首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
In this paper, theoretical models are developed and numerical methods are used to analyze the loads, motions and cavity dynamics for freefall wedges with different deadrise angles vertically entering the water surface at Froude numbers: 1  Fn < 9. The time evolutions of the penetration depth, the velocity and the acceleration are analyzed and expressed explicitly. The maximum and average accelerations are predicted. The theoretical results are compared with numerical data obtained through a single-fluid BEM model with globally satisfactory agreement. The evolution of the pressures on the impact side is investigated. Before flow separation, gravity and the acceleration of the wedge have negligible influence on the pressure on the impact side for large Froude numbers or small deadrise angles; with increasing the deadrise angle or decreasing Froude number, the effects of gravity and the acceleration of the wedge tend to become more important. Global loads, with the main emphasis on the drag coefficient, are also studied. It is found that for the light wedge, the transient drag coefficient has slow variation in the first half of the collapse stage and rapid variation in the last half of the collapse stage. For the heavy wedge, the transient drag coefficients vary slowly during the whole collapse stage and can be treated as constant. The characteristics of the transient cavity during its formation are investigated. The non-dimensional pinch-off time, pinch-off depth and submergence depth at pinch-off scale roughly linearly as the Froude number.  相似文献   

2.
A practical method to account for the influence of sinkage and trim on the drag of a freely floating (free to sink and trim) common monohull ship at a Froude number F  0.45 is considered. The sinkage and the trim are estimated via two alternative simple methods, considered previously. The drag is also estimated in a simple way, based on the classical Froude decomposition into viscous and wave components. Specifically, well-known semiempirical expressions for the friction drag, the viscous pressure drag and the drag due to hull roughness are used, and the wave drag is evaluated via a practical linear potential flow method. This simple approach can be used for ship models as well as full-scale ships with smooth or rough hull surfaces, and is well suited for early ship design and optimization. The method considered here to determine the sinkage and the trim, and their influence on the drag, yields theoretical predictions of the drag of the Wigley, S60 and DTMB5415 hulls that are much closer to experimental measurements than the corresponding predictions for the hull surfaces of the ships in equilibrium position at rest. These numerical results suggest that sinkage and trim effects, significant at Froude numbers 0.25 < F, on the drag of a typical freely floating monohull ship can be realistically accounted for in a practical manner that only requires simple potential flow computations without iterative computations for a sequence of hull positions.  相似文献   

3.
The far-wake flow past a sphere towed in a fluid with high Reynolds and Froude numbers and with a pycnocline-form salt-density stratification is studied in a laboratory experiment based on particle image velocimetry and in numerical and theoretical modeling. In the configuration under consideration, the axis of sphere towing is located under a pycnocline. Flow parameters, the profiles of density and average velocity, and the initial field of velocity fluctuation in numerical modeling are specified from the data of the laboratory experiment. The fields of fluid velocity at different times and the time dependences of integral parameters of wake flow, such as the average velocity at the axis and the transverse width of the flow, are obtained. The results of numerical modeling are in good qualitative and quantitative agreement with the data of the laboratory experiment. The results of the laboratory experiment and numerical modeling are compared to the predictions of a quasi-linear and quasi-two-dimensional theoretical model. The time evolution of both the average velocity at the axis and the transverse width of the wake is obtained with the model and is in good agreement with the experimental data. The results of numerical modeling also show that, under the effect of velocity fluctuation in the wake, internal waves whose spatial period is equal to the characteristic period of the wake’s vortex structure are excited efficiently in the pycnocline.  相似文献   

4.
The results of the three-dimensional numerical simulation for the study of the stratification effect and wave processes associated with it on the drag of the underwater part of the hummocked ice are considered. The numerical model is based on the sampling of equations on a rectangular grid using the immersed boundary method that makes it possible to explicitly describe the interaction of moving ice with a stratified flow. The dependence of the drag force on the Froude number was established based on these calculations. This dependence has expressed points of maximum and minimum. The form of this dependence is common for the considered models of ice keels. The obtained estimations of drag force consistent with the known results of laboratory experiments show the need for the construction of parametrizations of the drag coefficient on the ice–ocean boundary, taking into account wave effects.  相似文献   

5.
A model problem of the flow under an air-cushion vessel is studied. Two different numerical techniques are used to determine the solution of the free-surface elevation and the wave resistance for a range of Froude number, Reynolds number, value of the pressure applied in the cushion, and depth of the water. The first numerical technique uses a velocity potential that satisfies linearized free-surface boundary conditions, whereas the second employs a finite-volume method to find a solution that satisfies the fully nonlinear free-surface boundary conditions. The results clearly show that for high Froude number and practical values of the cushion pressure, the linear-theory solution is in excellent agreement with the more exact nonlinear prediction. For lower Froude number the solution becomes unsteady, and the disagreement between the two methods is larger.  相似文献   

6.
In-line force on a cylinder translating in oscillatory flow   总被引:2,自引:0,他引:2  
Experiments were conducted with smooth and sand-roughened cylinders moving with constant velocity in a sinusoidally oscillating flow to determine the drag and inertia coefficients and to examine the effect of wake biasing on the modified Morison equation. The various flow parameters such as the relative cylinder velocity. Reynolds number, and the Keulegan-Carpenter number were varied systematically and the in-line force measured simultaneously. The principal results, equally valid for both smooth and rough cylinders, are as follows: the drag coefficient decreases with increasing relative current for a given Reynolds number and Keulegan-Carpenter number; the effect of wake biasing on the drag and inertia coefficients is most pronounced in the drag-inertia dominated regime; and the two-term Morison equation with force coefficients obtained under no-current conditions is not applicable to the prediction of wave and current induced loads on circular cylinders.  相似文献   

7.
A numerical investigation of the bottom pressure and wave elevation generated by a planing hull in finite-depth water is presented. While the existing literature addresses the free-surface deformation and pressure field at the seafloor independently, this work proposes a direct comparison between the two hydrodynamic quantities. The dependence of the pressure disturbances at the ocean floor from the waves generated at the free-surface by a planing hull is studied for several values of both the depth and hull Froude numbers. The methodology employed is Smoothed Particle Hydrodynamics (SPH), a numerical technique based on the discretization of the continuum fields of hydrodynamics through mesh-less particles. The SPH code herein chosen is initially validated against experimental data for transom-stern flow. Subsequently, numerical simulations are presented for a planing hull in high-speed regimes. The results show a direct correlation between surface wave dynamics and hydrodynamic pressure disturbances at the seafloor as the value of the Froude number is varied. This is assessed by studying the inverse dependence of the low-pressure wake angle with the Froude number and by comparison of SPH results with similar works in the cited literature.  相似文献   

8.
This paper discusses the numerical prediction of the induced pressure and lift of the planing surfaces in a steady motion based on the potential flow solver as well as the spray drag by use of the practical method.The numerical method for computation of the induced pressure and lift is potential-based boundary element method.Special technique is identified to present upwash geometry and to determine the spray drag.Numerical results of a planing flat plate and planing craft model 4666 are presented.It is shown that the method is robust and efficient and the results agree well with the experimental measurements with various Froude humors.  相似文献   

9.
CFD and system-based simulation are used to predict broaching, surf-riding, and periodic motion for the ONR Tumblehome model, including captive and free model test validation studies. CFD shows close agreement with EFD for calm water resistance, static heel (except for sway force and yaw moment), and static drift (except for roll moment). CFD predictions of static heel in following waves also compare well with EFD except for surge force, sway force, and pitch angle. Froude-Krylov calculations of wave-induced surge force in following waves provides good agreement for high Froude number, but significantly overestimates for Froude number less than 0.2. On the other hand, CFD successfully reproduces the reduction of the wave-induced surge force near Froude number 0.2, probably because CFD can capture the 3D wave pattern. CFD free model simulations are performed for several speeds and headings and validated for the first time for surf-riding, broaching, and periodic motions. System-based simulations are carried out based on inputs from EFD, CFD, and Froude-Krylov for a dense grid of speeds and headings to predict the instability map, which were found to produce fairly similar results.  相似文献   

10.
This work presents a new model for wave and submerged vegetation which couples the flow motion with the plant deformation. The IH-2VOF model is extended to solve the Reynolds Average Navier–Stokes equations including the presence of a vegetation field by means of a drag force. Turbulence is modeled using a kε equation which takes into account the effect of vegetation by an approximation of dispersive fluxes using the drag force produce by the plant. The plant motion is solved accounting for inertia, damping, restoring, gravitational, Froude–Krylov and hydrodynamic mass forces. The resulting model is validated with small and large-scale experiments with a high degree of accuracy for both no swaying and swaying plants. Two new formulations of the drag coefficient are provided extending the range of applicability of existing formulae to lower Reynolds number.  相似文献   

11.
杨怿 《海洋科学》2009,33(7):94-98
通过理论研究定量地说明流向Morison波浪力,即拖曳力和惯性力的高阶统计矩随采样次数增加的规律.主要应用二阶Stokes波理论,推导了流向Morison波浪力的前四阶累积量.计算了作用于实际海底管线上的流向Morison波浪力的偏斜度和峰度.结果表明,随着采样次数的增加,拖曳力和惯性力的偏斜度和峰度驱于收敛.文中给出的方法为后续理论工作奠定了基础.  相似文献   

12.
何飞  陈杰  蒋昌波  赵静 《海洋学报》2018,40(5):24-36
海草所形成的植物消波体系能有效防止岸线的侵蚀。利用Sánchez-González等的实验数据分析了波浪非线性对海草消波特性的影响。研究结果表明,相对水深和波陡对海草床的波能衰减系数影响依赖于海草淹没度。相对波高一定时,拖曳力系数随相对水深的增大而增大。对给定的相对水深,拖曳力系数随波陡的增大而减小。波浪非线性对于规则波和非规则波海草消波特性的影响并不一致。用无量纲参数(邱卡数、雷诺数、厄塞尔数)表达拖曳力系数的效果取决于拖曳力系数与无量纲参数的关系中是否充分考虑波浪非线性对拖曳力系数的影响。  相似文献   

13.
The skin friction of a two-dimensional planing flat plate is made up of two opposing components; a drag force from the flow aft of the stagnation line and an opposing thrust force from the jet flow. This paper is concerned only with the drag term and the wake velocity defect which it causes in the water behind the transom.It is concluded that the skin friction is less than would be expected from a flat plate at ambient static pressure (Dfo say) and is approximately equal to Dfo (1 ? CR), where CR is the normal force coefficient based on wetted area. The wake velocity decrement due to this drag is found to be significant, particularly for surface piercing propellers.  相似文献   

14.
《Ocean Engineering》1999,26(4):343-361
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence.  相似文献   

15.
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence.  相似文献   

16.
In the present study, a tethered spherical float undergoing oscillatory motion in regular waves is analysed. Float velocity is computed through dynamical equation of motion and particle velocity using linear wave theory. The results show that variation of particle velocity with respect to wave period, wave height or water depth is small compared to the variation of float velocity with respect to the same parameters. The results further indicate that the difference between float velocity and particle velocity is considerable and, in such cases, the relative velocity instead of the particle velocity has to be considered for drag force or drag power estimation. However, it is suggested that float velocity must be higher than the particle velocity in order to use relative velocity in drag force or drag power estimation.  相似文献   

17.
This paper presents bilge keel loads and hull pressure measurements carried out on a rotating cylinder in a free surface water basin. A flat plate bilge keel and one more complex shaped bilge keel were studied to investigate the geometry effect. The draft of the cylinder was varied to study the effect of the vicinity of the free surface on the bilge keel loads and hull pressures. The rotation axis of the cylinder was fixed to define a pure roll experiment (one degree of freedom).The cylinder was subject to forced oscillations of varying amplitude leading to a KC range of 0.3–16. Using Fourier analysis the first three harmonic coefficients representing the normal bilge keel load were derived. The first harmonic drag and inertia coefficients are in good agreement to existing experimental data obtained for wall bounded flat plates fitted in a U-shaped water tunnel as reported by Sarpkaya and O’Keefe (1996). New insight is gained by the fact that the addition of higher harmonic contributions is essential to capture the time varying bilge keel normal force.The pressure measurements next to the bilge keel are compared to measurements reported by Ikeda et al. (1979). Similar findings are obtained, showing that the pressure on the hull in front of the moving bilge keel is KC independent while the vortex system in the wake of the bilge keel leads to KC dependent hull pressure distributions. The hull pressure jump over the bilge keel correlates well to the force coefficient on the bilge keel. The complex nature of the vortex induced hull pressures is manifested. The empirically derived hull pressure distribution by Ikeda et al. (1979) for the time instant of maximum velocity is shown to correlate reasonably well to the measured data with some conservatism in the absolute value.Although a cylinder is very different from a ship-shaped section, the experiments provide essential insight into the physics associated with roll damping and into the factors that should be included in a roll damping prediction method.  相似文献   

18.
In this paper, a time-domain numerical model is established for computing the action of internal solitary wave on marine structures and structure motion responses. For a cylindrical structure, its side and bottom are discretized by pole and surface elements, respectively. The drag and inertial forces in the perpendicular direction of the structure are computed by the Morison equation from the pole elements, and the Froude–Krylov force in the axial direction of the structure due to internal wave motion is computed by integration of the dynamic pressure over the surface elements. The catenary theory is used to analyze the reaction force due to mooring lines, and the motion equation of the marine structure is solved by the fourth-order Runge–Kutta method in the time domain. The model is used to calculate the interaction of the internal solitary wave with a Spar platform with mooring system, and the surface wave action with the platform has also been computed by a frequency-domain boundary element method for comparison. Through the comparison based on a practical internal wave and surface wave states, it can be concluded that the internal wave force on the structure is only 9% of the one due to surface waves. However, the motion response due to the internal wave is much greater than the one due to the surface waves. It shows that the low-frequency effect of internal solitary waves is a great threat to the safety of marine structures.  相似文献   

19.
《Coastal Engineering》2001,42(1):17-34
The linear mild-slope equation (MSE) is examined in the limit of very shallow water. This is done by means of a series comparison with the more ‘exact’ linear classical theory (E) valid over arbitrary uniform slopes and known to have a “minimum norm” solution basis pair, respectively, regular and logarithmically singular at the shore line. It is shown that the agreement between E and MSE is exact for the first three terms for the regular wave and the first two for the singular wave. It is further demonstrated, by application of this example, that the MSE represents a better approximation than does the classical linearised shallow water equation (SWE) in the case of extremely small depth. In particular, if solutions to each are tuned to the same finite wave height at the shoreline, then MSE predicts the correct curvature of wave height there whereas SWE does not.The work of Booij (Booij, N.A., 1983. A note on the accuracy of the Mild-Slope Equation. Coastal Engineering 7, 191–203.) is supported and varied to allow performance on very steep beds to be tested against exact values rather than those of numerical simulation. Those tests are carried out both as Boundary Value Problems, BVP (Scheme A) and Initial Value Problems, IVP (Scheme B) with matching results on global error. Methods are found of specifying phase and group velocity, which are consistent with linear wave beach theory and lead to improvements in solving the MSE over steep flat beaches. The improvements are found generally superior, in the case considered, to those of some recently developed ‘modified’ and ‘extended’ MSEs. Finally, it is demonstrated, and confirmed by both asymptotic theory and calculation, that the addition of evanescent modes constitutes improvement only in intermediate depths and is not recommended in depths of the order of only a wavelength on a steep (e.g. 45°) beach.  相似文献   

20.
为定量研究多冰脊之间的尾流遮掩作用对海冰漂移运动的影响,物理模型试验(试验有限水深为0.45 m)测量了多冰脊拖曳力的衰减变化。冰脊模型选用底角为45°的等腰直角三角形,选取了4种入水深度、9种冰脊间距进行测量。试验得到了前后冰脊拖曳力及其比值在尾流遮掩情况下的变化规律。前冰脊拖曳力与单冰脊情况一致,与冰脊速度的平方保持线性关系;而后冰脊在间距较小时出现了反向拖曳力,随冰脊间距的增大,后冰脊拖曳系数先减小再增大至不变。前后冰脊拖曳力比值的变化规律可以用指数遮掩函数来描述,该遮掩函数与冰脊间距和入水深度有关而与流速无关。通过与现有海冰模式中的遮掩函数对比,研究结论增强了该指数公式的适用性,加强了对海冰动力学模式中遮掩函数的理解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号