basalt samples have unaltered appearances and oxygen isotopic compositions just slightly heavier than that of MORB. The surficial alteration crusts are mixtures of beidellitic smectite (aluminous, dioctahedral), randomly interstratified mixed-layer Al-rich chlorite/smectite, minor chlorite, an x-ray amorphous aluminosilicate material, and possible minor serpentine (amesite). A δ18O value of +4.1 ± 0.2%. (SMOW) is determined for the beidellitic smectite. Assuming that this smectite equilibrated with hydrothermal fluid having an oxygen isotope value between that of seawater (0%.) and 350°C hydrothermal fluid from EPR, 21°N vents (+1.6%.), an equilibration temperature between 290°C and 360°C is calculated for the beidellitic smectite. This is substantially higher than any previously reported temperature for an oceanic smectite. The mixed-layer Al-rich chlorite/smectite has a δ18O value of +3.5%., which corresponds to equilibration at 295°–360°C. The aluminous composition of the alteration assemblage is uncommon for clay minerals produced by submarine hydrothermal basalt alteration. We suggest that this assemblage is largely the product of high-temperature interaction between basalt glass + plagioclase and Mg-poor, acidic hydrothermal fluids, with possibly some contribution of Mg from bottom seawater, and that the aluminous clays either incorporate Al3+ remobilized from basalt by lowpH hydrothermal fluids, or are residual phases remaining after intense alteration of basaltic glass + plagioclase.  相似文献   

11.
Mainly calc-alkaline, andesitic, and dacitic volcanics from different late Miocene-Pliocene eruption centers crop out WSW of Konya, and locally are interbedded with lacustrine sediments. Hydrothermal alteration within these rocks is widespread. In addition to kaolinite, other major alteration products include halloysite, alunite, cristobalite, quartz, illite, montmorillonite, and zeolitegroup minerals. Based on the cristobalite-quartz relationship, the kaolinization temperature is estimated as ~100°C.

The samples were mineralogically and chemically examined using XRD, SEM-EDS, IR, DTA-TG, and XRF. The crystallinity of the kaolinite is moderate, and shows structural disorder. Both the kaolinite and halloysite are almost stoichometric. Kaolinization generally led to Al2O3 increases and release of alkalies, alkaline earths, most of the Fe2O3, and SiO2. SiO2 and Al2O3 contents are low, and LOI is very high for halloysite deposits relative to kaolin occurrences. The kaolinite-alunite assemblages indicate that pH of the altering solutions initially was ~4. SEM investigation demonstrates that kaolinite has booklet texture, whereas halloysite is acicular to needleshaped. The chemical, mineralogic, and firing properties of the kaolin deposits are appropriate for use as refractory raw material. The Erenler Dagi kaolin deposits are excellent examples of the acid-sulfate type of hydrothermal alteration. The findings of the study may be useful in exploration for similar hydrothermal mineral occurrences worldwide.  相似文献   

12.
The Damoshan deposit is a small B-F-Sn Bi exoskarn deposit and contains a distinctive mineral assemblage comprising andradite,vesuvianite,calcite,diopside,magnetite,hematite,nordenskioldine,cassiterite,varlamoffite,schenfliesite,native bismuth,eulytite,bismite and bismuthite,in which the occurrence of eulytite is the first reported in China.Textures of the mineral paragenses show that andradite,vesuvianite and diopside were the earliest phases formed during metasomatism,i.e.,the skarn forming stage.Then nordenskioldine,magnetite and native bismuth,perhaps together with eulytite,were precipitated at the stage of retrograde alteration.The minerals varlamoffite,schoenfliesite,hematite ,bismite and bismuthite were probably the product of supergene alteration.The minerals were analyzed by means of electron microprobe.The data on the ,coexisting phases and their compositons show that during the metasomatism reduced F-and Sn-rich primary mineralizing solutions reacted with highly oxidized carbonated of the Gejie Formation,producing a high Fe^2 /Fe^3 skarn(vesuvianite-fluorite skarn)near the contact of granite,and a low Fe^2 /Fe^3 skarn(vesuvianite-fluorite skarn)near the contact of granite,and a low Fe^2 /Fe^3 skarn(andradite skarn)in the outer zone of the skarn body in which andradite is extremely tin-bearing up to 5.14 wt% SnO2),In the retrograde alteration stage ,B-rich,but F-and Si-deficient mineralizing solutions replaced the tin-bearing andradite,forming an association of nordenskioldine and magnetite,No sulphides were deposited at this stage because of the oxidization ambient conditions in the andradite skarn.In the spergene oxidation zone,the nordenskioldine was dissolved into varlmoffite and calcite,the native bismuth was transformed into bismite or bismuthite ,and the magnetite was altered into hematite under the action of the CO2-rich supergene solutions.  相似文献   

13.
安徽庐枞盆地矾山酸性蚀变岩帽形成时代及其地质意义   总被引:2,自引:1,他引:2  
酸性蚀变岩帽是岩浆热液流体和围岩在近地表相互作用的产物,是斑岩-浅成低温热液成矿系统的重要指标。发育在长江中下游成矿带庐枞盆地内的矾山酸性蚀变岩帽产出面积较大( 20km~2)。前人对该酸性蚀变岩帽中的明矾石矿床的地质和地化特征进行了相关研究,但详细的年代学研究工作尚未开展。为精确厘定矾山酸性蚀变岩帽的形成时代,本文开展了明矾石~(40)Ar-~(39)Ar法和金红石原位U-Pb法定年。矾山酸性蚀变岩帽中明矾石共有三种类型:ⅠA型明矾石主要呈交代蚀变发生在热液蚀变早阶段,与石英、粒状黄铁矿或赤铁矿、少量金红石共生;ⅠB型明矾石形成于热液蚀变晚阶段,主要呈叶片状集合体充填在开放空间中,与石英、星点状赤铁矿、粒状金红石集合体共生,少量金红石和赤铁矿沿明矾石解理裂隙分布;Ⅱ型明矾石是表生明矾石,主要呈细粒集合体沿裂隙分布,与赤铁矿、高岭石、地开石共生。三类明矾石形成于不同环境下:ⅠA和ⅠB型明矾石形成于岩浆热液环境下,是大矾山明矾石矿区的主要产物;Ⅱ型细粒明矾石分布在矾山酸性蚀变岩帽的非明矾石矿区,是表生环境下的产物。ⅠA型明矾石的~(40)Ar-~(39)Ar定年的坪年龄为131±6Ma,代表了矾山酸性蚀变岩帽的形成时代。与Ⅱ型明矾石密切共生的金红石U-Pb定年结果为32. 7±4Ma,在该期间,整个盆地内无岩浆活动发生,该年龄反映了矾山酸性蚀变岩帽经历表生氧化作用的时间。明矾石和金红石定年结果分别对应岩浆热液和表生明矾石的形成时代。在利用明矾石进行找矿工作时需先明确明矾石成因,矾山酸性蚀变岩帽中深成明矾石是下一阶段的找矿研究的基础。  相似文献   

14.
Electron spin resonance and infrared spectroscopic studies of lignite and ball clay from South Devon, and of extracts obtained from them by solvent fractionation, revealed similarities between corresponding organic components associated with both materials. All fractions exhibited a free radical resonance at g = 2.0037, which occurred with greatest intensity in the humic acids. Additional ESR features due to Fe3+, Mn2+ and VO2+ complexes were observed. Ferric ions give rise to resonances at g = 4.2 which have not been previously reported in the case of natural carbonaceous materials. It is shown that the paramagnetic species associated with the ball clay and lignite extracts do not significantly contribute to the observed ESR spectra of kaolinites, the latter being attributable to substituted Fe3+ ions and defect centres within the kaolinite lattice.  相似文献   

15.
Natural blue and colorless rare-gem mineral specimens of euclase from Brazil are investigated by electron paramagnetic resonance (EPR). Angular dependences of Fe3+ EPR spectra in three mutually perpendicular crystal planes are analyzed revealing g and D tensors with significant low-symmetry effects, as for example, the high asymmetry parameter E/D = 0.28. Fourth-order degree Stevens parameters are also included in analysis. The anisotropy of both g and D tensors is consistent with Fe3+ substituting for Al3+ ions in strongly distorted AlO5(OH) octahedra in which the oxygen distances range from 1.85 to 1.98 Å. Fe3+ is not responsible for the blue color because colorless and blue euclase show nearly the same Fe3+ concentration as measured by EPR. However, total iron content in blue sample is much higher than in the colorless one suggesting that the existing model that Fe2+–Fe3+ intervalence charge transfer transition may explain the blue color of euclase.  相似文献   

16.
Experimental evidence is reported for Fe2+ disproportionation in Al-free perovskite (Pv), when submitted to large temperature gradients (i.e., under off-equilibrium conditions) in a laser heated diamond anvil cell (LHDAC). To enable this effect, the experimental procedure was designed to produce large radial and axial temperature gradients. In the Pv and ferropericlase (Fp) assemblage synthesized after dissociation of natural olivine, the three chemical states of iron (i.e., Fe0, Fe2+ and Fe3+) could be evidenced by electron probe microanalysis (EPMA), through variations of oxygen contents attached to the Fe cations. Despite inherent difficulties for determination of O-contents and Fe3+/ΣFe ratios using EPMA, we recorded significant changes in iron oxidation state across the laser-heated strip. These changes are correlated with variations in composition for the major elements (Fe, Mg, and Si), which evidences that the Pv/Fp assemblage experienced large segregation under the strong temperature gradients. Grains of metallic iron were detected in parts of the laser-heated strip coexisting with a Pv phase with Fe/(Mg + Fe) = 6 at% and most of its iron as Fe3+. This Fe2+-disproportionation reaction involves insertion of Fe3+-defects in the Pv lattice. This Fe3+-bearing Pv phase is presumably unstable and decomposes into a mineral assemblage including magnesioferrite, which is detected at the border of the laser-heated strip.  相似文献   

17.
The Rangan area is part of Cenozoic magmatic belt of central Iran. Eocene volcanic flows and pyroclastic rocks are intruded by a Neogene rhyolitic dome along the major Qom–Zefreh fault. The dome is pervasively hydrothermally altered. The main mineral assemblage is jarosite+barite+pyrite+quartz+sericite. This assemblage indicates acid sulphate or advanced argillic alteration. Sulfur and oxygen isotope data (δ34S & δ18O (SO4)) obtained from jarosite and barite indicate a mixing episode during the evolution of hydrothermal system and reflect the overlapping of two distinct sources of acid sulphate alteration in Rangan, i.e., a magmatic–hydrothermal fluid reacting with steam-heated meteoric water. Considering the position of brittle–ductile transition and major fault movements, jarosite and barite seemingly precipitated from rapid injection of magmatic–hydrothermal fluids into the upper portions of a steam-heated environment.  相似文献   

18.
Hydrothermal sulfide–oxide–gold mineral assemblages in gold deposits in the Archaean St. Ives gold camp in Western Australia indicate extremely variable redox conditions during hydrothermal alteration and gold mineralization in space and time. Reduced alteration assemblages (pyrrhotite–pyrite) occur in deposits in the southwest of the camp (e.g., Argo, Junction deposits) and moderately to strongly oxidized assemblages (magnetite–pyrite, hematite–pyrite) occur in deposits in the Central Corridor in the northeast (e.g., North Orchin, Revenge deposits). Reduced mineral assemblages flank the Central Corridor of oxidized deposits and, locally, cut across it along E–W trending faults. Oxidized mineral assemblages in the Central Corridor are focused on gravity lows which are interpreted to reflect abundant felsic porphyritic intrusions at about 1,000 m below present surface. Hydrothermal magnetite predates and is synchronous with early phases of gold-associated albite–carbonate–pyrite–biotite–chlorite hydrothermal alteration. Later-stage, gold-associated pyrite is in equilibrium with hematite. The spatial distribution and temporal sequence of iron sulfides and oxides with gold indicate the presence of at least two spatially restricted but broadly synchronous hydrothermal fluids with contrasting redox states. Sulfur isotope constraints support the argument that the different mineral assemblages reflect differences in redox conditions. The δ 34S values for pyrite for the St. Ives gold camp range between −8.4‰ and +5.1‰ with the negative values occurring in oxidized magnetite-rich domains and slightly negative or positive values occurring in reduced, pyrrhotitic domains. Preliminary spatial and paragenetic analysis of the distribution of iron sulfides and oxides in the St. Ives camp suggests that gold grades are highest where the redox state of the hydrothermal alteration assemblages switches from relatively reduced pyrrhotite–pyrite to relatively oxidized magnetite–pyrite and hematite–pyrite both in space and time. Gold deposition is inferred to have occurred where fluids of contrasting redox state mixed.  相似文献   

19.
The present study deals with the direct determination of colloidal forms of iron in river-borne solids from main rivers of the Amazon Basin. The contribution of different forms of colloidal iron have been assessed using ultrafiltration associated with various techniques including electron paramagnetic resonance spectroscopy (EPR), high resolution transmission electron microscopy (HRTEM), and micro proton-induced X ray emission analysis (μPIXE). EPR shows the presence of Fe3+ bound to organic matter (Fe3+-OM) and colloidal iron oxides. Quantitative estimate of Fe3+-OM content in colloidal matter ranges from 0.1 to 1.6 weight % of dried solids and decreases as the pH of the river increases in the range 4 to 6.8. The modeling of the field data with the Equilibrium Calculation of Speciation and Transport (ECOSAT) code demonstrates that this trend is indicative of a geochemical control resulting from the solubility equilibrium of Fe oxyhydroxide phase and Fe binding to organic matter. Combining EPR and μPIXE data quantitatively confirms the presence of colloidal iron phase (min. 35 to 65% of iron content), assuming no divalent Fe is present. In the Rio Negro, HRTEM specifies the nature of colloidal iron phase mainly as ferrihydrite particles of circa 20 to 50 Å associated with organic matter. The geochemical forms of colloidal iron differentiate the pedoclimatic regions drained by the different rivers, corresponding to different major weathering/erosion processes. Modeling allows the calculation of the speciation of iron as mineral, organic and dissolved phases in the studied rivers.  相似文献   

20.
Abstract: Characterization of Neogene magmatism in the Ryuo mine area in the Kitami metallogenic province was carried out on the basis of K-Ar data for felsic–to–mafic terrestrial extrusive and intrusive volcanism from Late Miocene to Early Pliocene. The Ryuo epithermal gold-silver deposit occurs primarily in the felsic volcaniclastic rocks of the Ikutahara Formation and in Ryuo Rhyolite. The Ryuo mineralization age of 7. 7 – 8. 1 Ma coincides well with the hydrothermal alteration age (7. 7 Ma) of Ryuo Rhyolite hosting ore veins. It is concluded that the Ryuo mineralization was essentially accompanied by felsic volcanic activity during the sedimentation of the Ikutahara Formation, and was closely related both temporally and spatially to the intrusive activity of Ryuo Rhyolite. Hydrothermal alteration related to the epithermal gold-silver mineralization of the Ryuo deposit is primarily characterized by early regional and vein-related alterations, and late steam-heated alteration. Early regional alteration consists of a smectite halo (smectite+pyrite±quartz±opal–CT±mordenite°Clinoptilolite–heulandite series mineral). Early vein-related alteration is primarily marked by potassic alteration. This alteration halo can be subdivided into a K-feldspar halo (quartz+adular–ia+pyrite±illite±interstratified illite/smectite±smectite), an illite halo (quartz+illite + chlorite + pyrite ± interstratified illite/smec–tite±smectite) and an interstratified illite/smectite halo (quartz + interstratified illite/smectite+pyrite±smectite). Late steam-heated alteration characterized by kaolinite or alunite locally overprints the early K-feldspar halo. The style of the Ryuo gold-silver deposit is a low-sulfidation epithermal type. The gold–silver–bearing quartz vein precipitates during boiling of ore fluid. The origin of the ore fluid might be meteoric water. The temperature and sulfur fugacity conditions during precipitation of electrum and acanthite are estimated to be 206°– 238°C and 10-13.5 – 10-11.6 atm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号