共查询到20条相似文献,搜索用时 15 毫秒
1.
The stoichiometry and kinetics of the reaction of NO2 with O3 at sub-ppm concentration level have been investigated as a function of temperature and relative humidity. The experiments were performed in a continuous flow reactor using chemiluminescent and wet chemical methods of analysis.The rate constant found can be described by the Arrhenius expression: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaaik% dacaGGUaGaaGyoaiaaiEdacqGHXcqScaaIWaGaaiOlaiaaigdacaaI% 0aGaaiykaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacqGHsislca% aIXaGaaG4maaaakiaabwgacaqG4bGaaeiCaiaacIcadaWcgaqaaiaa% cIcacqGHsislcaaIYaGaaGOnaiaaikdacaaIWaGaeyySaeRaaGyoai% aaicdacaGGPaaabaGaamivaiaacMcacaqGGaGaae4yaiaab2gadaah% aaWcbeqaaiaabodaaaGccaqGGaWaaSGbaeaacaqGTbGaae4BaiaabY% gacaqGLbGaae4yaiaabwhacaqGSbGaaeyzamaaCaaaleqabaGaaeyl% aiaabgdaaaaakeaacaqGZbWaaWbaaSqabeaacaqGTaGaaeymaaaaaa% aaaaaa!62A3!\[(2.97 \pm 0.14) \times 10^{ - 13} {\text{exp}}({{( - 2620 \pm 90)} \mathord{\left/ {\vphantom {{( - 2620 \pm 90)} {T){\text{ cm}}^{\text{3}} {\text{ }}{{{\text{molecule}}^{{\text{ - 1}}} } \mathord{\left/ {\vphantom {{{\text{molecule}}^{{\text{ - 1}}} } {{\text{s}}^{{\text{ - 1}}} }}} \right. \kern-\nulldelimiterspace} {{\text{s}}^{{\text{ - 1}}} }}}}} \right. \kern-\nulldelimiterspace} {T){\text{ cm}}^{\text{3}} {\text{ }}{{{\text{molecule}}^{{\text{ - 1}}} } \mathord{\left/ {\vphantom {{{\text{molecule}}^{{\text{ - 1}}} } {{\text{s}}^{{\text{ - 1}}} }}} \right. \kern-\nulldelimiterspace} {{\text{s}}^{{\text{ - 1}}} }}}}\] and are independent of the relative humidity. As commonly encountered in previous studies a lower-than-two reaction stoichiometry is observed.Heterogeneous reactions occurring at the reactor wall seem to be essential in the reaction mechanism. The NO3 wall conversion to NO2 and the N2O5 wall scavenging in the presence of H2O are suggested to account for the observed stoichiometric factors. 相似文献
2.
Y. Kondo H. Muramatsu W. A. Matthews N. Toriyama M. Hirota 《Journal of Atmospheric Chemistry》1988,6(3):235-250
In summer, atmospheric ozone was measured from an aircraft platform simultaneously with nitric oxide (NO), oxides of nitrogen (NO
y
), and water vapor over the Pacific Ocean in east Asia from 34° N to 19° N along the longitude of 138±3°E. NO
y
was measured with the aid of a ferrous sulfate converter. The altitude covered was from 0.5 to 5 km. A good correlation in the smoothed meridional distributions between ozone and NO
y
was seen. In particular, north of 25° N, ozone and NO
y
mixing ratios were considerably higher than those observed in tropical marine air south of 25° N. NO
y
and O3 reached a minimum of 50 pptv and 4 ppbv respectively in the boundary layer at a latitude of 20° N. The NO concentration between 2 and 5 km at the same latitude was 30 pptv. The profiles of ozone and water vapor mixing ratios were highly anti-correlated between 25° N and 20° N. In contrast, it was much poorer at the latitude of 33° N, suggesting a net photochemical production of ozone there. 相似文献
3.
R. N. Colvile T. W. Choularton J. N. Cape B. J. Bandy K. N. Bower R. A. Burgess T. J. Davies G. J. Dollard M. W. Gallagher K. J. Hargreaves B. M. R. Jones S. A. Penkett R. L. Storeton-West 《Journal of Atmospheric Chemistry》1996,24(3):211-239
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO
y
) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO
y
, called NO
z
, was neither NO nor NO2. This NO
z
failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO
z
to NO3
- in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3
- in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO
x
to NO
z
were found. To explain these observations, scavenging of NO
x
and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2
- by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO
x
or SO2, NO3
- which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3
-, was observed. 相似文献
4.
The kinetics of the reaction of nitrous acid (HONO) with nitric acid (HNO3), nitrate radicals (NO3) and dinitrogen pentoxide (N2O5) have been studied using Fourier transform infrared spectroscopy. Experiments were performed at 700 torr total pressure using synthetic air or argon as diluents. From the observed decay of HONO in the presence of HNO3 a rate constant of k<7×10-19 cm3 molecule-1 s-1 was derived for the reaction of HONO with HNO3. From the observed decay of HONO in the presence of mixtures of N2O5 and NO2 we have also derived upper limits for the rate constants of the reactions of HONO with NO3 and N2O5 of 2×10-15 and 7×10-19 cm3 molecule-1 s-1, respectively. These results are discussed with respect to previous studies and to the atmospheric chemistry of HONO. 相似文献
5.
Growth in subsonic air traffic over the past 20 years has been dramatic, with an annual increase of }6.1% over the decade between 1978 and 1988. Furthermore, aircraft activities in the year 2000 are predicted to be double those of 1990, with a shift towards more high-flying, longhaul subsonics. Aircraft exhaust gases increase the amount of nitrogen oxides (NO
x
) in the upper troposphere/lower stratosphere through injection at cruise altitudes. Given that NO
x
is instrumental in tropospheric ozone production and stratospheric ozone destruction, it is important to determine the influence of subsonic aircraft NO
x
emissions on levels of atmospheric ozone. This paper describes calculations designed to investigate the impact that subsonic aircraft may already have had on the atmosphere during the 1980s, run in a 2-D chemical-radiative-transport model. The results indicate a significant increase in upper tropospheric ozone over the decade arising from aircraft emissions. However, when comparing model results with observational data, certain discrepancies appear. Lower stratospheric ozone loss over the 1980s does not appear to be greatly altered by the inclusion of aircraft emissions in the model. However, given the trend in greater numbers of long-haul subsonic aircraft, this factor must be considered in any further calculations. 相似文献
6.
The gas-phase reactions of NO3 with 2-methyl-2-butene, isobutene,trans-butene, 1-butene and propene, were investigated in a flow-tube at room temperature. Experiments were performed in the pressure range 1–1000 mbar in synthetic air as well as at a total pressure of 800 mbar with varying concentrations of oxygen in nitrogen.The main products found were oxiranes, nitroxy-carbonyl compounds (ketonitrates) and ketones or aldehydes. The product distribution was a function of pressure. In each case, in synthetic air, the oxirane yield increased with decreasing total pressure up to a value of about 100% at pressures less than 1 mbar.It was concluded that oxirane is a product of the excited adduct radical formed in the electrophilic addition of NO3 to the double bond. Experiments with very low partial pressures of oxygen showed that the quenched adduct radicals also produce the corresponding oxirane.Under tropospheric conditions (1000 mbar synthetic air) the following yields of the corresponding oxiranes were found: 2-methyl-2-butene 9%, isobutene 7%,trans-butene 12%, 1-butene 18%, propene 28%. In the case oftrans-butene the total oxirane yield consists of 72%trans- and 28%cis-isomer.Dedicated to Professor Wolfgang Rolle on the occasion of his 60th birthday. 相似文献
7.
Recent observations suggest that the abundance of ozone between 2 and 8 km in the Northern Hemisphere mid-latitudes has increased by about 12% during the period from 1970 to 1981. Earlier estimates were somewhat more conservative suggesting increases at the rate of 7% per decade since the start of regular observations in 1967. Previous photochemical model studies have indicated that tropospheric ozone concentrations would increase with increases in emissions of CO, CH4 and NO
x
. This paper presents an analysis of tropospheric ozone which suggests that a significant portion of its increase may be attributed to the increase in global anthropogenic NO
x
emissions during this period while the contribution of CH4 to the increase is quite small. Two statistical models are presented for estimating annual global anthropogenic emissions of NO
x
and are used to derive the trend in the emissions for the years 1966–1980. These show steady increase in the emissions during this interval except for brief periods of leveling off after 1973 and 1978. The impact of this increase in emissions on ozone is estimated by calculations with a onedimensional (latitudinal) model which includes coupled tropospheric photochemistry and diffusive meridional transport. Steady-state photochemical calculations with prescribed NO
x
emissions appropriate for 1966 and 1980 indicate an ozone increase of 8–11% in the Northern Hemisphere, a result which is compatible with the rise in ozone suggested by the observations. 相似文献
8.
Rate constants for the gas-phase reactions of OH radicals with nopinone (6,6-dimethylbicyclo[3.1.1]heptan-2-one) and camphenilone (3,3-dimethylbicyclo[2.2.1]heptan-2-one) and for the reactions of 4-acetyl-1-methylcyclohexene with OH and NO3 radicals and O3 have been measured at 296±2 K. The rate constants (cm3 molecule–1 s–1 units) obtained were, for reaction with the OH radical: nopinone, (1.43±0.37)×10–11; camphenilone, (5.15±1.44)×10–12; and 4-acetyl-1-methylcyclohexene, (1.29±0.33)×10–10; for reaction with the NO3 radical: 4-acetyl-1-methylcyclohexene, (1.05±0.38)×10–11; and for reaction with O3: 4-acetyl-1-methylcyclohexene, (1.50±0.53)×10–16. These data are used to calculate the tropospheric lifetimes of these monoterpene atmospheric reaction products. 相似文献
9.
S. Madronich D. R. Hastie H. I. Schiff B. A. Ridley 《Journal of Atmospheric Chemistry》1985,3(2):233-245
The photodissociation coefficient of NO2, J
NO
2, has been measured from a balloon platform in the stratosphere. Results from two balloon flights are reported. High Sun values of J
NO
2 measured were 10.5±0.3 and 10.3±0.3×10-3 s-1 at 24 and 32 km respectively. The decrease in J
NO
2 at sunset was monitored in both flights. The measurements are found to be in good agreement with calculations of J
NO
2 using a simplified isotropic multiple scattering computer routine. 相似文献
10.
Ground-based visible differential absorption spectrometry during twilight has been used for NO2 total column observations at the Antarctica Peninsula, Marambio Base (64S, 56W), during the austral spring of 1989 (9 September to 25 November).Results show moderate NO2 vertical column levels of 1.5 to 2.5×1015 molec cm-2 in the morning and 2 to 3×1015 molec cm-2 in the evening until middle October, highly modulated by planetary wave activity. From that date until the end of the period, a steady increase occurs which is associated with the rising of lower stratosphere temperature as the vortex weakens, reaching values of 5×1015 molec cm-2 in late November, with small a.m.-p.m. differences. NO2 is found to be positively correlated to both total ozone and 50 hPa temperature during the entire spring. However, when analyzing the departures from linear trends, a highly negative correlation has been observed from day 301 onwards. 相似文献
11.
G. T. Amanatidis A. F. Bais A. G. Kelessis C S. Zerefos I. C. Ziomas 《Journal of Atmospheric Chemistry》1989,9(4):435-446
A programme of ground-based stratospheric and total NO2 column measurements was instituted at the Laboratory of Atmospheric Physics (40.5° N, 22.9° E) in August 1985. We present here the results of the first two years of measurements with a modified Canterbury filter photometer, details of which are given in the text. The stratospheric NO2 column, obtained at twilight during low local NO2 levels, shows the seasonal variation with monthly mean values of about 6×10-15 molec. cm-2 in the summertime to about 2.2×10-15 molec. cm-2 in the wintertime. These measurements compare well with measurements obtained with different instruments by other groups at similar latitudes (about 40° N) but in different places. Also, the asymmetry of the evening-to-morning stratospheric NO2 over Thessaloniki was found to be on the average equal to 1.58. Total NO2 column over Thessaloniki has a pronounced seasonal variation with amplitude of 0.68 matm. cm which can be explained partly from measured local NO2 sources which discharge in the mixing layer and partly from photolysis of the NO2 reservoir species. 相似文献
12.
13.
The 1,4-hydroxycarbonyl 5-hydroxy-2-pentanone is an important product of the gas-phase reaction of OH radicals with n-pentane in the presence of NO. We have used a relative rate method with 4-methyl-2-pentanone as the reference compound to measure the rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone at 296 ± 2 K. The carbonyls were sampled by on-fiber derivatization using a Solid Phase Micro Extraction (SPME) fiber coated with O>
-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride with subsequent thermal desorption of the oxime derivatives and quantification by gas chromatography with flame ionization detection. For comparison, the reference compound was also analyzed following sample collection onto a Tenax adsorbent cartridge. Products of the reaction were investigated using coated-fiber SPME sampling with gas chromatography-mass spectrometry analysis as well as by using in situ atmospheric pressure ionization mass spectrometry. A rate constant for the reaction of OH radicals with 5-hydroxy-2-pentanone of (1.6 ± 0.4) × 10–11 cm3 molecule–1 s–1 was obtained at 296 ± 2 K. Two dicarbonyl products, of molecular weight 86 and 100, were observed and are attributed to CH3C(O)CH2CHO and CH3C(O)CH2CH2CHO, respectively. Reaction schemes leading to these products are presented. 相似文献
14.
Gerhard Kramm Hans Müller David Fowler Klaus D. Höfken Franz X. Meixner Eberhard Schaller 《Journal of Atmospheric Chemistry》1991,13(3):265-288
A modified profile method for determining the vertical deposition (or/and exhalation) fluxes of NO, NO2, ozone, and HNO3 in the atmospheric surface layer is presented. This method is based on the generally accepted micrometeorological ideas of the transfer of momentum, sensible heat and matter near the Earth's surface and the chemical reactions among these trace gases. The analysis (aerodynamic profile method) includes a detailed determination of the micrometeorological quantities (such as the friction velocity, the fluxes of sensible and latent heat, the roughness length and the zero plane displacement), and of the height-invariant fluxes of the composed chemically conservative trace gases with group concentrations c
1=[NO]+[NO2]+[HNO3], c
2=[NO2]+[O3]+3/2·[HNO3], and c
3=[NO]–[O3]–1/2·[HNO3]. The fluxes of the individual species are finally determined by the numerical solution of a system of coupled nonlinear ordinary differential equations for the concentrations of ozone and HNO3 (decoding method). The parameterization of the fluxes is based on the flux-gradient relationships in the turbulent region of the atmospheric surface layer. The model requires only the vertical profile data of wind velocity, temperature and humidity and concentrations of NO, NO2, ozone, and HNO3.The method has been applied to vertical profile data obtained at Jülich (September 1984) and collected in the BIATEX joint field experiment LOVENOX (Halvergate, U.K., September 1989). 相似文献
15.
Using a relative rate method, rate constants have been measured for the gas-phase reactions of OH and NO3 radicals with pinonaldehyde, caronaldehyde and sabinaketone at 296 ± 2 K. The OH radical reaction rate constants obtained are (in units of 10–12 cm3 molecule–1 s–1): pinonaldehyde, 48 ± 8; caronaldehyde, 48 ± 8; and sabinaketone, 5.1 ± 1.4, and the NO3 radical reaction rate constants are (in units of 10–14 cm3 molecule–1 s–1): pinonaldehyde, 2.0 ± 0.9; caronaldehyde, 2.5 ± 1.1; and sabinaketone, 0.036 ± 0.023, where the error limits include the estimated overall uncertainties in the rate constants for the reference compounds. Upper limits to the O3 reaction rate constants were also obtained, of <2 × 10–20 cm3 molecule–1 s–1 for pinonaldehyde and caronaldehyde, and <5 × 10–20 cm3 molecule–1 s–1 for sabinaketone. These reaction rate constants are combined with estimated ambient tropospheric concentrations of OH radicals, NO3 radicals and O3 to calculate tropospheric lifetimes and dominant transformation process(es) of these and other monoterpene reaction products. 相似文献
16.
Hannele Hakola Janet Arey Sara M. Aschmann Roger Atkinson 《Journal of Atmospheric Chemistry》1994,18(1):75-102
The formation yields of nine carbonyl products are reported from the gas-phase OH radical-initiated reactions (in the presence of NO
x
) and the O3 reactions with seven monoterpenes. The products were identified using GC/MS and GC-FTIR and quantified by GC-FID analyses of samples collected on Tenax solid adsorbent cartridges. The identities of products from camphene, limonene and -pinene were confirmed by comparison with authentic standards. Sufficient quantities of products from the 3-carene, limonene, -pinene, sabinene and terpinolene reactions were isolated to allow structural confirmation by proton NMR spectroscopy. The measured total carbonyl formation yields ranged from non-detectable for the OH radical reaction with camphene and the O3 reactions with 3-carene and limonene to 0.5 for the OH radical reaction with limonene and the O3 reaction with sabinene. 相似文献
17.
Formation of methoxy (CH3O) radicals in the reaction (1) CH3O2+NOCH3O+NO2 at 298 K has been observed directly using time resolved LIF. The branching ratio % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeqOXdyMaae% 4qaiaabIeadaWgaaWcbaGaae4maaqabaGccaqGpbGaaeiiaiaabIca% ieqacaWF9aGaa8hiaiaa-nbicaWFGaGaeuiLdqKaai4waiaaboeaca% qGibWaaSbaaSqaaiaabodaaeqaaOGaae4taiaac2facaWFVaGaeuiL% dqKaai4waiaaboeacaqGibWaaSbaaSqaaiaabodaaeqaaOGaae4tam% aaBaaaleaacaqGYaaabeaakiaac2facaqGPaaaaa!4E31!\[\phi {\rm{CH}}_{\rm{3}} {\rm{O (}} = -- \Delta [{\rm{CH}}_{\rm{3}} {\rm{O}}]/\Delta [{\rm{CH}}_{\rm{3}} {\rm{O}}_{\rm{2}} ]{\rm{)}}\] has been determined by quantitative cw-UV-laser absorption at 257 nm of CH3O2 and CH3ONO, the product of the consecutive methoxy trapping reaction (2) % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaae4qaiaabI% eadaWgaaWcbaGaae4maaqabaGccaqGpbacbeGaa83kaiaa-bcaieaa% caGFobGaa43taiaa+bcacaGFOaGaa83kaiaa+1eacaGFPaGaa4hiai% abgkziUkaabccacaqGdbGaaeisamaaBaaaleaacaqGZaaabeaakiaa% b+eacaqGGaGaaeOtaiaab+eacaqGGaGaa4hkaiaa-TcacaGFnbGaa4% xkaiaa+5cacaGFGaGaa4hiaiabeA8aMnaaBaaajqwaacqaaiaaboea% caqGibWaaSbaaKazcaiabaGaae4maaqabaqcKfaGaiaab+eaaSqaba% aaaa!55AC!\[{\rm{CH}}_{\rm{3}} {\rm{O}} + NO ( + M) \to {\rm{ CH}}_{\rm{3}} {\rm{O NO }}( + M). \phi _{{\rm{CH}}_{\rm{3}} {\rm{O}}} \] is found to be (1.0±0.2). The rate constant k
1 is (7±2) 10-12 cm3/molecule · s in good agreement with previous results. 相似文献
18.
为了进一步了解青藏高原闪电的产生氮氧化物(LNOx)经由光化学反应对O3浓度变化及夏季O3低谷形成的可能影响,本文利用2005~2013年由OMI卫星得到的对流层NO2垂直浓度柱(NO2 VCD)、O3总浓度柱(TOC)和O3廓线以及星载光学瞬变探测器OTD和闪电成像仪LIS获取的总闪电数资料,对青藏高原和同纬度长江中下游地区的TOC和NO2 VCD月均值时空分布特征、闪电与NO2 VCD的相关性和O3的垂直分布特征及其与LNOx的关系进行了对比分析。结果表明,青藏高原的O3低谷主要出现在夏季和秋季,其TOC值比同纬度长江中下游地区低约10~15 DU(Dobson unit)。青藏高原NO2VCD总体较小,表现为夏高冬低的分布特征。青藏高原夏季O3浓度受南亚高压的影响总体呈减小趋势,但因强雷暴天气导致对流层中上部LNOx浓度升高,并随强上升气流向对流层顶输送,同时通过光化学反应使O3浓度增加,缩小了青藏高原和同纬度地区的O3浓度差,减缓了O3总浓度的下降,抑制了夏季O3低谷的进一步深化。 相似文献
19.
F. H. Adema J. R. Ybema P. Heeres H. C. P. Wegh 《Journal of Atmospheric Chemistry》1990,11(3):255-269
In a nighttime system and under relatively dry conditions (about 15 ppm H2O), the reaction mixture of NO2, O3, and NH3 in purified air turns out to result in the formation of nitrous oxide (N2O). The experiments were performed in a continuous stirred flow reactor, in the concentration region of 0.02–2 ppm.N2O is thought to arise through the heterogeneous reaction of gaseous N2O5 and absorbed NH3 at the wall of the reaction vessel % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqaqpepeea0xe9qqVa0l% b9peea0lb9sq-JfrVkFHe9peea0dXdarVe0Fb9pgea0xa9pue9Fve9% Ffc8meGabaqaciGacaGaaeqabaWaaeaaeaaakeaatCvAUfKttLeary% qr1ngBPrgaiuaacqWFOaakcqWFobGtcqWFibasdaWgaaWcbaGae83m% amdabeaakiab-LcaPmaaBaaaleaacqWFHbqyaeqaaOGaey4kaSIaai% ikaiab-5eaonaaBaaaleaacqWFYaGmaeqaaOGae83ta80aaSbaaSqa% aiab-vda1aqabaGccaGGPaWaaSbaaSqaaiaadEgaaeqaaOGaeyOKH4% Qae8Nta40aaSbaaSqaaiab-jdaYaqabaGccqWFpbWtcqGHRaWkcqWF% ibascqWFobGtcqWFpbWtdaWgaaWcbaGae83mamdabeaakiabgUcaRi% ab-HeainaaBaaaleaacqWFYaGmaeqaaOGae83ta8eaaa!59AC!\[(NH_3 )_a + (N_2 O_5 )_g \to N_2 O + HNO_3 + H_2 O\]In principle, there is competition between this reaction and that of adsorbed H2O with N2O5, resulting in the formation of HNO3. At high water concentrations (RH>75%), no formation of N2O was found. Although the rate constant of adsorbed NH3 with gaseous N2O5 is much larger than that of the reaction of adsorbed H2O with gaseous N2O5, the significance of the observed N2O formation for the outside atmosphere is thought to be dependent on the adsorption properties of H2O and NH3 on a surface. A number of NH3 and H2O adsorption measurements on several materials are discussed. 相似文献
20.
Linda Pommer Jerker Fick Barbro Andersson Calle Nilsson 《Journal of Atmospheric Chemistry》2004,48(2):173-189
Upto 13% of -pinene and 3-carene had reacted after 213 s in this dark experimental set-up, where O3, NO and NO2 were mixed with terpenes at different relative humidities (RHs). The different experiments were planned according to an experimental design, where O3, NO2, NO, RH and reaction time were varied between high and low settings (25 and 75 ppb, 15 and 42%, 44 and 213 s). An increased amount of -pinene and 3-carene reacted in the chamber was observed, when the level of O3, NO and reaction time was increased and RH was decreased. In the study, it was found that different interactions affected the amount of terpene reacted as well. These interactions were between O3 and NO, O3 and reaction time, NO and RH, and between NO and reaction time. 相似文献