首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Talc deposits of Rema area in the Kumaun Inner Lesser Himalaya are hosted within high magnesium carbonates of the Proterozoic Deoban Formation. These deposits occur as irregular patches or pockets mainly within magnesite bodies, along with impurities of magnesite, dolomite and clinochlore. Textures represent different phases of reactions between magnesite and silica to produce talc. Petrography, XRD and geochemistry reveal that the talc has primarily developed at the expense of magnesite and silica, leaving dolomite largely un-reacted. Early fluid inclusions in magnesite and dolomite associated with talc are filled with H2O+NaCl+KCl ± MgCl2 ± CaCl2 fluids, which represent basin fluid system during diagenesis of carbonates. Their varied degree of re-equilibration was although not pervasive but points to increased burial, and hence requires careful interpretation. H2O-CO2 fluid with XCO2 between 0.06 and 0.12 was equilibrated with talc formation. The reaction dolomite+quartz → talc was not extensive because T-XCO2 was not favourable, and talc was developed principally after magnesite+quartz.  相似文献   

2.
张少颖  张华锋 《岩石学报》2017,33(6):1872-1892
热液蚀变过程中的元素活动性与流体性质对深入理解矿物稳定性和成矿作用具有重要的意义。本文以华北克拉通中北部山西五台地区的白云叶蜡石矿为例,研究了蚀变过程中元素迁移特征和流体性质。该矿体围岩以绿片岩相酸性火山岩为主,岩性为绢云钠长石英片岩并夹有少量的绿泥钠长片岩。矿区内蚀变分带明显,可分为早期的黄铁绢英岩化(绢云母-石英-黄铁矿)和晚期叠加的叶蜡石化(叶蜡石-伊利石-高岭石-石英),而金矿化则主要发育于黄铁绢英岩化带内。Log fo2-pH相图模拟结果显示,早期黄铁绢云岩化蚀变热液具有弱酸性至偏中性(pH=5.24~5.87)和较低氧逸度(位于黄铁矿+黄铜矿稳定相区内)特征;而引起叶蜡石化蚀变的热液具有强酸性(pH=2.07~2.20)和高氧逸度(位于HM缓冲线以上)特征。质量平衡迁移分析结果显示,随着叶蜡石化蚀变作用的增强,叶蜡石矿石中的Al2O3行为较稳定,SiO2、Na2O和K2O含量相对于围岩绢云钠长石英片岩呈不同程度的迁入,而其余氧化物大量活化迁出。微量元素Nb、Ta、Th、U、Rb和Ga含量相对升高,Th/U比值略有升高;Sr、Ba、Zr、Hf明显亏损,Zr/Hf比值从34~41下降到17~22。稀土元素均发生一定程度的活化迁移,且轻稀土迁出程度更高。Y/Ho比值(28~32)高于球粒陨石的Y/Ho(26~28),表明Y-Ho在叶蜡石化蚀变过程中表现出不同的地球化学行为。Eu负异常明显增大,这可能与长石的分解关系密切。围岩绢云钠长石英片岩中金属元素含量较高且Au与As含量之间呈明显正相关性,但在叶蜡石矿石中大部分金属元素含量均低于检出限,说明金属元素在叶蜡石化蚀变作用过程中发生了强烈的活化迁移,这与岩相学上叶蜡石矿石中可见港湾状细粒赤铁矿而缺乏黄铁矿的特征吻合。本文研究结果表明叶蜡石化过程中,大量的所谓不活动元素(如P、Ti、Zr、Hf、Y和Ho等)发生了显著迁移并导致Zr/Hf和Y/Ho比值的解耦,并伴随着大量金属元素的迁出,说明叶蜡石化不利于金矿化的形成。  相似文献   

3.
《Applied Geochemistry》2002,17(6):735-750
Calcite and silica form coatings on fracture footwalls and cavity floors in the welded tuffs at Yucca Mountain, the potential site of a high-level radioactive waste repository. These secondary mineral deposits are heterogeneously distributed in the unsaturated zone (UZ) with fewer than 10% of possible depositional sites mineralized. The paragenetic sequence, compiled from deposits throughout the UZ, consists of an early-stage assemblage of calcite±fluorite±zeolites that is frequently capped by chalcedony±quartz. Intermediate- and late-stage deposits consist largely of calcite, commonly with opal on buried growth layers or outermost crystal faces of the calcite. Coatings on steep-dipping fractures usually are thin (⩽3 mm) with low-relief outer surfaces whereas shallow-dipping fractures and lithophysal cavities typically contain thicker, more coarsely crystalline deposits characterized by unusual thin, tabular calcite blades up to several cms in length. These blades may be capped with knobby or corniced overgrowths of late-stage calcite intergrown with opal. The observed textures in the fracture and cavity deposits are consistent with deposition from films of water fingering down fracture footwalls or drawn up faces of growing crystals by surface tension and evaporated at the crystal tips. Fluid inclusion studies have shown that most early-stage and some intermediate-stage calcite formed at temperatures of 35 to 85 °C. Calcite deposition during the past several million years appears to have been at temperatures <30 °C. The elevated temperatures indicated by the fluid inclusions are consistent with temperatures estimated from calcite δ18O values. Although others have interpreted the elevated temperatures as evidence of hydrothermal activity and flooding of the tuffs of the potential repository, the authors conclude that the temperatures and fluid-inclusion assemblages are consistent with deposition in a UZ environment that experienced prolonged heat input from gradual cooling of nearby plutons. The physical restriction of the deposits (and, therefore, fluid flow) to fracture footwalls and cavity floors and the heterogeneous and limited distribution of the deposits provides compelling evidence that they do not reflect flooding of the thick UZ at Yucca Mountain. The textures and isotopic and chemical compositions of these mineral deposits are consistent with deposition in a UZ setting from meteoric waters percolating downward along fracture flow paths.  相似文献   

4.
Sorption of Ni to birnessite is a fundamental control on the concentration of Ni in natural waters and associated sediments. Recent XAS work suggests the crystal-chemistry of Ni in birnessite is dependent on both structural and physiochemical factors. This work investigates the physiochemical controls on Ni crystal-chemistry in hexagonal birnessite with EXAFS of time series and pH series Ni-birnessite sorption experiments. At circumneutral pH Ni surface adsorbed above/below Mn octahedral vacancy sites in the phyllomanganate layers is progressively structurally incorporated into the vacancy sites with time (30% Ni incorporation after 408 h contact time). Ni structural incorporation into hexagonal birnessite occurs via rearrangement of surface adsorbed Ni with time rather than direct Ni incorporation from solution. At low pH (pH 4) Ni surface adsorbed at the vacancies is structurally incorporated into the vacancies upon increasing solution pH to circumneutral (∼20% Ni incorporation after 24 h contact time at circumneutral pH); newly incorporated Ni is stable with increasing contact time at pH circumneutral. However, upon decreasing solution pH from circumneutral back to pH 4, EXAFS shows a significant decrease in the proportion of Ni structurally incorporated; preliminary results indicate structural incorporation of Ni in hexagonal birnessite is reversible with decreasing pH. Time series results at circumneutral pH help explain the significant enrichment of Ni in marine ferromanganese precipitates; work here is combined with previous studies to provide a model correct at the molecular-level for Ni uptake by marine vernadite-rich ferromanganese precipitates. With Ni migrating from surface adsorbed to structurally incorporated, results suggest formation of a solid solution between an end-member vernadite and an end-member Ni-vernadite phase, with surface adsorption acting as a mechanism of transition from one composition to the other. pH series results call into question the viability of Ni crystal-chemistry in natural vernadite as a paleo-proxy for paleo-pH conditions in freshwater systems and challenge the traditional view that structurally incorporated trace-metals are stable within the Eh-pH field of the host mineral phase. Natural birnessite may not be as permanent a sink for Ni as first suggested by Ni crystal-chemistry.  相似文献   

5.
6.
The diffusion of Ni and Co was measured at atmospheric pressure in synthetic monocrystalline forsterite (Mg2SiO4) from 1,200 to 1,500 °C at the oxygen fugacity of air, along [100], with the activities of SiO2 and MgO defined by either forsterite + periclase (fo + per buffer) or forsterite + protoenstatite (fo + en buffer). Diffusion profiles were measured by three methods: laser-ablation inductively-coupled-plasma mass-spectrometry, nano-scale secondary ion mass spectrometry and electron microprobe, with good agreement between the methods. For both Ni and Co, the diffusion rates in protoenstatite-buffered experiments are an order of magnitude faster than in the periclase-buffered experiments at a given temperature. The diffusion coefficients D M (M = Ni or Co) for the combined data set can be fitted to the equation:
$$\log \,D_{\text{M}} \,\left( {{\text{in}}\,{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) = - 6.77( \pm 0.33) + \Delta E_{\text{a}} (M)/RT + 2/3\log a_{{SiO_{2} }}$$
with Ea(Ni) = ? 284.3 kJ mol?1 and Ea(Co) = ? 275.9 kJ mol?1, with an uncertainty of ±10.2 kJ mol?1. This equation fits the data (24 experiments) to ±0.1 in log D M. The dependence of diffusion on \(a_{{{\text{SiO}}_{2} }}\) is in agreement with a point-defect model in which Mg-site vacancies are charge-balanced by Si interstitials. Comparative experiments with San Carlos olivine of composition Mg1.8Fe0.2SiO4 at 1,300 °C give a slightly small dependence on \(a_{{{\text{SiO}}_{2} }}\), with D \(\propto\) (\(a_{{{\text{SiO}}_{2} }}^{0.5}\)), presumably because the Mg-site vacancies increase with incorporation of Fe3+ in the Fe-bearing olivines. However, the dependence on fO2 is small, with D \(\propto\) (fO2)0.12±0.12. These results show the necessity of constraining the chemical potentials of all the stoichiometric components of a phase when designing diffusion experiments. Similarly, the chemical potentials of the major-element components must be taken into account when applying experimental data to natural minerals to constrain the rates of geological processes. For example, the diffusion of divalent elements in olivine from low SiO2 magmas, such as kimberlites or carbonatites, will be an order of magnitude slower than in olivine from high SiO2 magmas, such as tholeiitic basalts, at equal temperatures and fO2.
  相似文献   

7.
Accumulation rates and chemical compositions have been obtained for pelagic sediments for 73 locations in the Pacific and for 11 in the Indian Ocean. The data for the Pacific show that many elements accumulate rapidly close to the continents and slowly in the central part of the ocean. This pattern is interrupted by two major zones of relatively high accumulation rates, one along the Equator and one along the East Pacific Rise. Deposition of opaline silica is almost completely restricted to areas of known high biological productivities at the Equator and at very high latitudes. Cu and Ni show stronger tendencies than Fe and Mn to precipitate with opaline silica. The highest accumulation rates of Fe and Mn in the open Pacific occur along the East Pacific Rise, to some extent also Cu and Ni are enriched there due to volcanic processes. Al and Ti show high accumulation rates only close to the continents; these elements appear to be almost completely terrigenous.Provenance studies of minerogen fractions, using the relations between Fe, Ti, Al and Mn, show that significant quantities of basaltic matter (oceanic crust) are incorporated into the sediments only in areas of very low total sedimentation rates in the vicinity of oceanic island groups such as Polynesia and Hawaii, whereas hydrothermal processes act as a major sediment source only on the East Pacific Rise. Sediments in the north as well as in the southernmost part of the Pacific are nearly entirely terrigenous. A balance estimate of the minerogen fraction of the deep-sea sediments from the open Pacific suggests that between 75 and 95% of all sediments in the Pacific are terrigenous and that submarine weathering (and release of basaltic debris in general) and submarine exhalations each account for only a small fraction of the sediments.  相似文献   

8.
The dissolution of well crystallized gibbsite far at from equilibrium was studied in batch and mixed flow through reactors. The dissolution experiments were carried out between pH 2 and 6 in the presence of 10 mmol L−1 citrate, at pH 2 and 3 in the presence of 10 mmol L−1 chloride, nitrate, and sulfate, and at pH 2 and 3 in the presence of 1.5 mmol L−1 silica at 20°C. The dissolution rate of gibbsite, RAl (mol m−2 s−1), increases in the order of chloride ≈ nitrate < silica < sulfate ≈ citrate. In presence of silica, sulphate, and citrate dissolution is catalysed by the formation of aluminium complexes at the gibbsite surface (pH 2 and 3). From pH 2 to 3 no effect of RAl on hydrogen activity is predicted as singly coordinated surface sites at the edges of the platy gibbsite crystals, [≡AlOH2+0.5] ≈ [≡AlOH], are almost saturated with protons. However at pH >3 dissolution is slowed by a decrease of [≡AlOH2+0.5].Gibbsite dissolution rates measured in closed and open systems were identical within the experimental and analytical uncertainty. This observation indicates that gibbsite dissolution is a surface controlled process. If dissolution of gibbsite occurs close to equilibrium RAl values may be predicted by an approximately linear function of ΔGr.  相似文献   

9.
This study investigates the retention of heavy metals in secondary precipitates from a sulfidic mine rock dump and underlying podzolic soils by means of mineralogical and chemical extraction methods. The rock dump, which is at least 50 years old, consists of a 5–10-cm-thick leached zone and an underlying 110–115-cm-thick accumulation zone. Optical microscopy and electron microprobe analyses confirm that pyrrhotite weathering has proceeded much further in the leached horizon relative to the accumulation horizon. The weathering of sulfides in the leached zone has resulted in the migration of most heavy metals to the accumulation zone or underlying soils, where they are retained in more stable phases such as secondary ferric minerals, including goethite and jarosite. Some metals are temporarily retained in hydrated ferrous sulfates (e.g., melanterite, rozenite). Received: 28 October 1996 · Accepted: 24 February 1997  相似文献   

10.
Carbonate precipitates recovered from 2,000 m water depth at the Dolgovskoy Mound (Shatsky Ridge, north eastern Black Sea) were studied using mineralogical, geochemical and lipid biomarker analyses. The carbonates differ in shape from simple pavements to cavernous structures with thick microbial mats attached to their lower side and within cavities. Low δ13C values measured on carbonates (−41 to −32‰ V-PDB) and extracted lipid biomarkers indicate that anaerobic oxidation of methane (AOM) played a crucial role in precipitating these carbonates. The internal structure of the carbonates is dominated by finely laminated coccolith ooze and homogeneous clay layers, both cemented by micritic high-magnesium calcite (HMC), and pure, botryoidal, yellowish low-magnesium calcite (LMC) grown in direct contact to microbial mats. δ18O measurements suggest that the authigenic HMC precipitated in equilibrium with the Black Sea bottom water while the yellowish LMC rims have been growing in slightly 18O-depleted interstitial water. Although precipitated under significantly different environmental conditions, especially with respect to methane availability, all analysed carbonate samples show lipid patterns that are typical for ANME-1 dominated AOM consortia, in the case of the HMC samples with significant contributions of allochthonous components of marine and terrestrial origin, reflecting the hemipelagic nature of the primary sediment.  相似文献   

11.
Excess silica in omphacite and the formation of free silica in eclogite   总被引:1,自引:0,他引:1  
Silica lamellae in eclogitic clinopyroxene are widely interpreted as evidence of exsolution during decompression of eclogite. However, mechanisms other than exsolution might produce free silica, and the possible mechanisms depend in part on the nature and definition of excess silica. 'Excess' silica may occur in both stoichiometric and non-stoichiometric pyroxene. Although the issue has been debated, we show that all common definitions of excess silica in non-stoichiometric clinopyroxene are internally consistent, interchangeable, and therefore equivalent. The excess silica content of pyroxene is easily illustrated in a three-component, condensed composition space and may be plotted directly from a structural formula unit or recalculated end-members. In order to evaluate possible mechanisms for the formation of free silica in eclogite, we examined the net-transfer reactions in model eclogites using a Thompson reaction space. We show that there are at least three broad classes of reactions that release free silica in eclogite: (i) vacancy consumption in non-stoichiometric pyroxene; (ii) dissolution of Ti-phases in pyroxene or garnet; (iii) reactions between accessory phases and either pyroxene or garnet. We suggest that reliable interpretation of the significance of silica lamellae in natural clinopyroxene will require the evaluation not only of silica solubility, but also of titanium solubility, and the possible roles of accessory phases and inclusions on the balance of free silica.  相似文献   

12.
We investigated the structure of uranyl sorption complexes on gibbsite (pH 5.6-9.7) by two independent methods, density functional theory (DFT) calculations and extended X-ray absorption fine structure (EXAFS) spectroscopy at the U-LIII edge. To model the gibbsite surface with DFT, we tested two Al (hydr)oxide clusters, a dimer and a hexamer. Based on polarization, structure, and relaxation energies during geometry optimization, the hexamer cluster was found to be the more appropriate model. An additional advantage of the hexamer model is that it represents both edges and basal faces of gibbsite. The DFT calculations of (monomeric) uranyl sorption complexes show an energetic preference for the corner-sharing versus the edge-sharing configuration on gibbsite edges. The energy difference is so small, however, that possibly both surface species may coexist. In contrast to the edge sites, sorption to basal sites was energetically not favorable. EXAFS spectroscopy revealed in all investigated samples the same interatomic distances of the uranyl coordination environment (RU-Oax ≈ 1.80 Å, RU-Oeq ≈ 2.40 Å), and towards the gibbsite surface (RU-O ≈ 2.87 Å, RU-Al ≈ 3.38 Å). In addition, two U-U distances were observed, 3.92 Å at pH 9.7 and 4.30 Å at pH 5.6, both with coordination numbers of ∼1. The short U-U distance is close to that of the aqueous uranyl hydroxo dimer, UO2(OH)2, reported as 3.875 Å in the literature, but significantly longer than that of aqueous trimers (3.81-3.82 Å), suggesting sorption of uranyl dimers at alkaline pH. The longer U-U distance (4.30 Å) at acidic pH, however, is not in line with known aqueous uranyl polymer complexes. Based on the EXAFS findings we further refined dimeric surface complexes with DFT. We propose two structural models: in the acidic region, the observed long U-U distance can be explained with a distortion of the uranyl dimer to form both a corner-sharing and an edge-sharing linkage to neighboring Al octahedra, leading to RU-U = 4.150 Å. In the alkaline region, a corner-sharing uranyl dimer complex is the most favorable. The U-O path at ∼2.87 Å in the EXAFS spectra arises from the oxygen atom linking two Al cations in corner-sharing arrangement. The adsorption structures obtained by DFT calculations are in good agreement with the structural parameters from EXAFS analysis: U-Al (3.394 Å), U-U (3.949 Å), and U-O (2.823 Å) for the alkaline pH model, and U-Al (3.279 Å), U-U (4.150 Å), and U-O (2.743 Å) for the acidic pH model. This work shows that by combining EXAFS and DFT, consistent structural models for uranyl sorption complexes can be obtained, which are relevant to predict the migration behavior of uranium at nuclear facilities.  相似文献   

13.
The soils surrounding the Spektakel mine in the arid Okiep copper district of the Northern Cape Province, South Africa have been exposed to Cu containing acid mine drainage (AMD) for well over a century. This has led to acute soil contamination with Cu concentrations present as high as 10 wt%. Despite the sulphate-rich environment, associated with AMD, the Cu-hydroxy chloride mineral, atacamite [Cu2(OH)3Cl] is the exclusive secondary Cu mineral identified in the soils. Brochantite [Cu4(OH)6SO4], the sulphate equivalent was not detected. Evaporation is a major hydrologic process in the arid soil system, thus the chemical evolution of the saline, metal containing brine was determined both experimentally and using PHREEQC modelling in the presence and absence of calcite. In samples that evaporated in the absence of calcite, the pH of the evaporating solution progressively decreased to below 3.5, whereas the solution in contact with calcite retained a circumneutral pH throughout the evaporation process. Thus in the absence of calcite, evaporation alone will not favour the formation of Cu-hydroxy minerals. Chemical activities of the evaporating solutions were modelled using the SIT.dat database of PHREEQC. This allowed the inclusion of aqueous complexes into the activity calculations of the evaporating solutions. Contrary to the conservative molality evolution of sulphate, the evolution of the sulphate activity was substantially suppressed due to the formation of MgSO40 aqueous complexes. We propose that these MgSO40 aqueous complexes are responsible for the absence of brochantite whereas the conservative chloride ion is more available for secondary Cu mineral formation. This suggests that ion pairs and aqueous complexes play an important role in determining the speciation of evaporite minerals and should be included in the modelling of such systems.  相似文献   

14.
Retrograde hydrous metamorphism has produced three types of microstructures in chromite grains from chromitites and enclosing rocks of the Tapo Ultramafic Massif (Central Peruvian Andes). In semi-massive chromitites (60–80 vol% chromite), (i) partly altered chromite with homogeneous cores surrounded by lower Al2O3 and MgO but higher Cr2O3 and FeO porous chromite with chlorite filling the pores. In serpentinites (ii) zoned chromite with homogeneous cores surrounded by extremely higher Fe2O3 non-porous chromite and magnetite rims, and (iii) non-porous chromite grains. The different patterns of zoning in chromite grains are the consequences of the infiltration of reducing and SiO2-rich fluids and the subsequent heterogeneous interaction with more oxidizing and Fe-bearing fluids. During the first stage of alteration under reduced conditions magmatic chromite is dissolved meanwhile new metamorphogenic porous chromite crystallizes in equilibrium with chlorite. This reaction that involves dissolution and precipitation of minerals is here modeled thermodynamically for the first time. µSiO2-µMgO pseudosection calculated for unaltered semi-massive chromitites at 2 kbar and 300 °C, the lowest P-T conditions inferred from the Tapo Ultramafic Massif and Marañón Complex, predicts that chromite + chlorite (i.e., partly altered chromite) is stable instead of chromite + chlorite + brucite at progressive higher µSiO2 but lower µMgO. Our observation is twofold as it reveals that the important role of SiO2 and MgO and the open-nature of this process. P-T-X diagrams computed using the different P-T pathways estimated for the enclosing Tapo Ultramafic Massif reproduce well the partial equilibrium sequence of mineral assemblages preserved in the chromitites. Nevertheless, it is restricted only to the P-T conditions of the metamorphic peak and that of the latest overprint. Our estimations reveal that a high fluid/rock ratio (1:40 ratio) is required to produce the microstructures and compositional changes observed in the chromitites from the Tapo Ultramafic Massif. The circulation of SiO2-rich fluids and the mobilization of MgO from the chromitite bodies are linked with the formation of garnet amphibolites and carbonate-silica hydrothermalites (i.e., listwaenites and birbirites) in the ultramafic massif. The origin of these fluids is interpreted as a result of the dissolution of orthopyroxene and/or olivine from the metaharzburgites and metagabbros enclosed in the Tapo Ultramafic Massif.  相似文献   

15.
Deltaic environments are commonly assumed to be relatively minor sites of biogenic silica burial because of the small quantities of opaline silica detected by most operational analytical techniques. Rapid conversion of biogenic silica into authigenic silicates is also often discounted as a significant control on oceanic silica budgets. A variety of evidence for extensive early diagenetic alteration of biogenic silica in rapidly accumulating Amazon delta sediments indicates that both of these general assumptions are unjustified. Apparent lack of significant biogenic silica storage in deltaic environments, particularly in the tropics, may be largely an artifact of operational definitions that do not include early diagenetic products of biogenic silica. Biogenic silica particles buried in suboxic Amazon delta deposits can be unaltered, partially dissolved, covered with aluminosilicate or metal-rich coatings, or completely reconstituted into authigenic K-Fe-rich aluminosilicate minerals. Pore water (K, Mg, F, Si) and solid-phase distributions, direct observations of particles, laboratory experiments, and depositional context indicate that authigenic clays form rapidly (<1 yr) in the seasonally reworked surface layer (∼ 0.5-2 m) of the delta topset and are disseminated during sediment remobilization. Fe, Al-oxide rich debris derived from the tropical drainage basin is an abundant reactant, and thus the supply of biogenic silica is a major control on the amount of clay formed.The mild 1% Na2CO3 alkaline leach procedure commonly used to estimate biogenic silica was modified to include an initial mild leach step with 0.1N HCl to remove metal oxide coatings and to activate poorly crystalline authigenic phases for alkaline dissolution. Well-crystallized clays are not significantly affected by this modification nor is bulk Amazon River bed sediment. The two-step procedure indicates that ∼90% of the biogenic silica originally present in deposits is converted to clay or otherwise altered, raising the effective quantity of biogenic silica stored from ∼33 to ∼296 μmol Si g−1 (∼1.8% SiO2). Biogenic Si stored in the delta increases away from the river mouth, across shelf and along the dispersal system where primary production is highest. The K/Si ratio of labile authigenic material is ∼0.19 mol mol−1, far higher than Amazon River suspended matter (∼0.07 mol mol−1). Diagenetic models indicate formation rates in the mobile sediment layer of ∼2.8 μmol K g−1 yr−1 (∼16 μmol Si g−1 yr−1). Inclusion of authigenic alteration products of biogenic silica in estimates of reactive Si burial increases the deltaic storage of riverine Si to ∼22% of the Amazon River input. The rapid formation of aluminosilicates from biogenic SiO2, seawater solutes, and remobilized Fe, Al-oxides represents a form of reverse weathering. Rapid reverse weathering reactions in tropical muds and deltaic deposits, the largest sediment depocenters on Earth, confirms the general importance of these processes in oceanic elemental cycles.  相似文献   

16.
This paper examines the surface sediments collected from Dongping Lake in China for speciation and distribution of toxic heavy metals (Cu, Pb, Ni, Cd) in different grain size fractions, and for the factors that need to be considered in potential hazard of metals to the environment. Four grain size fractions (<63, 63–78, 78–163 and 163–280 μm), divided in wet condition, and bulk samples less than 280 μm in diameter were analyzed for their distribution, density and appearance. A three-stage extraction procedure following the BCR protocol was used to chemically fractionate metals into “acid soluble”, “reducible”, “oxidizable” and “residual” fractions. Correlation analysis was used to analyze the datasets. The results showed that <63 μm grain size part constitutes the major proportion of the sediments, but its density is the smallest among the four grain size fractions. In general, the metal content curve against grain size presents “S” distribution, and the highest concentrations do not exist in <63 μm grain size. Appearance observation indicates that the adsorbed substance increases gradually along with the decreasing grain size. The dominant speciation of elements and the extent of pollution are responsible for the metal distribution in different grain size sediments. While studying bioavailability and mobilization of metals, it is advisable to take metal speciation, grain size distribution and density into consideration.  相似文献   

17.
Edge sites of clay minerals play a key role for pH dependent sorption of ions from solutions of electrolytes. Pyrophyllite, Al2[Si4O10](OH)2, is an important structural prototype for a variety of 2:1 dioctahedral phyllosilicates but in contrast to the other clays has no permanent structural charge. The structure of thin water films confined between most common edges of 1Tc pyrophyllite: (0 1 0), (1 1 0) and (1 0 0), was analyzed by means of ab initio molecular dynamic simulations. The system setup allowed for a full flexibility of the interfaces and a proton exchange between the edges of pyrophyllite and water molecules in solution. The structure of hydrated surfaces is compared with the recent predictions of static geometry optimizations for edge-vacuum interfaces. All surfaces studied reveal a strong hydrophilic character of edge similar to the hydrated silica surface and the facets of simple layered hydroxides. Spontaneous proton transfer between different surface sites were observed in molecular dynamics simulations of the (0 1 0) interface. The proton bound to the SiOH site was found to exchange with the AlOH group by the mechanism . The direction of the proton transfer agrees with the scale of relative proton affinities for surface sites obtained from the static calculations. Alternatively, the proton attached to the AlOH2 site exchanges with the AlOH group. In both reactions, the protons are transferred through the chains of hydrogen bonds formed between water molecules in the solution and the surface sites. The observed mechanisms might be one of the basic schemes for the surface proton diffusion in compacted clays. Kinetics of the proton transfer at edge sites is limited by the rate of rearrangements of the water molecules near interface.  相似文献   

18.
The dissolution and precipitation rates of boehmite, AlOOH, at 100.3 °C and limited precipitation kinetics of gibbsite, Al(OH)3, at 50.0 °C were measured in neutral to basic solutions at 0.1 molal ionic strength (NaCl + NaOH + NaAl(OH)4) near-equilibrium using a pH-jump technique with a hydrogen-electrode concentration cell. This approach allowed relatively rapid reactions to be studied from under- and over-saturation by continuous in situ pH monitoring after addition of basic or acidic titrant, respectively, to a pre-equilibrated, well-stirred suspension of the solid powder. The magnitude of each perturbation was kept small to maintain near-equilibrium conditions. For the case of boehmite, multiple pH-jumps at different starting pHs from over- and under-saturated solutions gave the same observed, first order rate constant consistent with the simple or elementary reaction: .

This relaxation technique allowed us to apply a steady-state approximation to the change in aluminum concentration within the overall principle of detailed balancing and gave a resulting mean rate constant, (2.2 ± 0.3) × 10−5 kg m−2 s−1, corresponding to a 1σ uncertainty of 15%, in good agreement with those obtained from the traditional approach of considering the rate of reaction as a function of saturation index. Using the more traditional treatment, all dissolution and precipitation data for boehmite at 100.3 °C were found to follow closely the simple rate expression:

Rnet,boehmite=10-5.485{mOH-}{1-exp(ΔGr/RT)}, with Rnet in units of mol m−2 s−1. This is consistent with Transition State Theory for a reversible elementary reaction that is first order in OH concentration involving a single critical activated complex. The relationship applies over the experimental ΔGr range of 0.4–5.5 kJ mol−1 for precipitation and −0.1 to −1.9 kJ mol−1 for dissolution, and the pHm ≡ −log(mH+) range of 6–9.6. The gibbsite precipitation data at 50 °C could also be treated adequately with the same model:Rnet,gibbsite=10-5.86{mOH-}{1-exp(ΔGr/RT)}, over a more limited experimental range of ΔGr (0.7–3.7 kJ mol−1) and pHm (8.2–9.7).  相似文献   


19.
The island of St. Paul in the Indian Ocean is located on the axis of the southeastern branch of the Indian Ocean Rise, as is the similar volcano of Amsterdam, 80 km to the north. Both volcanoes and possibly part of the local ridge are formed of a high-alumina plagioclase tholeiite making this a distinctive volcanic province. Lavas with Al2O2 contents of 12 to 22% are directly related by plagioclase fractionation. Residual rocks are a distinctive low silica, low alumina, potassic andesite with andesine and even olligoclase feldspar. Parallel lines of evolution exist in the sea floor plagioclase tholeiites, which differ only in slightly lower tenor of Sr and potassium group elements, and in the Steens Mountain tholeiites of Oregon, which differ in their significantly higher Sr and K group elements  相似文献   

20.
New major, trace and isotopic geochemical results from a regional study of springs discharging from the major carbonate rock aquifer in the Interlake Region of Manitoba, Canada, are used to understand water–rock reactions, timing of recharge/discharge, tufa formation processes, and as baseline data. Spring waters are fresh with total dissolved solids (TDS) concentrations ranging from 150 to 880 mg/L. Waters discharging in the northern part of the study area have lower TDS, are dominantly Ca–Mg–HCO3 waters with low SO4 concentrations (<< 50 mg/L), and appear to have interacted primarily with Silurian carbonate lithologies. In contrast, waters in the southeastern part of the study area have higher TDS and have elevated SO4 concentrations (up to 210 mg/L). Spring waters have elevated Mg/Camolar (1.23 ± 0.23), typically greater than congruent dissolution of dolomite. Ca and Mg concentrations and Mg/Camolar indicate that groundwater residence times were sufficient to allow equilibration with bedrock dolomite lithologies; elevated tritium in northern waters indicates a significant recharge component in the 1960's and 1970's. Tufa precipitates that have formed from many of the spring waters are low-Mg calcite (MgO = 1.70 to 5.80 wt.%). Sr concentrations are variable (57 to 657 ppm) and tufa Sr/Camolar ratios appear to be entirely controlled by spring water Sr/Camolar. Empirically determined Sr distribution coefficients (DSr = 0.389 ± 0.083) indicate rapid crystallization following CO2 degassing, consistent with heavier δ13CVPDB compared to spring waters. Sulfate concentrations are generally too low for calcitization (dedolomitization) reactions driven by anhydrite dissolution to be the dominant control on the elevated groundwater Mg/Camolar, implying either extensive sulfate reduction along the flow paths (however, δ13CDIC suggests the elevated SO4 is more consistent with Fe-sulfide oxidation), or that other processes are involved. Major ion ratios suggest that the waters in the southern part of the study area are more consistent with interaction with siliciclastic rocks than with anhydrite dissolution. We suggest that calcitization (dedolomitization) reactions driven by anhydrite dissolution may not dominate all carbonate aquifers and that mixing of waters in karst conduits combined with ion exchange reactions are important controls on water chemistry in these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号