首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An integrated approach to resolve the kinematics of the controversial Achankovil Shear Zone (AKSZ) has been attempted involving remote sensing data, shaded relief topo-maps, ground details of lithology and mesoscopic structures. An excellent correlation of structural trends exists on all scales of observation. The AKSZ is distinctly defined by NW–SE trending foliation fabrics with steep dips to southwest. The adjacent Madurai block and Trivandrum block show contrasting lithological and structural characteristics as shown in structural cross-sections.The mesoscopic structural studies reveal the presence of sub-horizontal stretching lineations, asymmetric structures like S–C′ fabrics, porphyroclasts, ‘S’ shaped folds and shear bands confirming the strike-slip component of shear along AKSZ. The deformation undergone by the AKSZ could be described in terms of an initial dextral deformation — D1, reactivated and superimposed by sinistral kinematics — D2, which is also supported by megascopic structural interpretation of remote sensing data. The megascopic structural interpretation of AKSZ displays en-echelon pattern of lineaments with right overstepping arrangement, which can be interpreted as an evidence of the latest sinistral transpressional deformation.  相似文献   

2.
The Achankovil Zone of southern India, a NW–SE trending lineament of 8–10 km in width and > 100 km length, is a kinematically debated crustal feature, considered to mark the boundary between the Madurai Granulite Block in the north and the Trivandrum Granulite Block in the south. Both these crustal blocks show evidence for ultrahigh-temperature metamorphism during the Pan-African orogeny, although the exhumation styles are markedly different. The Achankovil Zone is characterized by discontinuous strands of cordierite-bearing gneiss with an assemblage of cordierite + garnet + quartz + plagioclase + spinel + ilmenite + magnetite ± orthopyroxene ± biotite ± K-feldspar ± sillimanite. The lithology preserves several peak and post-peak metamorphic assemblages including: (1) orthopyroxene + garnet, (2) perthite and/or anti-perthite, (3) cordierite ± orthopyroxene corona around garnet, and (4) cordierite + quartz symplectite after garnet. We estimate the peak metamorphic conditions of these rocks using orthopyroxene-bearing geothermobarometers and feldspar solvus which yield 8.5–9.5 kbar and 940–1040 °C, the highest PT conditions so far recorded from the Achankovil Zone. The retrograde conditions were obtained from cordierite-bearing geothermobarometers at 3.5–4.5 kbar and 720 ± 60 °C. From orthopyroxene chemistry, we record a multistage exhumation history for these rocks, which is closely comparable with those reported in recent studies from the Madurai Granulite Block, but different from those documented from the Trivandrum Granulite Block. An evaluation of the petrologic and geochronologic data, together with the nature of exhumation paths leads us to propose that the Achankovil Zone is probably the southern flank of the Madurai Granulite Block, and not a unit of the Trivandrum Granulite Block as presently believed. Post-tectonic alkali granites that form an array of “suturing plutons” along the margin of the Madurai Granulite Block and within the Achankovil Zone, but are absent in the Trivandrum Granulite Block, suggest that the boundary between the Madurai Granulite Block and the Trivandrum Granulite Block might lie along the Tenmalai shear zone at the southern extremity of the Achankovil Zone.  相似文献   

3.
4.
The Precambrian terranes of southern Peninsular India have been central to discussions on the history of formation and breakup of supercontinents. Of particular interest are the Proterozoic high grade metamorphic orogens at the southern and eastern margins of the Indian shield, skirting the 3.4 Ga Dharwar craton which not only preserve important records of lower crustal processes and lithospheric geodynamics, but also carry imprints of the tectonic framework related to the assembly of the major Neoproterozoic supercontinents – Rodinia and Gondwana. These Proterozoic orogens are described as Southern Granulite Terrane (SGT) in the southern tip and the Eastern Ghats Mobile Belt (EGMB) in the eastern domains of the peninsula. The contiguity of these orogens is broken for a distance of ∼400 km and disappears in the Bay of Bengal. These orogens expose windows of middle to lower crust with well-preserved rock records displaying multiple tectonothermal events and multiphase exhumation paths.Recent studies in these orogens have led to the recognition of discrete crustal blocks or terranes separated by major shear zone systems, some of which represent collisional sutures. The SGT and EGMB carry several important features such as fold-thrust tectonics, regional granulite facies metamorphism of up to ultrahigh-temperature conditions in some cases, multiple P–T paths, development of lithospheric shear zones, emplacement of ophiolites, presence of alkaline and anorthositic complexes, development of crustal-scale “flower structures”, transpressional strains, and reactivation tectonics. A heterogeneous distribution of different metamorphic and magmatic assemblages with distinct spatial and temporal strain variations in shaping the fabric elements in different blocks is identified. Both EGMB and SGT share a common transpressional deformation history during the latest Neoproterozoic characterized by the steepening of the initial low angle crustal scale structures leading to a subvertical grain conducive to reactivation tectonics. Our synthesis of the spatial distribution, geometry, kinematics and the transpressional strain of the shear zone systems provides insights into the tectono-metamorphic history of the Proterozoic orogens of southern India and their contiguity and complexities. Recent understanding of subduction, accretion and collisional history along these zones together with a long lived transpressional tectonic regime imply that these orogens witnessed identical tectonic regimes at different times in Earth history, although the major and common structural architecture was built during the final assembly of the Gondwana supercontinent.  相似文献   

5.
Origin of granites in an Archean high-grade terrane,southern India   总被引:4,自引:0,他引:4  
Archean deep-level granites in southern India are similar geochemically to young granites from continentalmargin arc systems. They exhibit light REE enriched patterns with variable, but chiefly positive Eu anomalies. This is in striking contrast to the negative Eu anomalies typical in high-level Archean granites. In addition, the deep-level granites are relatively enriched in Ba and Sr and depleted in total REE and high field strength elements (HFSE). One pluton, the Sankari granite, has unusually low contents of REE and HFSE. Most of the deep-level granites appear to represent cumulates with variable amounts of trapped liquid and of minor phases, resulting from fractional crystallization of a granitic parent. Such parental granitic magmas can be produced by batch melting of Archean tonalite at middle to lower crustal depths. The Sankari granite requires a tonalitic source depleted in REE and HFSE. Archean tonalites and tonalitic charnockites exhibit original igneous geochemical signatures and their average composition does not show a significant Eu anomaly. Hence, they cannot represent the positive Eu-anomaly complement to the negative Eu-anomaly, high-level granites. Our results suggest that Archean deep-level granites may represent this complement. Such granite may form in waterrich zones in the middle or lower crust and be produced in response to dehydration of the lower crust by a rising CO2-rich fluid phase.  相似文献   

6.
Abstract The Protogine Zone comprises a system of anastomosing deformation zones which approximately parallel the eastern boundary of the Sveconorwegian (1200–900 Ma) province in south-west Sweden. Ages of granulite facies metamorphism in the Sveconorwegian province require exhumation from c . 30 to 35 km crustal depths after 920–880 Ma. 40Ar/39 Ar cooling ages are presented for muscovite from high-alumina rocks formed by hydrothermal leaching associated with the Protogine Zone. Growth of fabric-defining minerals was associated with a ductile deformational event; muscovite from these rocks cooled below argon retention temperatures ( c . 375 ± 25° C) at c . 965–955 Ma. Muscovite from granofels in zones of intense alteration indicates that temperatures > 375 ± 25° C were maintained until c . 940 Ma. Textural relations of Al2SiO5 polymorphs and chloritoid suggest that dated fabrics formed during exhumation. The process of exhumation, brittle overprint on ductile structures and hydrothermal activity along faults within the Protogine Zone tentatively are interpreted as the peripheral effects of initial Neoproterozoic exhumation of the granulite region of south-western Sweden.
Muscovite in phyllonites associated with the 'Sveconorwegian thrust system'cooled below argon retention temperatures at c . 927 Ma. Exhumation associated with this cooling could have been related to extension and onset of brittle-ductile deformation superimposed on Sveconorwegian contraction.  相似文献   

7.
Migmatitic cordierite gneisses within the Achankovil Zone (AZ) of southern Pan‐African India record melt‐producing and subsequent melt‐consuming mineral reactions. Early mineral assemblages Bt‐Sil‐Qtz and Bt‐Sil‐Spl, deduced from inclusion textures in garnet prophyroblasts, break down via successive dehydration melting reactions to high‐T phase assemblages (e.g. Grt‐Crd‐Liq, Opx‐Liq, Spl‐Crd‐Liq). Later back reactions between the restite and the in situ crystallizing melt resulted in thin cordierite coronas separating garnet from the leucosome, and partial resorption of garnet to Opx‐Crd or Crd‐Bt‐Qtz symplectites. Leucosomes generally display a moderate (low‐strain gneisses) to strong (high‐strain gneisses) depletion of alkali feldspar attributed to mineral‐melt back reactions partly controlled by the degree of melt segregation. Using a KFMASH partial petrogenetic grid that includes a melt phase, and qualitative pseudosections for microdomains of high and low Al/Si ratios, the successive phase assemblages and reaction textures are interpreted in terms of a clockwise P–T path culminating at about 6–7 kbar and 900–950 °C. This P–T path is consistent with, but more detailed than published results, which suggests that taking a melt phase into account is not only a valid, but also a useful approach. Comparing P–T data and lithological and isotopic data for the AZ with adjacent East Gondwana fragments, suggests the presence of a coherent metasedimentary unit exposed from southern Madagascar via South India (AZ) and Sri Lanka (Wanni Complex) to the Lützow–Holm Bay in Eastern Antarctica.  相似文献   

8.
The Achankovil Shear Zone (AKSZ) in the Southern Granulite Terrain separates the Trivandrum block from the Madurai block. Various geomorphic indices and longitudinal profiles of the river systems in the AKSZ, viz., Achankovil river basin (ARB) and Kallada river basin (KRB), were derived from SRTM DEM to decipher the influence of shearing and deformation on the regional drainage evolution. Although hypsometric analysis of the basins implies old stage of geomorphic evolution, horizontal shifts in the channel plan form are restricted (except in the Tertiary sediments), suggesting the structural controls over the drainage organization, which are also supported by the high topographic sinuosity. The transverse topographic symmetry (T) vectors indicate a southwesterly migration for the upstream channel segments of both ARB and KRB, while the northwesterly migration of the downstream courses can be correlated with the dextral shearing of the AKSZ. Even though the shear zone is considered to be the block boundary between the charnockite of Madurai and khondalite of Trivandrum blocks, the moderate to low profile concavity (θ) values are probably the result of suppressing the effect of the block–boundary interactions by shearing and denudation. The study proposes a model for evolution of drainage network in the AKSZ, where the mainstream of the basins was initially developed along NE–SW direction, and later the upstream and midstream segments were reoriented to the NW–SE trend as a result of intense shearing. Overall, the present study emphasizes the significance of geomorphic indices and longitudinal profile analysis to understand the role of shearing and deformation on drainage evolution in transcrustal shear zones.  相似文献   

9.
In the Kakkaponnu area within the Achankovil Shear Zone (ACSZ), southern India, an undeformed ultramafic body occurs within intensely deformed granulite facies metamorphic rocks of Pan-African age. The Kakkaponnu ultramafic body is composed of spinel-dunite, phlogopite-dunite, glimmerite, graphite-spinel-glimmerite, and phlogopite-graphite-spinellite. The spinel-dunite is a fine- to medium-grained rock composed mainly of olivine and aluminous spinel and is characterized by relatively high MgO (50.39–50.90 wt.%), (Mg/ (Mg+Fe) = 0.95), Al2O3 (7.8–8.98 wt.%), and low Ni (10–14 ppm). The phlogopite-dunite comprises serpentinized olivine, phlogopite and subordinate amounts of dolomite and is high in MgO (36.5 wt.%), Mg# [(Mg/(Mg+Fe) = 0.97], and K2O (%%5.5 wt.%). Olivine in the spinel-dunite is marked by unusually high MgO (Mg# = 0.96) and extremely low NiO (<0.14 wt.%). Spinels in all rock variants are highly aluminous with low Cr# [Cr/(Al+Cr)] ratio (<0.01). Magnesian ilmenite [Mg# = 59], rutile, zirconolite and baddeleyite are main accessory phases. No significant compositional variation is noted between large grains and small inclusions for all minerals. Abundant graphite, magnesite, melt and ubiquitous CO2 fluid inclusions are identified in the olivine and spinel grains. The data imply that the Kakkaponnu ultramafic body was formed by progressive crystallization of highly potassic CO2-rich melts injected into lower crustal levels. K-Ar ages of 470.5±9.3 and 464.5±9.2 Ma are obtained for phlogopite separates from glimmerite and phlogopite-dunite respectively. These ages are comparable to the phlogopite K-Ar ages reported from lithospheric shear zones in southern Madagascar, which was once conjugated to the Southern Peninsular India prior to the Gondwana breakup. This implies widespread highly potassic CO2-rich fluid/melt influx along shear zones in this part of East Gondwana continent.  相似文献   

10.
Large charnockite massifs occur in some of the Precambrian high-grade terrains like the southern Indian granulite terrain. The Cardamom Hill charnockite massif from the Madurai Block, southern India, consists of an intermediate type and silicic type, with the intermediate type showing similarities to high-Ba−Sr granitoids with low K2O/Na2O ratios and the silicic type showing similarities to high-Ba–Sr granitoids with high K2O/Na2O ratios. Within the constraints imposed by near basaltic composition of the most mafic samples and their relatively high concentrations of both compatible and incompatible elements, comparison with recent experimental studies on various source compositions, and trace- and rare-earth-element modeling, the distinctive features of the intermediate charnockites can be best explained in terms of assimilation–fractional crystallization (AFC) models involving interaction between a mantle-derived basaltic magma and lower crustal materials. Silicic charnockites on the other hand are high temperature melts of moderately hydrous basaltic magmas. A two-stage model which involves an initial partial melting of hydrous basaltic magma and later fractionation explains the geochemical features of the silicic charnockites, with the fractionation stage most probably an open system AFC. It is suggested that for massifs showing spatial association of intermediate and silicic charnockites, a model taking into account their compositional difference in terms of the effect of variations in the conditions (e.g., temperature, water fugacity) that prevailed, can account for plausible petrogenetic scenarios.  相似文献   

11.
Shillong region of northeast India falls under seismic zone V. Being a commercial hub, urbanization in this study region is at its peak. In order to qualitatively assess the subsurface velocity profiling of this area, we have blended two robust techniques, namely spatial autocorrelation (SPAC) and frequency wavenumber (FK) method. Corresponding to array noise data collected at five sites, situated in the close proximity of boreholes, we have evaluated VS and VP as well. The shear wave velocity estimates yielded by these techniques are found to be consistent with each other. The computed Vs values up to depth of 30 m are observed to be in the range of 275–375 m/s, in most of the sites which implies prevalence of low-velocity zone at some pocket areas. The estimates so found are systematically analyzed and implications are outlined. The results were corroborated by substantial evidence of site geology as well as geotechnical information.  相似文献   

12.
Ductile shear zones are important in tectonic reconstructions as a source of information on the relative motion of large crustal blocks or plates in the geological past. Methods to interpret fabric in ductile shear zones were mostly developed for low grade rocks where overprinting relations are usually well preserved. However, high grade shear zones are common and dominate in many Precambrian terrains. High grade shear zones should be analysed in a different way from low grade zones. The plane on which shear sense markers should be observed, the vorticity profile plane, is more difficult to find than in low grade shear zones. The most reliable shear sense markers in high grade shear zones are shear bands, mineral fish, mantled porphyroclasts, sigmoids and asymmetric boudins.  相似文献   

13.
The crustal scale Shear Zone that can be traced from Gadag in the north to Mandya in the south in Dharwar Craton of southern India is considered as the boundary between two subcratonic blocks namely the Eastern Dharwar Craton (EDC) and the Western Dharwar Craton (WDC) in published literature. The present study on the Gadag-Mandya Shear Zone (GMSZ) in the Javanahalli-Hagalvadi sector has brought out a detailed account on the disposition, geometry and kinematics of the shear zone, and also the distinctive structural patterns of the two adjacent supracrustal belts, namely the Chitradurga schist belt (CSB) in the west and Javanahalli schist belt (JSB) in the east. The JSB has an overall N-S striking and gentle easterly dipping geometry, the structural features of which are indicative of a predominant noncoaxial deformation and westward transportation of the supracrustal assemblage. In contrast, deformation in the CSB, which is defined mainly by a flattening type of strain, has produced an overall verticality of the structures (dominant foliation, axial planes of regional folds).  相似文献   

14.
The Mahadevi hills, located in the axial zone of Cauvery Suture Zone, comprise a sequence of granulite facies rocks represented by garnet-bearing pyroxene granulites and quartzo-feldspathic gneisess interfolded with banded iron formations. Structural mapping with hand held GPS reveals that the Mahadevi hills constitute a mega sheath fold structure exposing well developed easterly plunging extension lineations. Depressional and culmination surfaces are well demarcated in association with elliptical map patterns. The development of the mega sheath fold structure is genetically related to the regional thrust-nappe tectonics, supporting the model of subduction-accretion-collisional history for the evolution of the Cauvery Suture Zone.  相似文献   

15.
The results of study of the Ishkinino Co-Cu massive sulfide deposit hosted in ultramafic rocks of the Main Ural Fault Zone are discussed. The ore field is localized in a fragment of Early Devonian accretionary prism composed of oceanic and island-arc tectonic sheets. The antiform structure of the ore field was formed at the collision stage in the Late Devonian. The primary ore was deposited near the bottom in the environment of the accretionary prism at the island-arc stage of evolution, whereas the superimposed ore mineralization was related to the collision stage. The primary ore is composed of massive, stringer-disseminated, and clastic varieties with two mineral assemblages of sulfides and oxides. The superimposed stringer-disseminated ore mineralization is represented by Co-Ni-Fe arsenides and sulfoarsenides, native gold, Bi and Te minerals, and late sulfides and oxides. Loellingite, safflorite, rammelsbergite, and krutovite were identified in the massive sulfide ore for the first time in the Urals. The geochemical attributes of Co-Ni minerals serve as indicators of superimposed processes. Chromites contained in rocks and ore correspond to Cr-spinel of suprasubduction ultramafic rocks in chemical composition. It is suggested that sulfide ore may be found in the accretionary prisms of the presently active island arcs composed of ultramafic sheets.  相似文献   

16.
ABSTRACT A suite of garnet-wollastonite-scapolite-bearing calcsilicate granulites from the Eastern Ghats has been investigated to document the controls of mineral reactions during the metamorphic evolution of the deep continental crust. The rocks studied show heterogeneity in modal mineralogy and phase compositions in millimetre-sized domains. Textural relations, and the compositional plots of the phases, established that the clinopyroxene exerts a strong influence on the formation and composition of garnet in the complex natural system. P-T estimates using the vapour-independent equilibria involving garnet define a near isobaric cooling path from c. 850C at c. 5.5–5.2 kbar. The deduced trajectory tallies well with the terminal segment of the overall retrograde P-T path construed from the associated rocks using well-calibrated thermobarometers. The ubiquitous occurrence of wollastonite and scapolite in the main calcsilicate body suggests low aCO2 during peak metamorphic condition. Fluid compositions constrained from mineral-fluid equilibria of the garnet-bearing assemblages show domainal variations as a function of the compositions of the solid phases, e.g. garnet and clinopyroxene. A quantitative log/CO2-log/O2 diagram has been constructed to depict the stability of the different calcsilicate assemblages as functions of the compositions and the behaviour of these fugitive species. The results of the mineral-fluid equilibria and the quantitative fluid/rock ratio calculations, in conjunction with the topological constraints, imply vapour-deficient meta-morphism in the rocks studied. It is argued that fO2 during peak metamorphism was monitored by the ambient fO2. Subsequently, during retrogression, different domains evolved independently, whereas the fluid composition was controlled by the mineral-fluid equilibria.  相似文献   

17.
J. Dostal  S. Capedri 《Lithos》1979,12(1):41-49
A sequence of amphibolite to granulite facies metasedimentary and mafic metaigneous rocks from the western Italian Alps has been analysed for rare earth elements (REE). In this sequence, the metasedimentary granulites have probably been affected by a melting event while the metaigneous granulites remained unaffected. Metasedimentary granulites have a less fractionated chondrite-normalized REE pattern than equivalent amphibolite facies rocks. The granulites tend to have a higher content of heavy REE and lower abundances of light REE (LREE). The leucosomes of migmatitic granulites have lower REE content than the melanocratic bands and both these rock types have variable relative abundances of Eu. The mafic granulites have LREE enriched patterns while the amphibolites are slightly depleted in LREE. The differences between the mafic granulites and amphibolites are probably of pre-metamorphic origin.  相似文献   

18.
Högbomite has generally been considered to be a rare accessory phase in metamorphic rocks. While investigating high-grade peraluminous metamorphites in the Benson Mine District, Adirondack Mountains, New York and the Manitouwadge Massive Sulfide District, Ontario, Canada, we have found several högbomite occurrences and believe that högbomite is more widespread in high-grade aluminous rocks than previously recognized. At Benson Mine, an iron-rich högbomite (Hög) occurs with K-feldspar-magnetite (Mt)-ilmenite (Ilm)-biotite-almandine (Alm)-sillimanite (Sil)-quartz (Qz)-hercynite (Hc)-corundum (Cor)-rutile (Ru). At Manitouwadge, Fe -Zn högbomite is found with gedrite-cordierite-staurolite-hercynite-magnetite±quartz ±ilmenite±rutile±biotite±cassiterite. Because composition varies with structure type, it is essential to determine the structure of högbomite utilized in specific reactions. Högbomite from Benson Mine has an 8H structure type, while that at Manitouwadge has a complex mixed structure. Both are more iron-rich than previously reported högbomites, and their composition can be approximated by the ideal formula Fe5Al16TiO30(OH)2. Proposed reactions for 8H-högbomite are Hög=Ilm+Hc+Cor+V, Hög=Ru+Hc+Cor+V, Hög+Ru=Ilm+Cor+V, and Hög+Ilm=Ru+Hc+V. These reactions can be combined with the experimentally determined reactions Alm+Sil=Hc+Qz and Ru+Alm=Ilm+Sil+Qz to derive reactions in the system FeO-Al2O3-TiO2-SiO2-H2O that limit the stability of the assemblages Hög+Alm and Hög+Sil. Oxidation-sulfidation reactions define a wedge-shaped stability field for högbomite that is closed on the high f S2 side.Contribution No. 456 from the Mineralogical Laboratory, University of Michigan, Ann Arbor, USA  相似文献   

19.
Within this article, we discuss/unpack a speculative international property development born out of a license agreement between the Marylebone Cricket Club (MCC) and real estate investment company, Anglo Indian. The proposed building of twelve cloned, MCC branded, cricket communities in India–targeted to the consumption-based lifestyles of India’s new middle class–is addressed within the context relational to the political, economic, and cultural rationalities of postcolonial India, shifting power dynamics within the international cricket formation, and the associated re-colonisation of cricket-related spaces/bodies. Anglo Indian’s proposed communities are understood as part of a complex assemblage of national and global forces and relations (including, but certainly not restricted to): transnational gentrification; urban (re)development; and, revised understandings of historical and geographic connections between places, governance, and the politics of be(long)ing in branded spaces. This analysis explicates how Anglo Indian’s idealized community development offers a literal and figurative space for embodied performance of “glocal competence” for consumption-based identity projects of the new Indian middle-class (Brosius, 2010, p. 13) through the somewhat ironic mobilization of colonial spatial logics and cultural aesthetics.  相似文献   

20.
Existence of a possible detachment zone at Elampillai region, NW margin of Kanjamalai Hills, located in the northern part of Cauvery Suture Zone (CSZ), Southern India, is reported here for the first time. Detailed structural mapping provides anatomy of the zone, which are rarely preserved in Precambrian high grade terranes. The detachment surface separates two distinct rock units of contrasting lithological and structural characters: the upper and lower units. The detachment zone is characterized by a variety of fold styles with the predominance of tight isoclinal folds with varied plunge directions, limb rotations and the hinge line variations often leading to lift-off fold like geometries and deformed sheath folds. Presence of parasitic folding and associated penetrative strains seem to be controlled by differences in mechanical stratigraphy, relative thicknesses of the competent and incompetent units, and the structural relief of the underlying basement. Our present study in conjunction with other available geological, geochemical and geochronological data from the region indicates that the structures of the detachment zone are genetically related to thrust tectonics forming a part of subduction–accretion–collision tectonic history of the Neoproterozoic Gondwana suture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号