首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total dissolvable Cu and Mn have been measured in seawaters collected from the continental shelf of the eastern Bering Sea. Copper concentrations of < 3 nmole kg−1 were measured over the shelf break but concentrations increased to >4 nmole kg−1 inshore of a hydrographie front over the 100 m isobath. Manganese concentrations also were low over the shelf break, <10 nmole kg−1, and increased systematically to concentrations >10 nmole kg−1 inshore of the hydrographic front. Depth distributions of Mn at all continental shelf stations showed gradients into the sediments, with concentrations typically >20 nmole kg−1 in a bottom layer extending about 30 m off the bottom. Benthic Cu and Mn fluxes are indicated by cross-shelf pore water profiles that show interfacial concentrations more than an order of magnitude greater than in bottom water. These data and the results of a model of metal transport across the shelf suggest that Cu and Mn fluxes, estimated at 2 and 18 nmole cm−2y−1, respectively, from continental shelf sediments may be one “source” of these metals to the deep sea.  相似文献   

2.
We report measurements of pH, total dissolved inorganic carbon (DIC), total or titration alkalinity (TAlk), Ca2+, Mg2+, sulfate, and sulfide data at the seawater-freshwater interface in a shallow groundwater aquifer in North Inlet, South Carolina. These measurements and a diagenetic modeling analysis indicate that the groundwaters at North Inlet are mixtures of seawater and freshwater end-members and are seriously modified by carbon dioxide inputs from organic carbon degradation via SO42− reduction across the entire salinity range and fermentation and CaCO3 dissolution in the low-salinity region. DIC and TAlk are several times higher than the theoretical dilution line, whereas Ca2+ is slightly higher and SO42− is somewhat lower than the dilution line. Partial pressure of CO2 in the groundwater is extremely high (0.05 to 0.12 atm). These deviations are consistent with theoretical predictions from known diagenetic reactions. Estimated groundwater DIC fluxes to the South Atlantic Bight from either the surficial aquifer (via salt marshes) or the Upper Floridan Aquifer (direct input) are significant when compared to riverine flux in this area.  相似文献   

3.
Dissolved organic matter (DOM) in sediment pore water is a complex molecular mixture reflecting various sources and biogeochemical processes. In order to constrain those sources and processes, molecular variations of pore water DOM in surface sediments from the NW Iberian shelf were analyzed by ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and compared to river and marine water column DOM. Weighted average molecular element ratios of oxygen to carbon ((O/C)wa) and hydrogen to carbon ((H/C)wa) provided general information about DOM sources. DOM in local rivers was more oxygenated ((O/C)wa 0.52) and contained less hydrogen ((H/C)wa 1.15) than marine pore water DOM (mean (O/C)wa 0.50, mean (H/C)wa 1.26). The relative abundance of specific compound groups, such as highly oxygenated aromatic compounds or nitrogen-bearing compounds with low H/C ratios, correspond to a high concentration of lignin phenols (160 μg/g sediment dry weight) and a high TOC/TN ratio (13.3) in the sedimentary organic matter and were therefore assigned to terrestrial sources. The lower degree of unsaturation and a higher relative abundance of nitrogen-bearing compounds in the pore water DOM reflected microbial activity within the sediment. One sampling site on the shelf with a high sediment accumulation, and a humic-rich river sample showed a wide range of sulfur compounds in the DOM, accompanied by a higher abundance of lipid biomarkers for sulfate-reducing bacteria, probably indicating early diagenetic sulfurization of organic matter.  相似文献   

4.
Surface sediments of the Washington coast have 210Pb activites which average 104 ± 48dpm/g for submarine canyon and slope regimes and 18 ± 12dpm/g for the continental shelf regime. 210Pb sedimentary fluxes are also higher in canyons, averaging 18 ± 13dpm/cm2 per yr, compared to 5.2 ± 3.1 dpm/cm2 per yr for slope and 4.8 ± 1.8dpm/cm2 per year for shelf regions. These 210Pb activities and fluxes are 2–7 times greater than those reported for other coastal regions. Inputs from the atmosphere and the Columbia River are not sufficient to supply the 210Pb, but advection of seawater containing dissolved 210Pb produced in situ from 226Ra provides an input several times larger than the sedimentary fluxes. The sedimentary 210Pb flux is limited by scavenging reactions rather than by supply of dissolved 210Pb.Calculations of maximum biological uptake and fluxes of 210Pb and ‘selective’ chemical leaching experiments all show that the primary scavenging processes are due to hydrous Mn and Fe oxides rather than biological phases. The pattern of higher 210Pb depositional fluxes in canyons than in nearby open slope areas of comparable water depth is most reasonably explained by enhanced scavenging of dissolved 210Pb near the sea floor, rather than by processes operating throughout the water column. Relatively rapid removal of dissolved 210Pb from the near bottom nepheloid layer to slope and canyon sediments is shown by its mean residence time of less than two years in this layer.  相似文献   

5.
There is considerable discussion and uncertainty in the literature regarding the importance of fresh litter versus older soil organic matter as sources of soil dissolved organic carbon (DOC) in forest floor. In this study, the differences of organic carbon concentration and stable isotope composition were analyzed under different background conditions to identify the origins of DOC in forest soil. The data show that there is no significant difference in SOC content between these collected soil samples (P > 0.05), but the litter-rich surface soils have relatively higher DOC concentration than the litter-lacking (P < 0.01) ones, and the δ 13C values of DOC (δ 13CDOC) are closer to δ 13C of litter than δ 13C values of SOC (δ 13CSOC). In the litter-lacking surface soil samples, the range of δ 13CDOC is between δ 13CSOC and δ 13C of dominant plant leaves. These results suggest that DOC mainly derive from litter in the litter-rich surface soil with, and the main path of DOC sources may change with surrounding conditions. In addition, δ 13CSOC and δ 13CDOC become more positive, and the absolute values of Δ (δ 13CDOC − δ 13CSOC) decrease with depth in the soil profiles, which indicate that the percentage of DOC below 5 cm, derived from degradation of humus, may increase with soil depth.  相似文献   

6.
This study examines benthic foraminifera (>63 μm) both qualitatively and quantitatively, from 19 closely spaced surficial sediment samples covering 30 to 200 m water depths across the shelf and upper continental slope off north Kerala (SW India). A total of 59 species are recorded. The major constituents of benthic foraminiferal assemblages in the study area are fursenkoinids, bolivinids, nonionids, rotaliids, elphidiids, buliminids, miliolids, gavilinellids, amphestiginids, bagginids, vaginulinids, uvigerinids and various agglutinated taxa. Cluster analysis using Bray Curtis similarity index defines four sample groups, each typified by a characteristic assemblage representing a biofacies. The major benthic foraminiferal biofacies identified are: Biofacies I, Fursenkoina-Nonion-Ammonia beccarii s.l. (30–40 m); Biofacies II, Fursenkoina-Nonion (40–55 m); Biofacies III, Bolivina robusta-Hanzawaia-Cancris-Amphistegina and miliolids (55–115 m) and Biofacies IV, Bolivina persiensis-Uvigerina-Bulimina-Fursenkoina and agglutinants (115–200 m). Relict foraminifera, most commonly represented by shallow-water benthic taxa are concentrated on the outer shelf. The relict assemblage appears to be a product of late Pleistocene low sea level. The foraminiferal biofacies have a good correspondence with the bathymetrically distributed three major lithofacies across the shelf and the upper continental slope. We studied the distribution pattern of individual taxa constituting the biofacies. The study demonstrates a relationship between the pattern of distribution of major benthic fauna and the sediment-size and organic carbon content across the inner shelf to upper slope. Additionally, certain taxa appear to be sensitive to various hydrographic parameters, such as, Bulimina marginata to temperature and Fursenkoina complanata and Uvigerina ex gr. U. semiornata to dissolved oxygen level.  相似文献   

7.
Organic C (OC) and total N (TN) concentrations, and stable isotope ratios (δ13C) in muddy deposit sediments of the Northern and Southern Portuguese continental shelf were used to identify sources of fine-sized organic matter (<63 μm) during the Holocene period. Sedimentary columns off the Guadiana (core CRIDA 05), Tagus (core MD 992332) and Douro (core KSGX 57) estuaries are characterised by elemental and isotopic values that reflect distinct sources of organic matter (OC/TN and δ13C ranging, respectively, from 8.5 to 21 and from −22.4‰ to −27‰). Intense supplies to the Guadiana continental shelf of fine terrigenous particles during the Younger-Dryas Event are closely linked with higher OC/TN values and lower δ13C ratios. During the postglacial transgression phase, an increasing contribution of marine supplies (up to 80%) occurred. Higher δ13C (up to −22.4‰) values and low OC/TN ratios (down to 8.5) are found as the sea level approaches the current one. The Upper Holocene records emphasize the return to enhanced terrestrial supplies except for the Little Climatic Optimum between the 11th and 15th centuries AD. This climatic event is especially obvious in the three cores as a return to marine production and a decrease in terrestrial sediment supply to the continental shelf. The return to a cooling event, the Little Ice Age, between the 15th and 19th centuries AD, is mirrored by decreased terrigenous supplies in core KSGX 57. Gradually increasing sedimentation in estuaries, as well as formation of coastal dune fields, have been hypothesized on the basis of increasing δ13C and decreasing OC, TN and OC/TN values.  相似文献   

8.
Core MD02-2508 retrieved from the plateau of the continental slope off Baja California recovered a 40-m-thick section of sapropel (up to 15% Corg), calcareous clay, and diatom ooze with the age of 120 ka at the core bottom. The section is subdivided into three units: Unit I (Holocene) consists of the laminated sapropel; Unit II comprising oxygen isotope stages (MIS) 2, 3, and 4 is represented by homogeneous calcareous clay with interbeds of slightly siliceous sapropelic mud; and Unit III (MIS-5) is composed of laminated sapropelic diatom ooze. Laminated intervals are characterized by the intercalation of two lamina types: (1) dark-colored organic-rich laminae containing multi-species “oceanic” diatom assemblages, as well as radiolarians, coccoliths, planktonic and benthic foraminifera; (2) lighter-colored laminae consisting of diatom ooze with the neritic colonial diatom assemblages commonly composed of one to three species of a single genera. The dark laminae are assumed to be generated within a high productivity zone over the slope, whereas light ones likely represent diatom mats produced by short-term boisterous phytoplankton blooms, possibly in the coastal upwelling.  相似文献   

9.
Isotopic compositions of organic (δ13C-Corg) and carbonate (δ13C-Ccarb) carbon were analyzed in the particulate matter (hereafter, particulates) and sediments from the North and Middle Caspian basins. Isotopic composition of Corg was used for assessing proportions of the allochthonous and autochthonous organic matter in the particulates. Difference between the δ13C-Corg values in surface sediments and particulates is explained by the aerobic and anaerobic diagenetic transformations. Isotopic composition of Corg in sediments may be used as a tool for reconstructing the Quaternary transgressive-regressive history of the Caspian Sea.  相似文献   

10.
An unusual association of authigenic pyrite and authigenic gypsum has been found in silty clays recovered from the South West African continental slope. Nannofossil content suggests that the sediments are Upper Miocene-Lower Pliocene in age. Pyrite occurs as (1) granular masses, (2) ‘worm’tubes, (3) foraminiferal infillings, and (4) framboids. Gypsum occurs as euhedral single or twinned crystals of selenite. ‘Worm’tubes and foraminiferal infillings of pyrite are partially or completely enclosed in some gypsum crystals. Electron microprobe analyses show a relatively high concentration of manganese in both the granular masses and tubes. Present-day waters off this coast are dominated by the upwelling of cold, nutrient-enriched waters (the Benguela Current). These rich waters support an enormous population of plankton. Death and decomposition of these plankton consume oxygen, thereby creating a belt of anaerobic sediments close to shore. An Upper Miocene-Lower Pliocene regression (Dingle & Scrutton, 1974) lowered sea level and shifted an older analogue of this upwelling zone seaward, eventually establishing an anaerobic environment in places on the present continental slope. Anaerobic bacteria thrived in these conditions. They reduced SO4 dissolved in sea water, initiating the formation of H2S. The H2S reacted with iron minerals present in the sediment to form FeS. Addition of elemental sulphur produced pyrite. This strongly reducing, low pH, environment became saturated with calcium obtained by the dissolution of planktonic calcareous organisms. Gypsum was precipitated once the product of the concentrations of dissolved calcium and SO4 exceeded the gypsum solubility product.  相似文献   

11.
The concentrations of total suspended sediments (TSS), dissolved organic carbon (DOC) and particulate organic carbon (POC) were measured in water samples taken monthly in the Apure, Caura and Orinoco rivers during a hydrological cycle (between Sept. 2007 and Aug. 2008). The DOC concentration values ranged between 1.5 and 6.8 mgC l−1 in the Apure River; 2.07 and 4.9 mgC l−1 in the Caura River and 1.66 and 5.35 mgC l−1 in the Orinoco River. The mean concentration of DOC was 3.9 mgC l−1 in the Apure River, 3.24 mgC l−1 in the Caura River and 2.92 mgC l−1 in the Orinoco River at Puerto Ordaz. The three rivers showed a similar temporal pattern in the concentrations of DOC, with higher DOC values during the increasing branch of the hydrograph due to wash-out processes of the organic material stored in soils. The mean concentration values of POC were 1.33 mgC l−1; 0.77 mgC l−1 and 0.91 mgC l−1 in the Apure, Caura and Orinoco rivers, respectively. The inverse relationship found between the percentage in weight of the POC and the concentrations of TSS in the three rivers fits a logarithmic model, as it has been previously reported for other worldwide rivers. The POC concentrations in the Orinoco River showed a positive relationship with the TSS, suggesting that the POC in the Orinoco is the result of terrestrially organic matter. Although the fluxes of organic carbon (OC) in the three studied rivers are dependent on the values of water discharge, the fluxes of DOC during the increasing branch of the hydrograph are higher than those found during the decreasing stage, due to the yield of organic material accumulated in soils during the preceding dry season. The mean annual flux of total organic carbon (TOC) of the Orinoco River at Puerto Ordaz was about 4.27 × 106 TonC yr−1. Of this, 3.28 × 106 TonC yr−1 (77%) represents the flux of DOC and about 0.99 TonC yr−1 (23%) represents the flux of POC. The mean annual input of TOC from the Apure River to the Orinoco River was about 4.92 × 105 TonC yr−1 (11.5%), while the contribution of TOC from the Caura River to the Orinoco River was estimated at 3.05 × 105 TonC yr−1 (7.1%).The values of annual transport of TOC calculated for the Apure, Caura and Orinoco rivers were lower than those reported twenty years ago. This could be related to interannual variations of precipitation in the Orinoco Basin, due to runoff variations can have a strong effect on the fluxes of OC from land to rivers.  相似文献   

12.
Four different types of pyritized tubes and three types of pyritized burrow fillings are described from Pleistocene glaciomarine sediments in Andfjorden, northern Norway. The tubes and burrows probably originated from tubicolous and burrowing polychaetes respectively. The decomposition of the organic matter in the tubes and burrows created a reducing micro-environment favouring precipitation of pyrite. By comparison with Holocene tubes from marine sediments in Andfjorden and FugloSyfjorden, it is seen that pyritization commenced with isolated spherules. These spherules with incipient pyrite crystals and framboids were formed mainly on the inner wall of the tube. Presence of a monosulphide in the Holocene Fugløyfjorden material suggests that the pyritization process has reached a later phase; the final result would be a completely pyritized trace fossil. It is shown that single pyrite crystals (octahedra) generally attain greater size in the burrow fillings than in the tubes. The microstructure found in some of the pyritized tubes is interpreted as a reflection of the microstructure in the original wall. Finally, the implications for the depositional environment in Pleistocene in Andfjorden is investigated with reference to the benthic skeletal macrofaunal assemblage in the sequence. The pyritized trace fossils occur frequently in an opportunistic assemblage from a period (c. 14,000–13,000 yr BP) characterized by some oxygen deficiency. Later (13,000–10,000 yr BP) they play a minor role in an established assemblage under improved oxygen conditions.  相似文献   

13.
近岸沉积物再悬浮期间所释放溶解有机物的荧光特征   总被引:9,自引:0,他引:9  
对采自厦门湾九龙江人海河口的4个沉积物样品进行了室内再悬浮模拟实验,利用荧光激发-发射矩阵光谱(EEMs)研究了再悬浮过程中从沉积物中释放出的有色溶解有机物(CDOM)的荧光特征,同时通过与相应站位沉积物间隙水和底层水的对比分析,探讨了河口近岸海域的沉积物再悬浮作用作为水体中溶解有机物来源之一的可能性.结果表明,对给定站位,CDOM相对荧光强度和溶解有机碳(DOC)含量分布变化非常一致,均为间隙水最高,再悬浮次之,底层水最低;站位之间,底层水和再悬浮水样中CDOM相对荧光强度随盐度的降低而增加,从海端向河端增加的趋势明显.EEMs分析表明,各样品中均存在类腐殖质荧光与类蛋白质荧光团,且模拟实验也表明再悬浮作用可释放类腐殖质与类蛋白质荧光物质到底层水中,表明底质再悬浮将是近岸水体中CDOM的一个重要来源.与相应的底层水相比,间隙水的荧光峰(如峰A/C)的位置发生红移.再悬浮样品中EEMs的荧光团同时表现出相应底层水和间隙水的特征,但是荧光峰(峰A和峰C)的最大激发和发射波长更接近底层水中相应荧光团,与间隙水相比,则发生谱峰位置的蓝移.近海端样品中荧光峰M明显,随着盐度的降低,底层水和再悬浮水样的γ(M/C)值逐渐降低,且海源的峰M由海端向河端逐渐消失,表明峰M属于海洋自生来源.本研究区域DOM的荧光指数在1.61~1.93之间,表明近海端样品DOM主要为生物来源,而近河端样品DOM主要为陆源输入,或者为陆源与生物活动共同作用的结果.  相似文献   

14.
The change in porewater nitrate (NO2 ? + NO3 ?) concentrations during exposure of intertidal sediment was studied at a fixed location in the Sado estuary, southwest Portugal, in November 1994. In order to follow nitrate concentration and dynamics from pre-ebb to post flood, during the day, high vertical resolution profiles (0.2 cm) were studied. As a complement, in February 1995, potential nitrification rates in the sediment were measured by laboratory incubations, with high vertical resolution (0.2 cm) up to 3 cm depth. Oxygen penetration was measured with polarographic mini-electrodes. The sediment’s texture as well as the organic matter composition in carbon and nitrogen were studied in deeper (30 cm) cores. In February 1993,210Pb activity depth profiles were measured in a core sampled at the beginning of exposure, in order to evaluate the possibility of nonlocal particle exchange. C:N ratios and210Pb activity profiles show evidence of nonlocal exchange of solid phase particles between the surface and deeper sediment, most likely due to macrofaunal activity. As a consequence, fresh organic matter is brought from the surface to 7–9 cm depth, causing enhancement of nutrient concentrations. Results of this study suggest nitrate dynamics in intertidal sediments of the Sado estuary are strongly influenced by tidal action. Periodic submersion and exposure allow for the diversification of pathways of oxygen supply to the sediment. Tidal stress at the sediment-water interface during the arrival (flooding) and departure (exposure) of the tidal front at the site has an important bearing on the effective depth of the nitrification zone. A denitrification rate of 2.16 μmol N dm?5 h?1 was measured directly from the nitrate inventory in the 1.5–6 cm depth layer. The schematic model of N cycling in these sediments suggests that 20% of the N pool is denitrified during exposure, and that this process is limited by O2 availability for nitrification.  相似文献   

15.
Surface soil and sediment samples collected along a forest-brackish marsh-salt marsh transect in a southeastern U.S. estuary were separated into three different fractions (sand, macro-organic matter, and humus) based on size and density. Elemental, stable carbon isotope, and lignin analyses of these samples reveal important contrasts in the quantity, composition, and sources of organic matter, between forest and marsh sites. Elevated nitrogen contents in humus samples suggest nitrogen incorporation during humification is most extensive in forest soils relative to the marsh sites. The lignin compositions of the macro-organic and humus samples reflect the predominant type of vegetation at each site. Lignin phenol ratios indicate that woody and nonwoody litter from, gymnosperm and angiosperms trees (pines and oaks) is the major source of vascular plant-derived organic matter in the forest site and that angiosperm, grasses (Juncus andSpartina) are the major sources of lignin at the marsh sites. The phenol distributions also reveal that oxidative degradation of lignin is most extensive in the forest and brackish marsh zones whereas little lignin decay occurs in the salt marsh samples. In forest soils, most organic matter originates from highly altered forest vegetation while at the brackish marsh site organic matter is a mixture of degradedJuncus materials and microbial/algal remains. Organic matter in the salt marsh appears to be composed of a more complex mixture of sources, including degradedSpartina detritus as well as algal and microbial inputs. Microbial methane oxidation appears to be an important process and a source of13C depleted organic carbon in subsurface sediments at this site.  相似文献   

16.
Benthic fluxes in two southern California borderland basins have been estimated by modeling water column property gradients, by modeling pore water gradients and by measuring changes in concentration in a benthic chamber. Results have been used to compare the different methods, to establish budgets for biogenic silica and carbon and to estimate rate constants for models of CaCO3 dissolution. In San Pedro Basin, a low oxygen, high sedimentation rate area, fluxes of radon-222 (86 ± 8 atoms m−2 s−1), SiO2 (0.7 ± 0.1 mmol m−2 d−1), alkalinity (1.7 ± 0.3 meq m−2 d−1), TCO2 (1.9 ± 0.3 mmol m−2 d−1) and nitrate (−0.8 ± 0.1 mmol m−2 d−1) measured in a benthic chamber agree within the measurement uncertainty with fluxes estimated from modeling profiles of nutrients and radon obtained in the water column. The diffusive fluxes of radon, SiO2 and TCO2 determined from modeling the sediment and pore water also agree with the other approaches. Approximately 33 ± 13% of the organic carbon and 37 ± 47% of the CaCO3 arriving at the sea floor are recycled. In San Nicolas Basin, which has larger oxygen concentrations and lower sedimentation rates than San Pedro, the fluxes of radon (490 ± 16 atoms m−2 s−1), SiO2 (0.7 ± 0.1 mmol m−2 d−1), alkalinity (1.7 ± 0.3 meq m−2 d−1), TCO2 (1.7 ± 0.2 mmol m−2 d−1), oxygen (−0.7 ± 0.1 mmol m−2 d−1) and nitrate (-0.4 ± 0.1 mmol m−2 d−1) determined from chamber measurements agree with the water column estimates given the uncertainty of the measurements and model estimates. Diffusion from the sediments matches the lander-measured SiO2 and PO43− (0.017 ± 0.002 mmol m−2 d−1) fluxes, but is not sufficient to supply the radon or TCO2 fluxes observed with the lander. In San Nicolas Basin 38 ± 9% of the organic carbon and 43 ± 22% of the CaCO3 are recycled. Approximately 90% of the biogenic silica arriving at the sea floor in each basin is recycled. The rates of CaCO3 dissolution determined from chamber flux measurements and material balances for protons and electrons are compared to those predicted by previously published models of CaCO3 dissolution and this comparison indicates that in situ rates are comparable to those observed in laboratory studies of bulk sediments, but orders of magnitude less than those observed in experiments done with suspended sediments.  相似文献   

17.
The number of bacteria in sediments of a North Carolina salt marsh was determined by direct counts with epifluorescent illumination and acridine orange stain. Cell number decreased from 8.36–10.90×109 cells/cm3 of sediment at the surface to 2.19–2.58×109 cells/cm3 of sediment at a depth of 20 cm. No significant difference was found among four stations located on a transect which crossed the marsh and spanned subtidal to intertidal sediments.  相似文献   

18.
Water samples have been taken daily at 1030 EST from three locations within North Inlet (South Carolina) since June of 1980 in order to evaluate the tidal, seasonal, and eventually annual variability in carbon concentrations within this system and generate hypotheses explaining the observed trends. Dissolved organic carbon (DOC) concentrations within North Inlet (South Carolina) vary inversely with salinity (r2=0.65), suggesting the main source of DOC in North Inlet is freshwater entering from the adjacent forested watershed. This assertion is supported by an observed decrease of tidal water salinity with the onset of streamflow. DOC variability is also associated with (1) groundwater advection and/or runoff and seepage from the marsh surface; (2) removal from tidal water via either physical sorption or biological uptake; (3) sampling location; and (4) origin of water mass. Particulate organic carbon (POC) concentrations vary seasonally, higher values found during the summer. POC variability is controlled by a series of physical and biological factors. Evidence suggests that in the smaller tidal creeks, POC concentrations are associated with (1) rain events scouring the marsh surface, (2) phytoplankton concentrations varying as a function of tidal stage, and (3) removal of particulate material from the marsh surface on the ebb tide. In the larger tidal creeks tidal water velocity appears to be the main factor influencing POC values.  相似文献   

19.
《Applied Geochemistry》2000,15(4):425-438
The dissolution of silica and diffusion of reactive dissolved Si in the porewaters of river sediments are investigated using sediments of different physical and chemical properties. Three sediments are considered: (a) from sectioned cores taken from a river-bed, (b) fine organic-rich surface sediment (<5 cm depth) installed in a fluvarium channel and, (c) coarse river sediment of low organic matter content also installed in a fluvarium channel. Dissolution rates of silica are measured at 10°C using batches of suspended material. The derived dissolution rate constants show large differences between the sediments. The river bed-sediment cores had vertical concentration profiles of dissolved Si that are consistent with the diffusion and dissolution of biogenic silica. Experiments in a fluvarium channel enabled Si fluxes to be calculated from a mass-balance of the overlying solution. The results are consistent with the attainment of a steady-state concentration profile of dissolved Si in the sediment. There are no discernible effects of water velocity over the sediment between 5 and 11 cm s−1. However, at 20 cm s−1, the flux increases as a result of either entrainment of fine particles at the surface or advective effects in the surface sediment. A fluvarium experiment with the fine sediment (<125 μm) over 61 days, produced a concentration profile with the highest concentration of 1025 μmol dm−3 at a depth of 4–5 cm in the sediment. A FORTRAN program is used to model the results of the increase in dissolved Si in the overlying water and development of a concentration profile in the porewater. This leads to a sediment diffusion coefficient of 1.21×10−9 m2 s−1 at 8.8°C at the beginning of the experiment and rate constant k=13.1×10−7 s−1 at pH=7.82 and average temperature of 7.6°C for the entire experiment. Fluxes measured at the sediment–surface interface and calculated assuming steady-state profiles had developed are typically 0.01–0.04 μmol m−2 (of river bed) s−1. The approach enables the efflux of dissolved Si from bottom-sediments to be estimated from dissolution rates measured using suspensions of bed-sediment.  相似文献   

20.
The geochemistry of Upper Quaternary organic-rich (Corg 3.7–10.0%) sediments recovered by the 40-m-long Core MD02-2508 from the upper continental slope of Baja California is compared to the chemical composition of sedimentary rocks from the Miocene Monterey Formation, California. It is ascertained that concentrations of most macroelements (Al, Ti, Mg, K, Fe, M, S, Corg) and many microelements, including chalcophiles Ag, As, Mo, Sb, Se, Zn, along with some others (U, Co, Ni, Y, and REE) are nearly equal in both types of sediments. In addition, concentrations of most microelements in both types of sediments are close, to the average values common for the worldwide carbonaceous black shales irrespective of their lithology and age, indicating a stable influence of organic matter on their concentration during sedimentation and early digenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号