首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Icarus》1986,68(3):395-411
Several analytical presentations of the three-dimensional distribution of interplanetary dust have been derived in the literature from measurements of the zodiacal light such as fan, ellipsoid, sombrero, and multilobe models. To provide a basis for comparisons with infrared measurements these classical and some new optical approaches are reviewed and compared with observations of the zodiacal light all over the sky and in selected viewing directions. Strengths and weaknesses of the models are discussed and qualitatively explained. It is shown that multilobe models can be refuted. The remaining models predict in surprising agreement that the interplanetary spatial dust density decreases “above” the Earth's orbit by a factor of 2 within 0.2 to 0.3 AU. Beyond about 3 AU in the ecliptic plane and about 1.5 AU off the ecliptic no reliable density values can be obtained from the zodiacal light.  相似文献   

2.
The zodiacal light is the dominant source of the mid-infrared sky brightness seen from Earth, and exozodiacal light is the dominant emission from planetary and debris systems around other stars. We observed the zodiacal light spectrum with the mid-infrared camera ISOCAM over the wavelength range 5-16 μm and a wide range of orientations relative to the Sun (solar elongations 68°-113°) and the ecliptic (plane to pole). The temperature in the ecliptic ranged from 269 K at solar elongation 68° to 244 K at 113°, and the polar temperature, characteristic of dust 1 AU from the Sun, is 274 K. The observed temperature is exactly as expected for large (>10 μm radius), low-albedo (<0.08), rapidly-rotating, gray particles 1 AU from the Sun. Smaller particles (<10 μm radius) radiate inefficiently in the infrared and are warmer than observed. We present theoretical models for a wide range of particle size distributions and compositions; it is evident that the zodiacal light is produced by particles in the 10-100 μm radius range. In addition to the continuum, we detect a weak excess in the 9-11 μm range, with an amplitude of 6% of the continuum. The shape of the feature can be matched by a mixture of silicates: amorphous forsterite/olivine provides most of the continuum and some of the 9-11 μm silicate feature, dirty crystalline olivine provides the red wing of the silicate feature (and a bump at 11.35 μm), and a hydrous silicate (montmorillonite) provides the blue wing of the silicate feature. The presence of hydrous silicate suggests the parent bodies of those particles were formed in the inner solar nebula. Large particles dominate the size distribution, but at least some small particles (radii ∼1 μm) are required to produce the silicate emission feature. The strength of the feature may vary spatially, with the strongest features being at the lowest solar elongations as well as at high ecliptic latitudes; if confirmed, this would imply that the dust properties change such that dust further from the Sun has a weaker silicate feature. To compare the properties of zodiacal dust to dust around other main sequence stars, we reanalyzed the exozodiacal light spectrum for β Pic to derive the shape of its silicate feature. The zodiacal and exozodiacal spectra are very different. The exozodiacal spectra are dominated by cold dust, with emission peaking in the far-infrared, while the zodiacal spectrum peaks around 20 μm. We removed the debris disk continuum from the spectra by fitting a blackbody with a different temperature for each aperture (ranging from 3.7″ to 27″); the resulting silicate spectra for β Pic are identical for all apertures, indicating that the silicate feature arises close to the star. The shape of the silicate feature from β Pic is nearly identical to that derived from the ISO spectrum of 51 Oph; both exozodiacal features are very different from that of the zodiacal light. The exozodiacal features are roughly triangular, peaking at 10.3 μm, while the zodiacal feature is more boxy, indicating a different mineralogy.  相似文献   

3.
The results of modeling of the distribution of dust in the circumsolar zone are presented. The dust distribution was retrieved from observations of the line-of-sight velocities in the F-corona to the distances of 7–11 solar radii during the total eclipses of the Sun in different years: on July 31, 1981; August 11, 1991; March 29, 2006; and August 1, 2008. Comparison of the results has shown that the dust composition varies from year to year and the dust is dynamically nonuniform. In addition to the dust related to the zodiacal cloud and concentrating to the ecliptic plane, the dust of retrograde motion and the ejections and accretion in the polar regions are observed. From the results of observations of eclipses on July 31, 1981, August 11, 1991, and August 1, 2008, the east–west asymmetry in a sign of the line-of-sight velocities was detected: they are negative to the east of the Sun and positive to the west. Such distribution of the velocities is indicative of the nearecliptic orbital dust motion, whose direction coincides with that of the motion of the planets. In the course of the eclipse of March 29, 2006, almost no dynamical connection with the zodiacal cloud was found. At the same time, the direction, where the observed velocities are largest in value and opposite in sign on opposite sides of the Sun, was determined, which provides evidence of the orbital motion deviating from the ecliptic plane. The results of observations in 2006 reveal a clear genetic connection of the observed orbital motion of dust with the parent comets of the Kreutz family found near the Sun close to the eclipse date. The velocities observed near the symmetry line in the plane of the sky grow by absolute value with increasing the elongation, which may take place, if the line of sight croßses an empty zone that is free of dust. The modeling of the data of observations near the symmetry plane allowed the parameters of the dust distribution near the sublimation zone to be obtained. In 2006, the “black” cometary dust with a low albedo (A = 0.05) was observed; it showed high values of the power-law exponents in the distance distribution of the dust concentration (V = 2.2 > 1) and in the size distribution of grains (γ = 5.2 > 4.0) and a strong radiation pressure (β = 0.70–0.74). We estimated the mean radius of grains as ≈0.8–0.9 µm and the radius of the dust-free zone as ≈9.1–9.2 solar radii. The latter corresponds to the distances, where the low-melt components of olivines and pyroxenes disintegrate. In 2008, the observed zodiacal dust concentrating to the ecliptic plane demonstrated the canonical parameters: A = 0.1–0.2, V ≈ 1, ß ≈ 0, γ = 4.0, the mean radii of grains were 0.9–1.2 µm, and the radius of the dust-free zone was 7.0–7.6 solar radii.  相似文献   

4.
Some considerations about the zodiacal light brightness integral from the stand point of the theory of integral equations are made. It is shown that for observation directions confined to a plane perpendicular to the ecliptic and passing through the Sun, the Z.L. brightness integral can be formally considered as a first kind integral equation of Volterra type (V.I.E.). In a second step, this equation is transformed into a V.I.E. of the second kind, from which, and under certain assumptions, the spatial distribution of dust out of the ecliptic is obtained.  相似文献   

5.
Considerations of the geometry appropriate to observations of the zodiacal light made from out of the ecliptic plane yield the general inversion of the brightness integral. The brightness per unit volume of interplanetary space can thus be determined in the immediate neighborhood of the spacecraft in directions confined to a unique viewing plane which depends upon the spacecraft's trajectory. The implementation of this technique guarantees the maximum information content of optical observations made from future deep-space probes including the “Out-of-Ecliptic” mission scheduled for launch in 1983.  相似文献   

6.
We consider the infrared brightness of a flattened comet belt beyond the orbit of Neptune using a disk-like model with a power-law density distribution of comets. We compare this spectrum with the emission from a model zodiacal dust cloud in the ecliptic and with published IRAS data and present some consequences of dust in the comet belt.  相似文献   

7.
Ultraviolet observations from low Earth orbit (LEO) have to deal with a foreground comprised of airglow and zodiacal light which depend on the look direction and on the date and time of the observation. We have used all-sky observations from the GALEX spacecraft to find that the airglow may be divided into a baseline dependent on the sun angle and a component dependent only on the time from local midnight. The zodiacal light is observable only in the near ultraviolet band (2321 Å) of GALEX and is proportional to the zodiacal light in the visible but with a color of 0.65 indicating that the dust grains are less reflective in the UV.  相似文献   

8.
The HELIOS A and B zodiacal light photometers can be used to view comets as they pass the spacecraft. Because the HELIOS spacecraft orbit the Sun on their own, and are generally far from Earth, the spacecraft allow us to view comets from a different perspective than normally available. Comet West (1976VI) passed through perihelion on February 25, 1976. The comet crossed the HELIOS A and B spacecraft zodiacal light photometer fields of view, allowing them to record the brightness, polarization and color of the comet. Data from the U, B and V photometers showed a distinct blueing followed by a slight reddening corresponding to the ion and dust tails, respectively, entering the field of view of each photometer sector. The extent of the tail of Comet West was far greater seen from the HELIOS spacecraft than seen from Earth, even taking into account their generally closer viewing perspective. As Comet West traveled away from the Sun, it was observed in the zodiacal light photometer fields of view at a solar distance of more than 1.4 AU. The zodiacal light photometers also viewed Comet Meier (1978XXI). Comet Meier is far more compact than Comet West, extremely blue and unlike Comet West showed no significant dust tail. The interplanetary medium is observed to a level of the variations in the brightness of the electron-scattering component near Comet West. A brightness bump present in the data before the comet reached some photometer positions can be shown to approximately form a parabolic shape sunward and ahead of the orbital motion of the Comet West nucleus. We presume that this bump is evidence of the position of the cometary atmosphere or an enhancement of the ambient interplanetary medium ahead of the comet motion. The brightness bump in terms of density generally corresponds to a density enhancement of the ambient medium by a few times in the vicinity of the comet. When compared with Comet Halley and couched in terms of the shock stand-off distance, the distance of this brightness increase from the nucleus implies a neutral gas production rate of approximately 2.5 times that of Halley. This is in agreement with the neutral gas production rate measured from Comet West using more direct techniques.Now at Scientific Applications Inc., La Jolla, California, U.S.A.  相似文献   

9.
The results from a set of 12 solar corona radial velocity measurements in the 400-440 nm spectral band during the total solar eclipse of July 11, 1991 are reported. The measurements show that the orbital motion of the F-corona material near the sun in the ecliptic plane is consistent with Keplerian motion and predominantly, but not exclusively, prograde, as is usually assumed. This work demonstrates a method of using the measured radial velocities to sort out the relative amounts of K-corona, near-earth F-corona, near-solar F-corona, and scattered light in each measurement for each observation point W and E of the sun between 2.5Ro(solar radii) and 5Ro along the celestial equator and at three points north of the sun. The near-solar F-corona component is quite weak, contributing only 7-14% of the total signal in each case. The stronger diffraction component from near-earth F-corona is estimated to have been produced by particles with radii of about 11μ. In contrast, the scattered light component appears as strong zero-velocity features dominating all the measurements. The measurements W and E of the sun and near the ecliptic plane also show evidence of a red-shift velocity of at least 330 km s−1, suggestive of a high-speed dust outflow from the sun.  相似文献   

10.
A.F. Cook 《Icarus》1978,33(2):349-360
Comparison is made between the run of number density of meteoroids from penetration detectors aboard Helios A (masses below 10?8 g) and Pioneer 10 (masses near and above 3 × 10?9 g), the source function of the zodiacal light deduced from photometric observations aboard Helios A and Pioneer 10, counts versus brightness of objects passing by Pioneer 10 from the Sisyphus experiment and the distribution of meteoroids deduced from radar and optical meteors at the Earth. The Sisyphus experiment on Pioneer 10 observed reflecting glints on meteoroids rather than the meteoroids themselves and the counting statistics refer not to the effective radii of the meteoroids but to the effective radii of curvature of the reflecting glints on the meteoroids. The penetration detectors appear to find some increase in number density toward the Sun and a flat distribution outward to 5.2 AU. The overall behavior of the zodiacal light is that the relative distribution over direction is unchanged while the source scattering function diminishes as the inverse 1.4 power of distance from the Sun. The fit to the brightness of the zodiacal light obtained from these statistics can be combined with the mass distribution results from the optical meteors to deduce a mean geometric albedo of meteoroids of 0.006 at 1 AU from the Sun. Combination of the space distribution from radar meteors with the scattering source function of the zodiacal light yields geometric albedos for meteoroids running from 0.07 at 0.1 AU, from the Sun through 0.006 at 1 AU down to about 0.0001 at 3.3 AU which may run flat thence outward. This result is imposed by the indicated modest increase in density of meteoroids very near the Sun, a minimum between the Sun and the Earth near 0.4 AU and rising density outward to somewhere beyond 3.3 AU which is very different from the inverse 1.4 power of the distance shown for scatterers (product of number density and albedo) by the zodiacal light. A check on the distribution at very large sizes is possible if a search is made for fireballs in Jupiter's atmosphere by the Mariner Jupiter Saturn 1977 television cameras during the two encounters with Jupiter in 1979. An easy detection of such activity would put the maximum in the meteoroid distribution out near Jupiter and lend further confirmation to the indicated drop in albedo.  相似文献   

11.
The relative proportions of asteroidal and cometary materials in the zodiacal cloud is an ongoing debate. The determination of the asteroidal component is constrained through the study of the Solar System dust bands (the fine-structure component superimposed on the broad background cloud), since they have been confidently linked to specific, young, asteroid families in the main belt. The disruptions that produce these families also result in the injection of dust into the cloud and thus hold the key to determining at least a minimum value for the asteroidal contribution to the zodiacal cloud. There are currently known to be at least three dust band pairs, one at approximately 9.35° associated with the Veritas family and two central band pairs near the ecliptic, one of which is associated with the Karin subcluster of the Koronis family. Through careful co-adding of almost all the pole-to-pole intensity scans in the mid-infrared wavebands of the Infrared Astronomical Satellite (IRAS) data set, we find strong evidence for a partial Solar System dust band, that is, a very young dust band in the process of formation, at approximately 17° latitude. We think this is a confirmation of the M/N partial band pair first suggested by Sykes [1988. IRAS observations of extended zodiacal structures. Astrophys. J. 334, L55-L58]. The new dust band appears at some but not all ecliptic longitudes, as expected for a young, partially formed dust band. We present preliminary modeling of the new, partial dust band which allows us to put constraints on the age of the disruption event, the inclination and node of the parent body at the time of disruption, and the quantity of dust injected into the zodiacal cloud.  相似文献   

12.
We measured the brightness of the white light corona at the total solar eclipses on 1 August 2008 and 22 July 2009, when solar activity was at its lowest in one hundred years. After careful calibration, the brightness of the corona in both eclipses was evaluated to be approximately 0.4×10?6 of the total brightness of the Sun, which is the lowest level ever observed. Furthermore, the total brightness of the K+F-corona beyond 3R in both eclipses is lower than some of the previous measurements of the brightness of the F-corona only. Our accurate measurements of the coronal brightness provide not only the K-corona brightness during a period of very low solar activity but also a reliable upper limit of the brightness of the F-corona.  相似文献   

13.
《Icarus》1986,65(1):51-69
The zodiacal dust bands discovered by IRAS can be explained as products of single collisions between asteroids. Debris from such a collision is distributed about the plane of the ecliptic as particles experience differential precession of their ascending nodes due to dispersion of their semimajor axes. For each collision, two bands, one on each side of the ecliptic, are formed on time scales of 105 to 106 years. The band pairs observed by IRAS are most likely the result of collisions between asteroids ∼15 km in diameter that occured within the last several million years. Further analysis of the IRAS sky survey data and of any future, more sensitive surveys should reveal additional, fainter band pairs. Our model suggests that asteroid collisions are sufficient to account for the bulk of the observed zodiacal thermal emission.  相似文献   

14.
Loran  Jon M.  Brown  John C.  Correia  Emilia  Kaufmann  Pierre 《Solar physics》1985,95(2):363-370
The Helios spacecraft zodiacal light photometers are used to observe the earthward-directed solar mass ejection transient of 27 November, 1979 described by Howard et al. (1982) that completely circles the Sun in coronagraph observations. At this time, Helios B was situated 30° east of the Sun-Earth line at 0.5 AU. The brightness increase moved outward directly along the Sun-Earth line over a period of approximately 24 hr, indicating a strong collimation of the ejection. The outward motion and mass estimates of the ejected material from the photometers compared with near-Earth observations from IMP spacecraft show that at least a portion of the density increase observed at Earth on 29 and 30 November was associated with this ejection.  相似文献   

15.
Disruptive collisions in the main belt can liberate fragments from parent bodies ranging in size from several micrometers to tens of kilometers in diameter. These debris bodies group at initially similar orbital locations. Most asteroid-sized fragments remain at these locations and are presently observed as asteroid families. Small debris particles are quickly removed by Poynting-Robertson drag or comminution but their populations are replenished in the source locations by collisional cascade. Observations from the Infrared Astronomical Satellite (IRAS) showed that particles from particular families have thermal radiation signatures that appear as band pairs of infrared emission at roughly constant latitudes both above and below the Solar System plane. Here we apply a new physical model capable of linking the IRAS dust bands to families with characteristic inclinations. We use our results to constrain the physical properties of IRAS dust bands and their source families. Our results indicate that two prominent IRAS bands at inclinations ≈2.1° and ≈9.3° are byproducts of recent asteroid disruption events. The former is associated with a disruption of a ≈30-km asteroid occurring 5.8 Myr ago; this event gave birth to the Karin family. The latter came from the breakup of a large >100-km-diameter asteroid 8.3 Myr ago that produced the Veritas family. Using an N-body code, we tracked the dynamical evolution of ≈106 particles, 1 μm to 1 cm in diameter, from both families. We then used these results in a Monte Carlo code to determine how small particles from each population undergo collisional evolution. By computing the thermal emission of particles, we were able to compare our results with IRAS observations. Our best-fit model results suggest the Karin and Veritas family particles contribute by 5-9% in 10-60-μm wavelengths to the zodiacal cloud's brightness within 50° latitudes around the ecliptic, and by 9-15% within 10° latitudes. The high brightness of the zodiacal cloud at large latitudes suggests that it is mainly produced by particles with higher inclinations than what would be expected for asteroidal particles produced by sources in the main belt. From these results, we infer that asteroidal dust represents a smaller fraction of the zodiacal cloud than previously thought. We estimate that the total mass accreted by the Earth in Karin and Veritas particles with diameters 20-400 μm is ≈15,000-20,000 tons per year (assuming 2 g cm−3 particles density). This is ≈30-50% of the terrestrial accretion rate of cosmic material measured by the Long Duration Exposure Facility. We hypothesize that up to ≈50% of our collected interplanetary dust particles and micrometeorites may be made up of particle species from the Veritas and Karin families. The Karin family IDPs should be about as abundant as Veritas family IDPs though this ratio may change if the contribution of third, near-ecliptic source is significant. Other sources of dust and/or large impact speeds must be invoked to explain the remaining ≈50-70%. The disproportional contribution of Karin/Veritas particles to the zodiacal cloud (only 5-9%) and to the terrestrial accretion rate (30-50%) suggests that the effects of gravitational focusing by the Earth enhance the accretion rate of Karin/Veritas particles relative to those in the background zodiacal cloud. From this result and from the latitudinal brightness of the zodiacal cloud, we infer that the zodiacal cloud emission may be dominated by high-speed cometary particles, while the terrestrial impactor flux contains a major contribution from asteroidal sources. Collisions and Poynting-Robertson drift produce the size-frequency distribution (SFD) of Karin and Veritas particles that becomes increasingly steeper closer to the Sun. At 1 AU, the SFD is relatively shallow for small particle diameters D (differential slope exponent of particles with D?100 μm is ≈2.2-2.5) and steep for D?100 μm. Most of the mass at 1 AU, as well as most of the cross-sectional area, is contributed by particles with D≈100-200 μm. Similar result has been found previously for the SFD of the zodiacal cloud particles at 1 AU. The fact that the SFD of Karin/Veritas particles is similar to that of the zodiacal cloud suggests that similar processes shaped these particle populations. We estimate that there are ≈5×1024 Karin and ≈1025 Veritas family particles with D>30 μm in the Solar System today. The IRAS observation of the dust bands may be satisfactorily modeled using ‘averaged’ SFDs that are constant with semimajor axis. These SFDs are best described by a broken power-law function with differential power index α≈2.1-2.4 for D?100 μm and by α?3.5 for 100 μm?D?1 cm. The total cross-sectional surface area of Veritas particles is a factor of ≈2 larger than the surface area of the particles producing the inner dust bands. The total volumes in Karin and Veritas family particles with 1 μm<D<1 cm correspond to D=11 km and D=14 km asteroids with equivalent masses ≈1.5×1018 g and ≈3.0×1018 g, respectively (assuming 2 g cm−3 bulk density). If the size-frequency and radial distribution of particles in the zodiacal cloud were similar to those in the asteroid dust bands, we estimate that the zodiacal cloud represents ∼3×1019 g of material (in particles with 1 μm<D<1 cm) at ±10° around the ecliptic and perhaps as much as ∼1020 g in total. The later number corresponds to about a 23-km-radius sphere with 2 g cm−3 density.  相似文献   

16.
William T. Reach 《Icarus》2010,209(2):848-850
Interplanetary dust particles from comets and asteroids pervade the Solar System and become temporarily trapped into orbital resonances with Earth, leading to a circumsolar dust ring. Using the unique vantage point of the Spitzer Space Telescope from its Earth-trailing solar orbit, we have measured for the first time the azimuthal structure of the Earth’s resonant dust ring. There is a relative paucity of particles within 0.1 AU of the Earth, followed by an enhancement in a cloud that is centered 0.2 AU behind Earth with a width of 0.08 AU along the Earth’s orbit. The North ecliptic pole is ∼3% brighter at 8 μm wavelength when viewed from inside the enhancement. The presence of azimuthal asymmetries in debris disks around other stars is considered strong evidence for planets. By measuring the properties of the Earth’s resonant ring, we can provide “ground truth” to models for interactions of planets and debris disks, possibly leading to improved predictions for detectability of life-bearing planets. The low amplitude of the azimuthal asymmetry in the Earth’s circumsolar ring suggests significant contributions to the zodiacal light from particles that are large (>30 μm) or have large orbital eccentricity that makes capture into mean motion resonances inefficient.  相似文献   

17.
C. Banos  S. Koutchmy 《Icarus》1973,20(1):32-41
A photograph of the zodiacal light obtained at the Pic du Midi Observatory is studied in order to measure, in absolute units, the brightness of the reinforcement, observed 15° above the ecliptic plan and in a distance of 100R⊙ from the Sun.The obtained brightnesses are compared to the brightness of the zodiacal light given by other authors for the elongations ? ? [23°, 40°]. The calibration of the image was made using the stars in the field of the image and isophotes corrected for extinction were obtained, by the method of isodensities.A discussion of the obtained results is made and the origin of the reinforcement is investigated. The mass evaluation of the interplanetary particles producing this reinforcement has been estimated and permits to us to conclude that it may be due to particles evaporated from the circumsolar region. The mechanism of transfer of momentum to the particles in orbit around the Sun by a convecting ma magnetic field is not elucidated.  相似文献   

18.
The simulated Doppler shifts of the solar Mg I Fraunhofer line produced by scattering on the solar light by asteroidal, cometary, and trans-neptunian dust particles are compared with the shifts obtained by Wisconsin H-Alpha Mapper (WHAM) spectrometer. The simulated spectra are based on the results of integrations of the orbital evolution of particles under the gravitational influence of planets, the Poynting-Robertson drag, radiation pressure, and solar wind drag. Our results demonstrate that the differences in the line centroid position in the solar elongation and in the line width averaged over the elongations for different sizes of particles are usually less than those for different sources of dust. The deviation of the derived spectral parameters for various sources of dust used in the model reached maximum at the elongation (measured eastward from the Sun) between 90° and 120°. For the future zodiacal light Doppler shifts measurements, it is important to pay a particular attention to observing at this elongation range. At the elongations of the fields observed by WHAM, the model-predicted Doppler shifts were close to each other for several scattering functions considered. Therefore the main conclusions of our paper do not depend on a scattering function and mass distribution of particles if they are reasonable. A comparison of the dependencies of the Doppler shifts on solar elongation and the mean width of the Mg I line modeled for different sources of dust with those obtained from the WHAM observations shows that the fraction of cometary particles in zodiacal dust is significant and can be dominant. Cometary particles originating inside Jupiter's orbit and particles originating beyond Jupiter's orbit (including trans-neptunian dust particles) can contribute to zodiacal dust about 1/3 each, with a possible deviation from 1/3 up to 0.1-0.2. The fraction of asteroidal dust is estimated to be ∼0.3-0.5. The mean eccentricities of zodiacal particles located at 1-2 AU from the Sun that better fit the WHAM observations are between 0.2 and 0.5, with a more probable value of about 0.3.  相似文献   

19.
The position and shape of the Gegenschein’s maximum brightness provide information on the structure of the interplanetary dust cloud. We show that the asteroidal dust bands, extended near the anti-solar point, play an important role in determining both the position of the maximum brightness and the shape of the Gegenschein. After removing the asteroidal dust bands from an observation of the Gegenschein on November 2, 1997, it was found that the maximum brightness point shifted −0.4° in ecliptic latitude, i.e., to the south of the ecliptic plane, at an ecliptic longitude of 180°, in contrast to a latitude value of +0.1° when the dust bands were included. Furthermore, the part of the Gegenschein to the south of the ecliptic plane was brighter than the northern part at the time of observation. Referring to the cloud model of T. Kelsall et al. (1998, Astrophy. J. 508, 44-73), it can be estimated that the ascending node of the symmetry plane of the dust cloud is 57°−3°+7° when its inclination is 2.03° ? 0.50°.  相似文献   

20.
Using the visible airglow photometer on the Atmosphere Explorer-C satellite, we have mapped the zodiacal light surface brightness at the wavelengths monitored by the instrument: 3371, 4278, 5200, 5577, 6300, and 7319 Å. The study constitutes a survey over this wavelength range, covering most of the celestial sphere, from altitudes above the atmospheric emissions, and free from atmospheric scattering and attenuation. The intensity variations reveal enhancements near elongations of 130°, and possibly near 60°, at all wavelengths. The intensity of the zodiacal light near the ecliptic pole is found to be ~30 S10. The color ratio with respect to the Sun is found to be redder than the Sun (0.7) at all elongations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号