首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Applied Geochemistry》1991,6(5):477-494
In the past decade, the isotopic compositions of C in > 600 inclusion-bearing diamonds have been determined. Such analyses have revealed the following isotopic characteristics: (1) peridotitic diamonds, which typically contain garnet, chromite, olivine and/or orthopyroxene inclusions with refractory compositions (high Mg, Cr), have δ13C values predominantly between −10 and −1‰, with a sharp peak in the distribution near −5‰; (2) eclogitic diamonds, which commonly contain inclusions of omphacitic clinopyroxene, Cr-poor pyrope, and/or eclogitic accessory minerals such as rutile, kyanite, coesite or sanidine, have δ13C values between −34 and +3‰, with a smaller peak near −5‰; (3) the isotopic compositions obtained for suites of diamonds from individual occurrences are, in general, unique and do not resemble the range and distribution obtained by amalgamating the diamond isotope data from a number of localities; (4) isotopic zoning patterns and heterogeneities are found in some diamonds; cores of coated diamonds tend to be depleted in13C relative to the rims, and within single octahedral diamonds δ13C variations of nearly 6‰ have been reported.Because expected C isotope fractionations at mantle temperatures are small, attempts to model the full range of diamond isotope values through fractionating a homogeneous mantle C source have been unsuccessful. Nevertheless, fractionation is probably responsible for some of the observed variation in δ13C values. Two other models have also been proposed to account for the diamond characteristics outlined above. The “primordial model” suggests that the range and distribution of C isotope compositions are inherited from primordial C in the mantle which has an inhomogeneous isotopic composition, such as that found in meteorites. The “subduction model” suggests that subducted, crustal C is the source of C in diamonds, as organic and inorganic C compounds in the crust exhibit a range of δ13C values similar to that observed in diamonds. This paper reviews the C isotope characteristics of diamonds and compares the models which have been proposed to explain the origins of these characteristics.  相似文献   

2.
The diamond population from the Jagersfontein kimberlite is characterized by a high abundance of eclogitic, besides peridotitic and a small group of websteritic diamonds. The majority of inclusions indicate that the diamonds are formed in the subcratonic lithospheric mantle. Inclusions of the eclogitic paragenesis, which generally have a wide compositional range, include two groups of eclogitic garnets (high and low Ca) which are also distinct in their rare earth element composition. Within the eclogitic and websteritic suite, diamonds with inclusions of majoritic garnets were found, which provide evidence for their formation within the asthenosphere and transition zone. Unlike the lithospheric garnets all majoritic garnet inclusions show negative Eu-anomalies. A narrow range of isotopically light carbon compositions (δ13C −17 to −24 ‰) of the host diamonds suggests that diamond formation in the sublithospheric mantle is principally different to that in the lithosphere. Direct conversion from graphite in a subducting slab appears to be the main mechanism responsible for diamond formation in this part of the Earth’s mantle beneath the Kaapvaal Craton. The peridotitic inclusion suite at Jagersfontein is similar to other diamond deposits on the Kaapvaal Craton and characterized by harzburgitic to low-Ca harzburgitic compositions.  相似文献   

3.
Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia   总被引:9,自引:0,他引:9  
The Sputnik kimberlite pipe is a small “satellite” of the larger Mir pipe in central Yakutia (Sakha), Russia. Study of 38 large diamonds (0.7-4.9 carats) showed that nine contain inclusions of the eclogitic paragenesis, while the remainder contain inclusions of the peridotitic paragenesis, or of uncertain paragenesis. The peridotitic inclusion suite comprises olivine, enstatite, Cr-diopside, chromite, Cr-pyrope garnet (both lherzolitic and harzburgitic), ilmenite, Ni-rich sulfide and a Ti-Cr-Fe-Mg-Sr-K phase of the lindsleyite-mathiasite (LIMA) series. The eclogitic inclusion suite comprises omphacite, garnet, Ni-poor sulfide, phlogopite and rutile. Peridotitic ilmenite inclusions have high Mg, Cr and Ni contents and high Nb/Zr ratios; they may be related to metasomatic ilmenites known from peridotite xenoliths in kimberlite. Eclogitic phlogopite is intergrown with omphacite, coexists with garnet, and has an unusually high TiO2 content. Comparison with inclusions in diamonds from Mir shows general similarities, but differences in details of trace-element patterns. Large compositional variations among inclusions of one phase (olivine, garnet, chromite) within single diamonds indicate that the chemical environment of diamond crystallisation changed rapidly relative to diamond growth rates in many cases. P-T conditions of formation were calculated from multiphase inclusions and from trace element geothermobarometry of single inclusions. The geotherm at the time of diamond formation was near a 35 mW/m2 conductive model; that is indistinguishable from the Paleozoic geotherm derived by studies of xenoliths and concentrate minerals from Mir. A range of Ni temperatures between garnet inclusions in single diamonds from both Mir and Sputnik suggests that many of the diamonds grew during thermal events affecting a relatively narrow depth range of the lithosphere, within the diamond stability field. The minor differences between inclusions in Mir and Sputnik may reflect lateral heterogeneity in the upper mantle.  相似文献   

4.
《Lithos》2007,93(1-2):199-213
Kimberlite pipes K11, K91 and K252 in the Buffalo Head Hills, northern Alberta show an unusually large abundance (20%) of Type II (no detectable nitrogen) diamonds. Type I diamonds range in nitrogen content from 6 ppm to 3300 ppm and in aggregation states from low (IaA) to complete (IaB). The Type IaB diamonds extend to the lowest nitrogen concentrations yet observed at such high aggregation states, implying that mantle residence occurred at temperatures well above normal lithospheric conditions. Syngenetic mineral inclusions indicate lherzolitic, harzburgitic, wehrlitic and eclogitic sources. Pyropic garnet and forsteritic olivine characterize the peridotitic paragenesis from these pipes. One lherzolitic garnet inclusion has a moderately majoritic composition indicating a formation depth of ∼ 400 km. A wehrlitic paragenesis is documented by a Ca-rich, high-chromium garnet and very CaO-rich (0.11–0.14 wt.%) olivine. Omphacitic pyroxene and almandine-rich garnet are characteristic of the eclogitic paragenesis. A bimodal δ13C distribution with peaks at − 5‰ and − 17‰ is observed for diamonds from all three kimberlite pipes. A large proportion (∼ 40%) of isotopically light diamonds (δ13C < −10‰) indicates a predominantly eclogitic paragenesis.The Buffalo Head Terrane is of Lower Proterozoic metamorphic age (2.3–2.0 Ga) and hence an unconventional setting for diamond exploration. Buffalo Hills diamonds formed during multiple events in an atypical mantle setting. The presence of majorite and abundance of Type II and Type IaB diamonds suggests formation under sublithospheric conditions, possibly in a subducting slab and resulting megalith. Type IaA to IaAB diamonds indicate formation and storage under lower temperature in normal lithospheric conditions.  相似文献   

5.
Graphite-bearing peridotites, pyroxenites and eclogite xenoliths from the Kaapvaal craton of southern Africa and the Siberian craton, Russia, have been studied with the aim of: 1) better characterising the abundance and distribution of elemental carbon in the shallow continental lithospheric mantle; (2) determining the isotopic composition of the graphite; (3) testing for significant metastability of graphite in mantle rocks using mineral thermobarometry. Graphite crystals in peridotie, pyroxenite and eclogite xenoliths have X-ray diffraction patterns and Raman spectra characteristic of highly crystalline graphite of high-temperature origin and are interpreted to have crystallised within the mantle. Thermobarometry on the graphite-peridotite assemblages using a variety of element partitions and formulations yield estimated equilibration conditions that plot at lower temperatures and pressures than diamondiferous assemblages. Moreover, estimated pressures and temperatures for the graphite-peridotites fall almost exclusively within the experimentally determined graphite stability field and thus we find no evidence for substantial graphite metastability. The carbon isotopic composition of graphite in peridotites from this and other studies varies from δ13 CPDB = ? 12.3 to ? ?3.8%o with a mean of-6.7‰, σ=2.1 (n=22) and a mode between-7 and-6‰. This mean is within one standard deviation of the-4‰ mean displayed by diamonds from peridotite xenoliths, and is identical to that of diamonds containing peridotite-suite inclusions. The carbon isotope range of graphite and diamonds in peridotites is more restricted than that observed for either phase in eclogites or pyroxenites. The isotopic range displayed by peridotite-suite graphite and diamond encompasses the carbon isotope range observed in mid-ocean-ridge-basalt (MORB) glasses and ocean-island basalts (OIB). Similarity between the isotopic compositions of carbon associated with cratonic peridotites and the carbon (as CO2) in oceanic magmas (MORB/OIB) indicates that the source of the fluids that deposited carbon, as graphite or diamond, in catonic peridotites lies within the convecting mantle, below the lithosphere. Textural observations provide evidence that some of graphite in cratonic peridotites is of sub-solidus metasomatic origin, probably deposited from a cooling C-H-O fluid phase permeating the lithosphere along fractures. Macrocrystalline graphite of primary appearance has not been found in mantle xenoliths from kimberlitic or basaltic rocks erupted away from cratonic areas. Hence, graphite in mantle-derived xenoliths appears to be restricted to Archaean cratons and occurs exclusively in low-temperature, coarse peridotites thought to be characteristic of the lithospheric mantle. The tectonic association of graphite within the mantle is very similar to that of diamond. It is unlikely that this restricted occurrence is due solely to unique conditions of oxygen fugacity in the cratonic lithospheric mantle because some peridotite xenoliths from off-craton localities are as reduced as those from within cratons. Radiogenic isotope systematics of peridotite-suite diamond inclusions suggest that diamond crystallisation was not directly related to the melting events that formed lithospheric peridotites. However, some diamond (and graphite?) crystallisation in southern Africa occurred within the time span associated with the stabilisation of the lithospheric mantle (Pearson et al. 1993). The nature of the process causing localisation of carbon in cratonic mantle roots is not yet clearly understood.  相似文献   

6.
The first data are reported on the carbon isotopic composition of diamond crystals from the Grib pipe kimberlite deposit of the Archangelsk diamond province (ADP). The δ13C value of the crystals ranges from ?2.79 to ?9.61‰. The isotopic composition of carbon was determined in three zoned crystals (δ13C of ?5.8 ?6.96 ‰, ?5.64/ ?5.85 ‰, and ?5.94/ ?5.69 ‰), two “diamond in diamond” samples (diamond inclusion with δ13C of ?4.05 and ?6.34 ‰ in host diamond crystals with δ13C of ?8.05 and ?7.54 ‰, respectively), and two samples of coated diamonds (cores with δ13C of ?6.98 and ?6.78‰ and coats with δ13C of ?7.51 and ?8.01 ‰, respectively). δ13C values were obtained for individual diamond crystals from bort-type aggregates (δ13C of ?4.24/ ?4.05 ‰, ?6.58/ ?7.48 ‰, and ?5.48/ ?6.08 ‰). Correlations were examined between the carbon isotopic composition of diamonds and their crystal morphology; the color; the concentration of nitrogen, hydrogen, and platelet defects; and mineral inclusions content. It was supposed that the observed δ13C variations in the crystals are most likely related to the fractionation of carbon isotopes rather than to the heterogeneity of carbon sources involved in diamond formation. The isotopic characteristics of diamonds from the Grib pipe were compared with those of previously investigated diamonds from the Lomonosov deposit. It was found that diamonds from these relatively closely spaced kimberlite fields are different; this also indicates the existence of spatially localized peculiarities of isotope fractionation in processes accompanying diamond formation.  相似文献   

7.
Forty-one diamonds sourced from the Juina-5 kimberlite pipe in Southern Brazil, which contain optically identifiable inclusions, have been studied using an integrated approach. The diamonds contain <20 ppm nitrogen (N) that is fully aggregated as B centres. Internal structures in several diamonds revealed using cathodoluminescence (CL) are unlike those normally observed in lithospheric samples. The majority of the diamonds are composed of isotopically light carbon, and the collection has a unimodal distribution heavily skewed towards δ13C ~ ?25 ‰. Individual diamonds can display large carbon isotope heterogeneity of up to ~15 ‰ and predominantly have isotopically lighter cores displaying blue CL, and heavier rims with green CL. The light carbon isotopic compositions are interpreted as evidence of diamond growth from abiotic organic carbon added to the oceanic crust during hydrothermal alteration. The bulk isotopic composition of the oceanic crust, carbonates plus organics, is equal to the composition of mantle carbon (?5 ‰), and we suggest that recycling/mixing of subducted material will replenish this reservoir over geological time. Several exposed, syngenetic inclusions have bulk compositions consistent with former eclogitic magnesium silicate perovskite, calcium silicate perovskite and NAL or CF phases that have re-equilibrated during their exhumation to the surface. There are multiple occurrences of majoritic garnet with pyroxene exsolution, coesite with and without kyanite exsolution, clinopyroxene, Fe or Fe-carbide and sulphide minerals alongside single occurrences of olivine and ferropericlase. As a group, the inclusions have eclogitic affinity and provide evidence for diamond formation at pressures extending to Earth’s deep transition zone and possibly the lower mantle. It is observed that the major element composition of inclusions and isotopic compositions of host Juina-5 diamonds are not correlated. The diamond and inclusion compositions are intimately related to subducted material and record a polybaric growth history across a depth interval stretching from the lower mantle to the base of the lithosphere. It is suggested that the interaction of slab-derived melts and mantle material combined with subsequent upward transport in channelised networks or a buoyant diapir explains the formation of Juina-5 diamonds. We conclude that these samples, despite originating at great mantle depths, do not provide direct information about the ambient mantle, instead, providing a snapshot of the Earth’s deep carbon cycle.  相似文献   

8.
He Pozanti‐Karsanti ophiolite (PKO) is one of the largest oceanic remnants in the Tauride belt, Turkey. Micro‐diamonds were recovered from the podiform chromitites, and these were investigated based on morphology, color, cathodoluminescence, nitrogen content, carbon and nitrogen isotopes, internal structure and inclusions. The diamonds recovered from the PKO are mainly mixed‐habit diamonds with sectors of different brightness under the cathodoluminescence images. The total δ13C range of the PKO diamonds ranges between ?18.8 ‰ and ?28.4 ‰, with a principle δ13C mode at ?25 ‰. Nitrogen contents of the diamonds range from 7 to 541 μg/g with a mean value of 171 μg/g, and the δ15N values range from ?19.1 ‰ to 16.6 ‰, with a δ15N mode of ?9 ‰. Stacking faults and partial dislocations are commonly observed in the Transmission Electron Microscopy foils whereas inclusions are rather rare. Combinations of (Ca0.81Mn0.19)SiO3, NiMnCo‐alloy and nano‐size, quenched fluid phases were observed as inclusions in the PKO diamonds, confirming a natural origin of these diamonds. We believe that the δ13C‐depleted carbon signature of the PKO diamonds is a remnant of previously subducted crustal matter. These diamonds may have crystallized in metal‐rich melts in the asthenospheric mantle at depth below 250 km which were subsequently carried rapidly upward by asthenospheric melts/fliuds. We concluded that diamond‐bearing asthenospheric melts were likely involved in the formation of the Pozanti‐Karsanti podiform chromitite.  相似文献   

9.
Rare and unusual mineral inclusions in diamonds from Mwadui, Tanzania   总被引:9,自引:3,他引:6  
Syngenetic diamond inclusions from the Mwadui kimberlite reveal that an unusually fertile section of lithospheric mantle beneath the Central African Craton was sampled. This is shown by a very high ratio of lherzolitic to harzburgitic garnet inclusions (1:2) and low Mg/Fe-ratios in olivine and orthopyroxene. Geothermometry applied to the peridotitic inclusions indicates disequilibrium between non-touching inclusion pairs to be common. Disequilibrium between garnet-olivine and garnet-orthopyroxene pairs suggests successive iron enrichment during diamond formation, e.g. leading to the presence of harzburgitic garnet and lherzolitic olivine in the same diamond. Apart from the dominant peridotitic inclusion suite (88%), rare eclogitic inclusions occur (2%) and a number of uncertain paragenesis. Two diamonds, one with eclogitic garnets with moderate pyroxene solid solution and the other with a single ferro-periclase inclusion, suggest the contribution of a small sub-lithospheric component. The finding of the association Fe-FeO-Fe3O4 in one single diamond indicates diamond formation over a large range of f O2 conditions, possibly along redox fronts. Steep compositional gradients may also be reflected by the joint occurrence of harzburgitic garnet and a SiO2-phase in the same diamond. Alternatively the formation of the SiO2-phase may be due to extreme carbonation of the peridotitic source. Further unusual findings include the exsolution of a silicate phase from magnetite inclusions, (i.e. primary solution of γ-olivine) and an ilmenite inclusion with an eskolaite (Cr2O3) component of 14.5 mol%, the latter together with harzburgitic paragenesis silicate inclusions. Received: 23 August 1997 / Accepted: 7 January 1998  相似文献   

10.
We studied diamonds from a 2.697–2.700 Ga Wawa metaconglomerate (Southern Superior craton) and identified mineral inclusions of high-Cr, low-Ca pyrope garnet, low-Ti Mg-chromite, olivine (Fo93), and orthopyroxene (En94). The diamonds have δ13C of ?2.5 to ?4.0 ‰ and derive from the spinel-garnet and garnet facia of harzburgite. Geothermobarometry on non-touching, coexisting garnet-olivine and garnet-orthopyroxene pairs constrains the maximum geothermal gradient of 41 mW/m2 for the Neoarchean and a minimum lithosphere thickness of 190 km. The depleted harzburgitic paragenesis equilibrated at a relatively cold geotherm suggests the presence of a pre-2.7 Ga diamondiferous cratonic root beneath the northern Wawa terrane or the Opatica terrane of the Southern Superior craton, i.e., beneath terranes identified as sources for the metaconglomerate diamonds. Geophysical surveys, geothermal data, and petrology of mantle xenoliths emplaced in the Proterozoic-Mesozoic trace evolution of the mantle thermal regime and composition from the Archean to present. The root was thinned down to 150 km by the Jurassic, when the mantle was heated to 41–42 mW/m2. The diamondiferous root destruction was accompanied by more significant heating and was complete by 1.1 Ga in areas adjacent to the Midcontinent Rift. The geometry of the current high-velocity root and spatial correlations with boundaries of crustal terranes that docked to the nuclei of the Superior protocraton in the Neoarchean suggest that the root destruction in the Southern Superior may have been associated with tectonic erosion, craton amalgamation, and ensuing ingress of asthenospheric fluids.  相似文献   

11.
Mosaic diamonds from the Zarnitsa kimberlite (Daldyn field, Yakutian diamondiferous province) are morphologicaly and structurally similar to dark gray mosaic diamonds of varieties V and VII found frequently in placers of the northeastern Siberian craton. However, although being similar in microstructure, the two groups of diamonds differ in formation mechanism: splitting of crystals in the case of placer diamonds (V and VII) and growth by geometric selection in the Zarnitsa kimberlite diamonds. Selective growth on originally polycrystalline substrates in the latter has produced radial micro structures with grains coarsening rimward from distinctly polycrystalline cores. Besides the formation mechanisms, diamonds of the two groups differ in origin of mineral inclusions, distribution of defects and nitrogen impurity, and carbon isotope composition. Unlike the placer diamonds of varieties V and VII, the analyzed crystals from the Zarnitsa kimberlite enclose peridotitic minerals (olivines and subcalcic Cr-bearing pyropes) and have total nitrogen contents common to natural kimberlitic diamonds (0 to 1761 ppm) and typical mantle carbon isotope compositions (-1.9 to -6.2%c 513C; -4.2%c on average). The distribution of defect centers in the Zarnitsa diamond samples fits the annealing model implying that nitrogen aggregation decreases from core to rim.  相似文献   

12.
Nine marble horizons from the granulite facies terrane of southern India were examined in detail for stable carbon and oxygen isotopes in calcite and carbon isotopes in graphite. The marbles in Trivandrum Block show coupled lowering of δ13C and δ18O values in calcite and heterogeneous single crystal δ13C values (? 1 to ? 10‰) for graphite indicating varying carbon isotope fractionation between calcite and graphite, despite the granulite facies regional metamorphic conditions. The stable isotope patterns suggest alteration of δ13C and δ18O values in marbles by infiltration of low δ13C–δ18O‐bearing fluids, the extent of alteration being a direct function of the fluid‐rock ratio. The carbon isotope zonation preserved in graphite suggests that the graphite crystals precipitated/recrystallized in the presence of an externally derived CO2‐rich fluid, and that the infiltration had occurred under high temperature and low fO2 conditions during metamorphism. The onset of graphite precipitation resulted in a depletion of the carbon isotope values of the remaining fluid+calcite carbon reservoir, following a Rayleigh‐type distillation process within fluid‐rich pockets/pathways in marbles resulting in the observed zonation. The results suggest that calcite–graphite thermometry cannot be applied in marbles that are affected by external carbonic fluid infiltration. However, marble horizons in the Madurai Block, where the effect of fluid infiltration is not detected, record clear imprints of ultrahigh temperature metamorphism (800–1000 °C), with fractionations reaching <2‰. Zonation studies on graphite show a nominal rimward lowering δ13C on the order of 1 to 2‰. The zonation carries the imprint of fluid deficient/absent UHT metamorphism. Commonly, calculated core temperatures are > 1000 °C and would be consistent with UHT metamorphism.  相似文献   

13.
P. Deines  J.W. Harris 《Lithos》2004,77(1-4):125-142
Carbon isotope measurements on diamonds from the Letlhakane kimberlite, and the analyses of their inclusions, permit the examination of km-scale mantle-composition variations by comparing the results with those for the nearby Orapa kimberlite. Diamonds from Letlhakane have a wide range in carbon isotopic composition (−3‰ to −21‰); however, the relative abundance of diamonds depleted in 13C is significantly lower than in the Orapa kimberlite. Most of the 13C-depleted diamonds belong to the eclogictic or websteritic paragenesis. The relative abundance of inclusions in diamonds and their composition indicate that there are significant differences in petrology in the mantle below the two locations. At Letlhakane, peridotitic compositions are more prevalent than at Orapa and the protolith of P-Type inclusions in diamonds may have experienced a higher degree of partial melting at Letlhakane compared to Orapa. P/T estimates for both W- and E-Type diamonds indicate that a region of 13C-depletion may exist beneath the two kimberlites. The relationships between carbon isotopic composition of the host diamond and the Al2O3/Cr2O3 ratios of their websteritic and eclogitic garnet inclusions indicate that the low δ13C regions may represent a primary mantle feature, unrelated to a crustal component.  相似文献   

14.
Diamonds and eclogites of the Jericho kimberlite (Northern Canada)   总被引:1,自引:1,他引:0  
We studied diamonds and barren and diamondiferous eclogite xenoliths from the Jericho kimberlite (Northern Slave craton). The majority of the diamonds are non-resorbed octahedral crystals, with moderately aggregated N (IaB < 50%, N < 300 ppm) and δ13C = −5 to −41‰. The diamonds belong to “eclogitic” (90% of the studied samples), “websteritic” (7%) and “peridotitic” (3%) assemblages. The Jericho diamonds differ from the majority of “eclogitic” diamonds worldwide in magnesian compositions of associated minerals and extremely light C isotopic compositions (δ13C = −24 to −41‰). We propose that metasomatism triggered by H2O fluids may have been involved in the diamond formation. Multiple episodes of the metasomatism and associated melt extraction of various ages are evident in Jericho eclogite xenoliths where primary garnet and clinopyroxene have been recrystallized to more magnesian minerals with higher contents of some incompatible trace elements and to hydrous secondary phases. The model is supported by the general similarity of mineral compositions in diamondiferous eclogites to those in diamond inclusions and to secondary magnesian garnet and clinopyroxene in recrystallized barren eclogites. The ultimate products of the metasomatism could be “websteritic” diamond assemblages sourced from magnesian eclogites. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Diamonds: time capsules from the Siberian Mantle   总被引:1,自引:0,他引:1  
Diamonds are thought to be “time capsules” from the Earth's mantle. However, by themselves, consisting of nearly pure carbon, diamonds provide little geochemical information about their conditions of formation and the nature of their mantle hosts. This obstacle to studying the origin of diamonds and their hosts can be overcome by using two main approaches that focus on studying: (1) the rocks that contain diamonds, i.e., diamondiferous xenoliths; and (2) mineral inclusions within the diamonds, the time capsule's little treasures, if you will. Diamondiferous xenoliths, their diamonds, and mineral inclusions within the diamonds are the subject of this review, focusing on studies of samples from the Yakutian kimberlites in the Siberian Platform.Studies of diamondiferous eclogite xenoliths significantly enhance our understanding of the complex petrogenesis of this important group of rocks and their diamonds. Such studies involve various geochemical and petrological investigations of these eclogites, including major and trace-element, radiogenic as well as stable isotopic analyses of whole rocks and minerals. The results from these studies have clearly established that the Group A-C eclogites originate from subduction of ancient oceanic crust. This theory is probably applicable worldwide.Within the last several years, our research group at Tennessee has undertaken the systematic dissection (pull apart) of diamondiferous eclogites from Siberia, consisting of the following steps: (1) high-resolution computed X-ray tomography of the xenoliths to produce 3D images that relate the minerals of the xenoliths to their diamonds; (2) detailed dissection of the entire xenolith to reveal the diamonds inside, followed by characterization of the setting of the diamonds within their enclosing minerals; and (3) extraction of diamonds from the xenolith for further investigation of the diamonds and their inclusions. In this last step, it is important that the nature and relative positions of the diamond inclusions are carefully noted in order to maximize the number of inclusions that can be exposed simultaneously on one polished surface. In this modus operandi, cathodoluminescence imaging, plus FTIR/N aggregation and C/N isotopic analyses are performed on polished diamond surfaces to reveal their internal growth zones and the spatial relationship of the mineral inclusions to these zones.Knowledge gained by such detailed, albeit work-intensive, studies continues to add immensely to the constantly evolving models of the origin of diamonds and their host rocks in the Earth's mantle, as well as to lithospheric stability models in cratonic areas. Multiple lines of evidence indicate the ultimate crustal origin for the majority of mantle eclogites. Similar pieces of evidence, particularly from δ13C in P-type diamonds and δ18O in peridotitic garnets lead to the suggestion that at least some of the mantle peridotites, including diamondiferous ones, as well as inclusions in P-type diamonds, may have had a crustal protolith as well.  相似文献   

16.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

17.
Eclogitic (E-type) and related parageneses of natural diamonds are represented by suites of diamond inclusions and xenoliths of diamondiferous eclogites. Major-element data are presented for 32 coexisting minerals forming 19 bimineralic and trimineralic inclusions from diamonds, including omphacite-orthopyroxene (1 sample), garnet-omphacite (5 samples), garnet-coesite (5 samples), omphacite-coesite (2 samples), garnet-picroilmenite (2 samples), garnet-kyanite (1 sample), omphacite-phlogopite (2 samples), and garnel-omphacite-phlogopite (1 sample). Major-element variations of coexisting minerals are typical of corresponding eclogites. Omphacite with 5.02 wt% Na2O, inter-grown with orthopyroxene with Mg# 83.7, represents the first example of a diamondiferous websterite paragenesis including Na-clinopyroxene. This indicates a broader range in mineral compositions of E-type-related websteritepyroxenite-associated diamonds than known previously. This unique websterite-pyroxenitic mineral assemblage represents a transitional paragenesis between peridotitic or ultramafic (U-type) and E-type parageneses.

Bimineralic eclogites, ilmenite eclogites, coesite + corundum + kyanite eclogites, and grospydites occur not only as sets of inclusions in diamonds but, with a few exceptions (ilmenite and coesite eclogites), also as diamondiferous eclogite xenoliths. The coesite eclogite paragenesis is a significant inclusion suite in diamonds, and was detected in about 15 diamond occurrences worldwide. It represents from 15% to 22% of all E-type diamonds in several occurrences, and thus should not be considered as rare.  相似文献   

18.
首次在Mir金伯利岩筒中的锆石中发现了烃类包裹体。利用低温荧光光谱仪测定出烃类包裹体的成分为萘和菲的同系物 ,芘 ,1,12苯并芘等 ;其成分与Udachnaya岩筒中的橄榄石内的烃类和Mir岩筒中的石榴石中的烃类的成分相近。测定出锆石的δ13C值为 - 2 1 83‰~ - 3 3 5 4‰ ,与用榴辉岩共生组合中最轻的金刚石测出的同位素δ13C值范围相符。文中引述了有关有机物来源的讨论及多环芳烃 (PAH)由缩聚作用形成的论述。伴生矿物中相当数量的PAH的存在证明在形成金刚石及其伴生矿物的情况下 ,若有相当浓度的自由氢存在则可能发生缩聚作用。这些缩聚作用中碳的来源显然与形成金刚石时碳的来源是相同的 (即液态的CH4,CO及CO2 )。  相似文献   

19.
We have performed dissections of two diamondiferous eclogites (UX-1 and U33/1) from the Udachnaya kimberlite, Yakutia in order to understand the nature of diamond formation and the relationship between the diamonds, their mineral inclusions, and host eclogite minerals. Diamonds were carefully recovered from each xenolith, based upon high-resolution X-ray tomography images and three-dimensional models. The nature and physical properties of minerals, in direct contact with diamonds, were investigated at the time of diamond extraction. Polished sections of the eclogites were made, containing the mould areas of the diamonds, to further investigate the chemical compositions of the host minerals and the phases that were in contact with diamonds. Major- and minor-element compositions of silicate and sulfide mineral inclusions in diamonds show variations among each other, and from those in the host eclogites. Oxygen isotope compositions of one garnet and five clinopyroxene inclusions in diamonds from another Udachnaya eclogite (U51) span the entire range recorded for eclogite xenoliths from Udachnaya. In addition, the reported compositions of almost all clinopyroxene inclusions in U51 diamonds exhibit positive Eu anomaly. This feature, together with the oxygen isotopic characteristics, is consistent with the well-established hypothesis of subduction origin for Udachnaya eclogite xenoliths. It is intuitive to expect that all eclogite xenoliths in a particular kimberlite should have common heritage, at least with respect to their included diamonds. However, the variation in the composition of multiple inclusions within diamonds, and among diamonds, from the same eclogite indicates the involvement of complex processes in diamond genesis, at least in the eclogite xenoliths from Yakutia that we have studied.  相似文献   

20.
Oxygen isotope ratios of quartz inclusions (QI) within garnet from granulite and amphibolite facies gneisses in the Adirondack Mountains, NY were analysed and used to determine metamorphic temperatures. Primary QI for eight of 12 samples have δ18O values significantly lower than matrix quartz (MQ). The primary QI retain δ18O values representative of thermal conditions during garnet crystallization, whereas the δ18O values of MQ were raised by diffusive exchange with other matrix minerals (e.g. mica and feldspar) during cooling. The δ18O differences between QI and MQ show that garnet (a mineral with slow diffusion of oxygen) can armour QI from isotopic exchange with surrounding matrix, even during slow cooling. These differences between δ18O in MQ and QI can further be used to test cooling rates by Fast Grain Boundary diffusion modelling. Criteria for identifying QI that preserve primary compositions and are suitable for thermometry were developed based on comparative tests. Relations between δ18O and inclusion size, distance of inclusion to host–garnet rim, core–rim zonation of individual inclusions, and presence or absence of petrological features (healed cracks in QI, inclusions in contact with garnet cracks lined by secondary minerals, and secondary minerals along the inclusion grain boundary) were investigated. In this study, 61% of QI preserve primary δ18O and 39% were associated with features that were linked to reset δ18O values. If δ18O in garnet is homogeneous and inclusions are removed, laser‐fluorination δ18O values of bulk garnet are more precise, more accurate, and best for thermometry. Intragrain δ18O(Grt) profiles measured in situ by ion microprobe show no δ18O zonation. Almandine–rich garnet (Alm60–75) from each sample was measured by laser‐fluorination mass‐spectrometry (LF‐MS) for δ18O and compared with ion microprobe measurements of δ18O in QI for thermometry. The Δ18O(Qz–Grt) values for Adirondack samples range from 2.66 to 3.24‰, corresponding to temperatures of 640–740 °C (A[Qz–Alm] = 2.71). Out of 12 samples that were used for thermometry, nine are consistent with previous estimates of peak temperature (625–800 °C) based on petrological and carbon–isotope thermometry for regional granulite and upper amphibolite facies metamorphism. The three samples that disagree with independent thermometry for peak metamorphism are from the anorthosite–mangerite–charnockite–granite suite in the central Adirondacks and yield temperatures of 640–665 °C, ~100 °C lower than previous estimates. These low temperatures could be interpreted as thermal conditions during late (post‐peak) crystallization of garnet on the retrograde path.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号