首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
吕雅琼  巩远发 《高原气象》2006,25(2):195-202
利用NCEP/NCAR再分析资料,计算了2001及2003年青藏高原及其附近地区的大气热源(汇),再用CEOF方法分析了它俩的异同。结果表明:(1)该两年冬夏季节转换前的4月份,热源(汇)分布相似,强度不同;季节转换后的6月份,热源(汇)分布明显不同,强度也有很大差异;(2)该两年分别在青藏高原南侧到孟加拉湾北部和阿拉伯海东部到印度半岛西侧各有一个高值中心,但强度明显不同:表现为2001年夏季孟加拉湾地区的热源强度明显比阿拉伯海地区强,2003年夏季则相反;(3)两年季节转换期间的5月到6月下旬期间,高原及其南侧的热源变化趋势也是不同的。2003年6月下旬达最强值;2001年则是5月中下旬到6月初已达到较强,到6月下旬又突然减弱;(4)该两年第一特征向量的空间位相上也是不同的。在2001年,印度半岛中部是晚位相中心,其四周的位相都相对较早,位相差近180°,因此印度半岛大部与其周围的大气热源(汇)有近似相反的变化趋势;而在2003年情况则有所不同,印度半岛与其两侧的阿拉伯海和孟加拉湾北部仅是一个相对高晚位相区,其西北部和南端是晚位相中心,高原南部和赤道附近的洋面上是早位相区。因此,在2003年的大气热源(汇)变化趋势与2001年有明显的不同。2001及2003年夏季青藏高原及其附近地区大气热源(汇)的这些差异可能正是影响我国江淮地区严重干旱/洪涝的原因之一。  相似文献   

2.
用2001年和2003年NCEP/NCAR再分析资料,计算了亚洲季风区两年逐日的大气热源汇〈Q1〉,再用谐波分析方法对〈Q1〉作带通滤波, 得到了准30~70 d的〈Q1〉低频分量,并分析了两年夏季大气热源汇和其低频振荡变化特征的差异,然后研究了一些“关键”区〈Q1〉低频分量的变化与我国降水的关系。结果表明:在2001年和2003年夏季的亚洲季风区,一方面应该有这样一种过程,大气热源汇低频分量经向和纬向传播的差异→江淮流域旱涝期东亚地区大气热源汇低频分量南北配置的差异→东亚地区大气热源汇本身的南北分布不同。另一方面,夏季的5~8月期间,高原中南侧有较强的低频热源 (热汇) 时,可导致其后期江淮流域降水偏多 (少);中国南海的作用则正好相反,南海有较强的低频热源 (热汇) 时,不仅可导致其后期江淮流域降水偏少 (多),还可导致其后期青藏高原东部降水偏少 (多)。因此,夏季亚洲季风区热源、热汇季节内变化特征的不同可导致我国江淮流域异常的旱涝发生。  相似文献   

3.
利用NCEP/NCAR再分析资料和中国地面观测站的逐日降水资料,研究了2006年夏季中国川渝地区的伏旱与亚洲地区大气低频振荡的联系.结果表明,2006年夏季中国川渝地区降水低频振荡的主要周期约为60 d;在川渝严重干旱期的7月下旬至8月上旬,经向上由于川渝地区上空低频热汇、广西和海南及其以西地区上空低频热源的影响,在1...  相似文献   

4.
选取NCEP1、NCEP2和ERA-Interim中1981—2010年共30 a的风场、温度场和地面气压场再分析资料,利用"倒算法"计算青藏高原大气热源,对三套资料的计算结果进行了多方面比较分析,并运用Morlet小波法分析了区域平均的高原热源的时间变化特征。结果显示:(1)三套资料计算的季节平均的热源在空间分布上基本一致,夏季高原大部分地区为热源,冬季除高原西北部是热源外,其余地区为冷源。其中,ERA-Interim与NCEP1的分布更为接近;(2)三套资料均表明:就30 a平均而言,青藏高原大气为显著的热源,分布上ERA-Interim与NCEP1相似,量值上NCEP的两套资料更为接近;(3)区域平均热源的月际变化十分一致,相关系数均超过99%显著性检验。NCEP的两套资料对年际变化的描述更为一致,二者相关系数为0.88,ERA-Interim与NCEP两套资料的结果略有差距,相关系数分别为0.78和0.70;(4)整体而言,ERA-Interim资料在反映高原热源方面较优,但也要注意考察该资料给出的高原南坡强热源的真实合理性。  相似文献   

5.
利用 1980-1997年 6-8月 NECP/NCAR月平均资料,计算了大气热源和水汽汇,研究了我国长江中下游夏季严重旱涝时期大气环流以及大气热源和水汽汇的异常特征,主要结果如下: 在对流层中下层,来自于孟加拉湾和南海的南风异常和长江流域以北的北风异常在长江中下游辐合。这两股异常气流分别与西太平洋上反气旋异常系统(中心位于22°N,140°E)和气旋异常系统(中心位于日本海)有关。在对流层高层,反气旋异常系统中心位于23°N,105°E,气旋异常系统中心位于朝鲜,两异常系统之间的西北异常气流在长江中下游辐散。而在印度西南季风区为偏东风异常,表示西南季风的减弱; 长江中下游严重干旱时,在对流层中下层,长江以北南风异常和长江以南北风异常从长江流域辐散,在以东的洋面上形成东风异常气流。这两股异常气流分别与酉太平洋上气旋异常系统(中心位于23°N,135°E)和西北太平洋上反气旋异常系统有关。在对流层高层,气旋异常系统中心位于南海,反气旋异常系统中心位于日本海,两异常系统之间的偏东异常气流在长江中下游辐合。 热源异常的最主要特征是长江中下游严重洪涝时从西太平洋到南海热源异常为负,表示热源偏弱;正热源异常位于长江流域。而长江中下游严重干旱时热源异常正好相反。垂直  相似文献   

6.
利用2019-2020年广西三部风廓线雷达的实时风产品与ERA5再分析资料进行分析对比,检验风廓线雷达数据质量.结果 表明,三种风廓线雷达产品(ROBS、HOBS、OOBS)数值差距小,OOBS产品稍显优势,在1h内风廓线雷达探测的水平风波动不大.风廓线雷达数据整体小于ERA5再分析资料.三个站中,北海站的误差最小.北...  相似文献   

7.
选取2000—2016年江西省南昌、赣州两站及其附近半径为50 km范围内的强对流天气过程个例,对比分析常规探空资料和NCEP再分析资料提取的温、湿、风垂直廓线及其输出量,检验NCEP再分析资料在江西省强对流天气分析的适用性。结果表明:1)NCEP再分析资料与探空资料温度差异非常小,500 hPa高度层以下露点误差也在1℃以内,而500 hPa高度层以上随着高度增加误差也明显的增大。基于温湿计算的大气能量物理量CAPE值可靠性较低,而基于中低层温湿条件计算的K指数和Δt_(850-500)参考性较高。2)NCEP再分析资料与探空资料的垂直风速切变基本在1 m/s之内,越往高层垂直风切变越小,差值在0.4 m/s以下。两种资料计算的高低层风垂直切变均拟合的非常好。3)NCEP再分析资料显示低层偏干而中层略偏湿,低层偏干使CAPE偏小,中层偏湿不利于产生雷暴大风、冰雹等强对流天气,降低了灾害性强对流天气产生的概率。边界层风场预报偏弱也会弱化强对流辐合触发的条件的分析。总体来说,两种资料的基本物理量以及一些输出量偏差较小,可用于江西省强对流天气的分析。  相似文献   

8.
夏季高原大气热源的气候特征以及与高原低涡生成的关系   总被引:3,自引:1,他引:3  
刘云丰  李国平 《大气科学》2016,40(4):864-876
利用NCEP/NCAR再分析资料和基于此再分析资料的高原低涡统计数据集,采用线性趋势、Morlet小波、EOF分解、合成分析等方法,分析了1981~2010年夏季高原大气热源气候特征以及与高原低涡生成的联系。结果表明:夏季高原大气热源平均强度为105 W m-2,随时间有减弱趋势,具有明显的年代际变化,存在显著的准3年周期振荡。高原低涡高发年,高原大气热源强度明显高于气候态,主要表现为高原大气热源的水平分布差异。在低涡高发年,涡度平流的空间分布和大气经向垂直环流结构显示:高原沿东南向西北存在500 hPa正涡度平流带,为高原低涡生成提供了有利的涡度场。同时,高原大气热源异常的水平分布促使高原上空产生上升气流,有助于高原上形成低层辐合、气旋式环流,整层上升运动,高层辐散、反气旋式环流的三维流场,促进高原低涡在低层生成,此时高原主体低空为正涡度区。并且,大气热源在垂直方向的变化也影响低涡的生成。最后,根据本文结果和我们前期的相关研究,从热成风原理和高原大气热力适应理论两方面对高原大气热源与高原低涡生成频数的统计结果给出了机理解释。  相似文献   

9.
利用1958—2001年ERA40逐日大气再分析资料,使用热力学方程剩余项法计算和对比分析了全球大气季节平均非绝热加热和瞬变加热的四季气候平均三维分布。结果表明,全球大气非绝热加热主要为热带强大深厚对流性热源、中纬度浅薄热源以及副热带和高纬度的深厚性热汇,热带热源总是向夏半球偏移,但中纬度热源和高纬度热汇在冬半球偏强。全球大气瞬变加热的三维分布主要表现为:副热带热汇-中高纬度热源的南北偶极型和中纬度低层热汇-高层热源的高低层偶极型,该分布型导致瞬变热源具有从高纬度低层向中纬度高层的倾斜结构。瞬变加热与风暴路径密切相关,冬半球风暴路径的瞬变活动强,因而其瞬变热源和热汇也强,而夏半球则相对弱。瞬变加热在北半球具有位于大陆东部和大洋西部的区域性特征,而在南半球具有纬向带状分布,尤其在冷季时南太平洋瞬变热汇和热源带出现分离现象。瞬变加热在全球大部分区域对非绝热加热起减弱抵消作用,但在中纬度对流层中高层起支配性作用。因此,大气瞬变活动帮助高纬度和中纬度中高层大气获得更多的热量,从而对非绝热加热造成的大气热量进行空间上的重新分配。  相似文献   

10.
岑思弦  巩远发  王霄 《大气科学》2009,33(6):1286-1296
利用NCEP/NCAR再分析资料和我国地面观测站的逐日降水资料, 研究了2007年夏季淮河流域洪涝与亚洲地区大气低频振荡的联系, 通过分析研究表明: 2007年夏季淮河流域降水低频振荡的主要周期是30~70天, 该低频序列的方差大约占了总方差的47%; 在降水低频振荡的位相5~8 (1~4), 亚洲季风区从阿拉伯海北部经孟加拉湾到我国南海地区, 以及我国淮河流域经渤海到日本地区主要受低频热源 (热汇) 的控制; 并且在极大降水位相7, 我国东部地区 (10°N~45°N, 110°E~120°E), 从北到南, 〈Q1〉低频分量的分布呈负正相间的低频热汇、 热源、 热汇、 热源形式(位相3则呈相反的分布形式); 在位相5~8 (1~4), 亚洲季风区〈Q1〉低频分量的分布有利于 (不利于) 气流向淮河流域汇合并形成辐合上升; 受低频环流变化的影响, 在位相5~8, 大量的水汽被输送到淮河流域, 辐合上升形成降水; 相反, 在位相1~4, 来自西太平洋上的水汽在该地区辐散, 不利于降水的发生。  相似文献   

11.
Using 1979-2000 daily NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalysis data (version 1, hereafter referred to as NCEP1; version 2, hereafter referred to as NCEP2), ECMWF (European Center for Medium-range Weather Forecasts) reanalysis data(ERA),and the Global Asian Monsoon Experiment (GAME) reanalysis data in summer 1998, the vertically integrated heat source hQ1i in summer is calculated, and results obtained using different datasets are compared. The distributions of hQ1i calculated by using NCEP1 are in good agreement with rainfall observations over the Arabian Sea/Indian Peninsula, the Bay of Bengal (BOB), and East China. The distributions of hQ1i revealed by using NCEP2 are unrealistic in the southern Indian Peninsula, the BOB, and the South China Sea. Using ERA, the heat sources over the tropical Asia are in accordance with the summer precipitation,however, the distributions of hQ1i in East China are unreasonable. In the tropical region, the distributions of the summer heat source given by NCEP1 and ERA seem to be more accurate than those revealed by NCEP2. The NCEP1 and NCEP2 data are better for calculating heat sources over the subtropical and eastern regions of mainland China.  相似文献   

12.
13.
王美蓉  郭栋  钟珊珊 《气象》2019,45(12):1718-1726
大气热源是高原气象学的理论要点,研究其计算方法及其适用性,对加深高原气象学的认识,开拓"高原气象学"课程学生的视野,都具有重要意义。然而,精确计算大气热源仍是个挑战。本文详细介绍了大气热源两种计算方法,即正算法和倒算法,并基于站点观测、卫星辐射资料(ISCCP和SRB)及4套再分析资料(NCEP/NCAR、NCEP/DOE、ERA-Interim和JRA55),比较了不同资料计算所得夏季高原热源多尺度变率的差异。结果显示利用正算法时,辐射资料的选择需慎重;而在利用倒算法时,再分析资料的选择则需根据热源的研究尺度而定,不同再分析资料差异颇大。就长期趋势变化而言,再分析结果Q_1-JRA55最接近观测;而在年际尺度上,Q_1-ERAI与Q_1-JRA55两套结果能近似重复观测计算所得热源变率;在季节内尺度上,多套再分析资料差异性缩小,均可细致刻画高原夏季热源变化周期,在高原地区均有较好的适用性。  相似文献   

14.
1999年夏季江淮地区热源和水汽汇时空变化特征   总被引:3,自引:1,他引:3  
利用1999年的NCAR再分析网格点风场、温度场、湿度场及含HUBEX试验加密观测的降水资料等,诊断分析了夏季长江流域梅雨暴雨集中期及其前后江淮地区的大气热源、水汽汇的时空分布及多时间尺度特征.  相似文献   

15.
NCEP/NCAR reanalysis data and a 47-year precipitation dataset are utilized to analyze the relationship between an atmospheric heat source (hereafter called < Q1 >) over the Qinghai-Xizang Plateau (QXP) and its surrounding area and precipitation in northwest China. Our main conclusions are as follows: (1) The horizontal distribution of < Q1 > and its changing trend are dramatic over QXP in the summer. There are three strong centers of < Q1 > over the south side of QXP with obvious differences in the amount o...  相似文献   

16.
用1958-2004年NCEP/NCAR再分析资料分析了中国南方春季大尺度大气水汽汇的时空变化特征。结果表明:华南中东部、广西北部-湖南西部-贵州东部地区是中国南方春季水汽汇的两个主要变异中心区。华南中东部春季水汽汇具有明显的年际和年代际变化特征,并以年代际方差占优;广西北部-湖南西部-贵州东部地区春季水汽汇以年际变化为主。华南中东部以及广西北部-湖南西部-贵州东部地区水汽汇的强度异常与东亚上空水汽输送异常导致上述地区垂直积分的水汽通量辐合的异常密切相关,当中国南方上空有西南(东北)风水汽通量距平,即西南风水汽输送增强(减弱)时,则上述地区上空的水汽汇偏强(偏弱)。  相似文献   

17.
用1958~2000年NCEP/NCAR再分析资料、中国160站降水量及1958~1998年月平均海温资料分析了中国夏季相邻月份降水异常型的相关特征,及其与大气热源的关系和相关物理过程。结果表明,7月长江流域的降水异常与8月长江和黄河之间地区的降水异常有很好的同号性。7、8月长江流域及附近地区持续性偏旱(涝)与太平洋洋盆尺度的大气热源异常有关,并与前期5、6月热带中、东太平洋大范围的热源异常、青藏高原热源异常也有密切的联系,即当5、 6月赤道东太平洋的大气热源正异常,而赤道中太平洋北侧的热源负异常,则中国7月长江中下游偏涝,8月长江中上游与江淮流域和内蒙古东部偏涝,华南偏旱;反之亦然。前期热带中、东太平洋上空的热源异常中心和与之联系的异常垂直运动中心的西扩和西移,以及青藏高原东部的热源异常中心是影响我国7、8月持续偏旱(涝)的重要环流异常特征。另外,南海-西太平洋海温在前期也已经具有我国夏季长江流域发生旱涝对应的同期海温异常分布型的特征。  相似文献   

18.
To cherish the memory of the late Professor Duzheng YE on what would have been his 100 th birthday, and to celebrate his great accomplishment in opening a new era of Tibetan Plateau(TP) meteorology, this review paper provides an assessment of the atmospheric heat source(AHS) over the TP from different data resources, including observations from local meteorological stations, satellite remote sensing data, and various reanalysis datasets. The uncertainty and applicability of these heat source data are evaluated. Analysis regarding the formation of the AHS over the TP demonstrates that it is not only the cause of the atmospheric circulation, but is also a result of that circulation. Based on numerical experiments, the review further demonstrates that land–sea thermal contrast is only one part of the monsoon story. The thermal forcing of the Tibetan–Iranian Plateau plays a significant role in generating the Asian summer monsoon(ASM), i.e., in addition to pumping water vapor from sea to land and from the lower to the upper troposphere, it also generates a subtropical monsoon–type meridional circulation subject to the angular momentum conservation, providing an ascending-air large-scale background for the development of the ASM.  相似文献   

19.
近30年青藏高原大气热源气候特征研究   总被引:1,自引:0,他引:1  
利用NCEP CFSR再分析资料,用"倒算法"计算了1981~2010年青藏高原大气热源汇,并分析了其气候特征。结果表明:(1)青藏高原大气热源汇具有明显的季节差异。高原大部分地区在春季和夏季为热源,冬季和秋季为冷源。2~4月热源从高原西北部、东北部及西南边坡开始逐渐向中部扩展,强度不断增强。5~7月高原东南端热源显著增强并向西向北扩展,使7月高原热源达到最强,并在高原南部喜马拉雅山脉沿线及其以南邻近地区形成一个强大的热源带。8月开始,高原热源迅速减弱,高原中部至四周边坡大部分地区大气先后变为冷源。到11月和12月整个高原大气几乎为冷源。(2)高原各区逐年平均大气热源强度有明显不同的变化特征。高原全区有显著的2~3年和6~8年周期,而高原东部仅存在6~8年周期,高原西部仅有2~3年周期。(3)近30年高原全区和东部大气热源具有明显增强趋势,而高原西部却为减弱趋势。  相似文献   

20.
This study demonstrates the two different Rossby wave train(RWT) patterns related to the developing/decaying upper atmospheric heat source over the Tibetan Plateau(TPUHS) in boreal summer. The results show that the summer TPUHS is dominated by quasi-biweekly variability, particularly from late July to mid-August when the subtropical jet steadily stays to the north of the TP. During the developing period of TPUHS events, the intensifying TPUHS corresponds to an anomalous upper-tropospheric high over the TP, which acts as the main source of a RWT that extends northeastward, via North China, the central Pacific and Alaska, to the northeastern Pacific region. This RWT breaks up while the anomalous high is temporarily replaced by an anomalous low due to the further deepened convective heating around the TPUHS peak. However, this anomalous low, though existing for only three to four days due to the counteracting dynamical effects of the persisting upper/lower divergence/convergence over the TP, acts as a new wave source to connect to an anomalous dynamical high over the Baikal region. Whilst the anomalous low is diminishing rapidly, this Baikal high becomes the main source of a new RWT, which develops eastward over the North Pacific region till around eight days after the TPUHS peak. Nevertheless, the anomaly centers along this decaying-TPUHS-related RWT mostly appear much weaker than those along the previous RWT.Therefore, their impacts on circulation and weather differ considerably from the developing to the decaying period of TPUHS events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号