首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
全球季风和季风边缘研究   总被引:3,自引:1,他引:2  
全球卫星探测和观测资料的积累,使以南海季风、亚洲季风为代表的季风研究兴起了一波研究热潮。区域季风认识的深入,推动了全球季风认识的发展,全球季风概念在20世纪末被提出来,并在21世纪初成为热点研究方向。季风边缘是与全球季风密切相关的概念,东亚夏季风北边缘的近期演变与全球季风过去几十年的减弱有关。全球季风的演变表现为分布全球的大气活动中心和季风槽的活动,[JP2]这些成员组成了一个完整的全球季风系统。按照上述季风研究的发展脉络,系统地总结全球季风和季风边缘研究的进展,并提出未来季风研究的方向会把全球大气活动中心与全球气候槽,包括全球季风槽联系起来,即从季风系统着手研究全球季风的年代际和世纪尺度变率。  相似文献   

2.
全球卫星探测和观测资料的积累,使以南海季风、亚洲季风为代表的季风研究兴起了一波研究热潮。区域季风认识的深入,推动了全球季风认识的发展,全球季风概念在20世纪末被提出来,并在21世纪初成为热点研究方向。季风边缘是与全球季风密切相关的概念,东亚夏季风北边缘的近期演变与全球季风过去几十年的减弱有关。全球季风的演变表现为分布全球的大气活动中心和季风槽的活动,这些成员组成了一个完整的全球季风系统。按照上述季风研究的发展脉络,系统地总结全球季风和季风边缘研究的进展,并提出未来季风研究的方向会把全球大气活动中心与全球气候槽,包括全球季风槽联系起来,即从季风系统着手研究全球季风的年代际和世纪尺度变率。  相似文献   

3.
Homogeneous Indian Monsoon rainfall: Variability and prediction   总被引:1,自引:0,他引:1  
The Indian summer monsoon rainfall is known to have considerable spatial variability, which imposes some limitations on the all-India mean widely used at present. To prepare a spatially coherent monsoon rainfall series for the largest possible area, fourteen subdivisions covering the northwestern and central parts of India (about 55% of the total area of the country), having similar rainfall characteristics and associations with regional/global circulation parameters are merged and their area-weighted means computed, to form monthly and seasonal Homogeneous Indian Monsoon (HIM) rainfall series for the period 1871–1990. This paper includes a listing of monthly and seasonal rainfall of HIM region. HIM rainfall series has been statistically analysed to understand its characteristics, variability and teleconnections for long-range prediction. HIM rainfall series isfound to be homogeneous, Gaussian distributed and free from persistence. The mean (R) rainfall is 757 mm (87% of annual) and standard deviation (S) 119 mm, with a Coefficient of Variation (CV) of 16%. There were 21 dry (K, -<R S) and 19 wet (R i R + S) years during 1871–1990. There were clusters of frequent negative departures during 1899–1920 and 1965–1987 and positive departures during 1942–1961. The recent three decades show very high rainfall variability with 10 dry and 6 wet years. The decadal averages were alternatively positive and negative for three consecutive decades, viz., 1871–1900 (positive); 1901–1930 (negative); 1931–1960 (positive) and 1961–1990 (negative) respectively. Significant QBO and autocorrelation at 14th lag have been found in HIM rainfall series. To delineate the changes in the climatic regime of the Indian summer monsoon, sliding correlation coefficients (CCs) between HIM rainfall series and (i) Bombay msl pressure, (ii) Darwin msl pressure and (iii) Northern Hemisphere surface air temperature over the period 1871–1990 have been examined. The 31-year sliding CCs showed the systematic turning points of positive and negative CCs around the years, 1900 and 1940. In the light of other corroborative evidences, these turning points seem to delineate ‘meridional’ monsoon regime during 1871–1900 and 1940–1990 and ‘zonal’ monsoon regime during 1901–1940. The monsoon signal is particularly dominant in many regional and global circulation parameters, during 1951–1990. Using the teleconnections ofHIM series with 12 regional/global circulation parameters during the recent 36-year period 1951–86 regression models have been developed for long-range prediction. In the regression equations 3 to 4 parameters were entered, explaining upto 80% of the variance, depending upon the data period. The parameters that prominently enter the multiple regression equations are (i) Bombay msl pressure, (ii) April 500 mb Ridge at 75°E, (iii) NH temperature, (iv) Nouvelle minus Agalega msl pressure and (v) South American msl pressure. Eleven circulation parameters for the period 1951–80 were subjected to Principal Component Analysis (PCA) and the PC’s were used in the regression model to estimate HIM rainfall. The multiple regression with three PCs explain 72% of variance in HIM rainfall.  相似文献   

4.
印度季风和东亚季风是亚洲季风的两个子系统.现代器测数据和地质历史重建记录均证明两个季风在季节和轨道尺度上具有相同的特征.然而,在年一年代际尺度上,两者的相互关系尚不清楚.笔者通过比较两个分别来自印度季风区(阿曼Defore洞)和东亚季风区(中国和尚洞)的超高分辨石笋氧同位素序列,研究780 a以来印度和东亚季风变化及其相互作用.阿曼石笋氧同位素记录印度季风的变化,而和尚洞石笋δ18 O则是东亚季风变化的指示器.笔者发现,在年代际尺度上阿曼石笋和中国石笋具有相同的氧同位素组成变化特征,同时反映了亚洲季风的强弱变化,表明了印度季风和东亚季风变化是同步的.  相似文献   

5.
India Peninsula and East Asia are high aerosol loading regions as well as major regions influenced by Asian monsoon. The changes of monsoon intensity and precipitation have great influence on economy, especially agricultural production of monsoon regions. There are many researches of impacts of aerosol on Indian monsoon, which have achieved many comprehensive progresses. Earlier researches show that atmospheric brown cloud caused negative radiative forcing and weakened the warming induced by greenhouse gases. Current researches show that absorbing aerosol enhanced the Indian monsoon and increased rainfall in pre-monsoon season, while the scattering effect of aerosol weakened the Indian summer monsoon and the East Asian summer monsoon and rainfall in monsoon season. Due to so many factors affecting the monsoon, researches of aerosol impacts on monsoon become more complex. Thus, these results remain uncertain. This paper reviews previous researches and generalizes the mechanisms of impacts of aerosols on Asian monsoon. By comparing the East Asian summer monsoon with the Indian summer monsoon, we discussed deficiencies of the prior researches, and pointed out the direction for future researches about the impact of aerosol on the Asian summer monsoon, especially on the East Asian summer monsoon.  相似文献   

6.
Monsoon and land use in Sri Lanka   总被引:1,自引:0,他引:1  
Agricultural land use in Sri Lanka roughly shows a division of the island in two major parts, according to the climatic division into thr Wet and Dry Zones. Therefore, it is the ultimate, most important question for agricultural land use in Sri Lanka whether the seasonal occurrence of a distinct dry season, which is characteristic of the Dry Zone, is also the most delimiting factor for land use or not. It seems true, in fact, that the long SW monsoonal dry season in the Dry zone is the major fact for a large-scale division of Sri Lanka according to the crops under cultivation and the cropping systems. Paddy (rice) and tea are the leading crops in the Dry as well as Wet Zone. They are at the same time the crops with the greatest economic importance for the island: tea for the international market, rice for the national market. Thus, the main attention is drawn on specific climatic effects, in a large- and meso-(local-)scale, upon tea and paddy and their agroclimatic potential of cultivation. Besides this, also some effects of the monsoon climate of Sri Lanka upon animal husbandry, forestry and pests have been studied briefly, added finally by an outlook on the correlation between the monsoon climate and fishery even, as manifested in the phenomenon of migrating fishermen.  相似文献   

7.
8.
Rainfall variability over a river basin has greater impact on the water resource in that basin. With this in view, the variability of the monsoon rainfall over the Godavari river basin has been studied on different time scales. As expected, the monsoon rainfall in Godavari basin is more variable (17%) than the all-India monsoon rainfall (11%) during the period of study (1951–90). Similarly, inter-annual variability of the monsoon rainfall on smaller time scales is found to be still higher and increases while going on from seasonal to daily scales. An interesting observation is that the intra-seasonal variability of the monsoon rainfall has a significant negative relationship (CC= −0.53) with the total seasonal rainfall in the basin.  相似文献   

9.
Entrainment rate refers to the ratio of surrounding air quality to air quality involved in rising unit distance, including turbulent entrainment and dynamic entrainment, which are applied to the boundary layer parametrization of convective clouds, the improvement of numerical model, the observation of cloud droplet spectral dispersion and the study of tropical cyclones.Based on the daily data at 07:00 and 19:00 every 10 m of five stations such as Minqin, Yuchong, Pingliang, Yinchuan and Yan'an from May to September during 2006-2016, combined with the daily observation data on the ground, the Entrainment Rates(ER) of different heights were calculated, and the relationships between ER and height in different regions, precipitation as well as monsoon during the monsoon period were further obtained. The main results were as follows: The ER was proportional to air temperature and saturated water vapor pressure, but inversely proportional to relative humidity. The relative humidity threshold of cloud was 65%. The higher the relative humidity threshold was, the lower the cloud height of different orders of precipitation was, and the cloud height was higher with the increase of rainfall. ER had obvious diurnal changes and regional differences: It was obviously smaller at 07:00 than at 19:00 from ground to 3 km, which weakened with the increase of height in the near surface , but strengthened with the increase of height above 500 m; From small to large, the monsoon affected area, the monsoon swing area and the non-monsoon area were in turn, and there was no regional difference above 3 km. ER was closely related to the intensity and property of precipitation in monsoon period. The ER weakened with the enhancement of rain intensity from near ground to below 600 m, but strengthened with the enhancement of rain intensity from 500 m to 2~3 km.From near ground to below 700 m, the ER of stable precipitation was strong, but that of convective precipitation was strong above 700 m. The convective precipitation had big saturated water vapor pressure and strong ER , while the stable precipitation had big saturated water vapor density, rich water vapor but weak ER. The relationship between ER and monsoon as well as its duration: From no monsoon to monsoon ER was weakened, the strongest maximum height was also decreasing. There was no significant difference in the duration of ER between the non-monsoon area and the monsoon affected area, but the longer the monsoon swing area lasted in the near ground layer, the smaller the ER was, while the opposite was at 1~2 km in the high altitude. The relationship between ER and the APO monsoon intensity index showed that: At 07:00, the ER strengthened with height from near ground to below 800 m, but weakened with height above 800 m,and the monsoon intensity was not related to the ER. At 19:00, the ER strengthened with the height near ground but weakened with the height above 300 m, and the stronger the monsoon was, the smaller the ER was. The ER weakened with the decrease of boundary layer height.  相似文献   

10.
青藏高原冬春季积雪对亚洲夏季风降水影响的研究   总被引:3,自引:1,他引:3  
王叶堂  何勇  侯书贵 《冰川冻土》2008,30(3):452-460
青藏高原(以下简称高原)积雪具有明显的季节、年际和年代际变化特征, 是影响亚洲夏季风降水的重要因子之一. 高原冬春季积雪异常通过引起高原地表反射率、 温度和感热的变化, 以及春末融雪吸热和增加土壤湿度而影响大气环流的变化, 最终引起亚洲夏季风降水的变化. 从统计分析、 气候诊断和数值模拟实验对高原冬春季积雪对亚洲夏季风降水影响的研究进展做了概括评述, 探讨了其可能影响的物理机制, 并对今后研究方向进行展望.  相似文献   

11.
Changes in Global Monsoon Circulations Since 1950   总被引:6,自引:0,他引:6  
Chase  T. N.  Knaff  J. A.  Pielke  R. A.  Kalnay  E. 《Natural Hazards》2003,29(2):229-254
We examined changes in several independent intensity indices of four majortropical monsoonal circulations for the period 1950–1998. Theseintensity indices included observed land surface precipitation andobserved ocean surface pressure in the monsoon regions aswell as upper-level divergence calculated at severalstandard levels from the NCAR/NCEP reanalysis. These values wereaveraged seasonally over appropriate regions of southeastern Asian, western Africa, eastern Africa and the Australia/Maritime continent and adjacent ocean areas. Asa consistency check we also examined two secondary indices: mean sea level pressure trends and low level convergence both from theNCEP reanalysis.We find that in each of the four regions examined, a consistentpicture emerges indicating significantly diminished monsoonalcirculations over the period of record, evidence of diminished spatialmaxima in the global hydrological cycle since 1950. Trends since 1979,the period of strongest reported surface warming, do not indicate any change inmonsoon circulations. When strong ENSO years are removed from each of the time series the trends still show a general, significant reduction of monsoon intensity indicating that ENSO variability is not the direct cause for the observed weakening.Most previously reported model simulations of theeffects of rising CO2 show an increase in monsoonal activity withrising global surface temperature. We find no support in these datafor an increasing hydrological cycle or increasing extremes as hypothesized bygreenhouse warming scenarios.  相似文献   

12.
Geomorphic Effects of Monsoon Floods on Indian Rivers   总被引:1,自引:0,他引:1  
The southwest summer monsoon contributesthe bulk of India's rainfall. Consequently,almost all the geomorphic work by the rivers is carried out during the monsoonseason in general and the monsoon floods in particular. Indian rivers arecharacterized by high average flood discharges and large temporal variability. Thereis also significant spatial variation in the magnitude, frequency and power of floods, on account of regional variations in monsoon rainfall, basin characteristics andchannel geometry. As a result, the channel responses and the geomorphic effects also varyspatially. This paper describes the hydrological and geomorphological aspects, as well asthe geomorphic effects of monsoon floods in the Indian rivers. The geomorphic effects of floods are most impressive only in certainareas – the Himalaya, the Thar Desert, and the Indus-Ganga-Brahmaputra Plains. There are numerous instances of flood-induced changes in the channel dimension,position and pattern in these areas. In the Ganga-Brahmaputra Plains, the annualfloods appear to be geomorphologically more effective than the occasional large floods.In comparison, the rivers of the Indian Peninsula are, by and large, stable and thegeomorphic effects of floods are modest. Only large-magnitude floods that occur at aninterval of several years to decades are competent to modify the channel morphology in asignificant way. A synthesis of the various case studies available from the Indianregion indicates that often the absolute magnitude of a flood is not as important withrespect to the geomorphic effects as the flow stress and competence.  相似文献   

13.
The Summer Monsoon Transition Zone is a typical area, which is a transitional zone and has a fragile ecological environment. The area also has the most serious drought and soil erosion disaster. Its land-air interaction plays an important role on evolution of weather and climate, and research on land-air interaction in this zone is an important scientific problems. Therefore, a key project, “land-air interaction of the typical summer monsoon transition zone and its response to the summer monsoon”, by National Natural Science Foundation of China aims at this problem. This study summarized the advances about current summer monsoon transition zone and its land-air interaction. Then, based on the characteristics of summer monsoon activities, the formation of this typical area, its advances of climate and environment characteristics were concluded. Peculiarity of land-air interaction in the area was also analyzed comprehensively. Furthermore, the main problems and direction of scientific research in this field are brought forward. It will have scientific guiding significance for in-depth study of land-air interaction in summer monsoon transition zone in future.  相似文献   

14.
全新世亚洲季风演变   总被引:1,自引:0,他引:1  
《地学前缘》2017,(4):114-123
亚洲季风是气候系统的重要组成部分,包括东亚季风和印度季风。全新世以来季风变化历史和机制对预测未来季风变化至关重要,是季风数值模拟重要的边界条件。全新世季风变化主要受太阳辐照强度的控制,在太阳辐照变化总趋势的基础上还存在千年—百年尺度的气候突变,与北大西洋冷事件对应。8.2ka和4.2ka存在比较典型的两个弱季风事件,前者特征是高纬寒冷,后者特征是中低纬干旱。近千年以来的中世纪暖期和小冰期发生在人类活动对气候有明显影响之前,对二者变化机制的理解可以加深目前地球气候变化中是自然因素还是人类活动占主导的认识。全新世季风在整体上受太阳辐照强度变化的控制,千年至百年尺度上的气候突变与太阳活动、北大西洋气候振荡、赤道太平洋地区的SST变化等众多因素有关。季风变化尤其是快速气候变化时期的季风研究是季风气候预测的重点也是难点。全新世东亚夏季风与印度季风的变化在整体趋势上是一致的,千年—百年尺度的变化上存在相位差。而东亚冬季风(EAWM)和东亚夏季风(EASM)之间的相位关系还不明确,需要进一步研究。  相似文献   

15.
基于豫西老母洞LM2石笋8个高精度230Th年龄,449个氧碳同位素,建立了达十年际分辨率的8.2~10.9 ka B.P.亚洲季风变化的δ18O记录序列.老母洞石笋δ18O值最为偏负达-12.0‰,最偏正为-8.2‰,振幅达3.8‰.早全新世10.13~10.9 ka B.P.时段内,河南西部老母洞石笋和东石崖石笋,陕西九仙洞C996-2石笋δ18O曲线揭示该时段内季风稳定,而中国南方的衙门洞石笋、三宝洞石笋和极地冰芯GRIP记录揭示该时段季风逐渐增强;同时季风达到顶峰的时期也不相同,进一步说明中国南北方早全新世10.13~10.9 ka B.P.时段季风演变过程的差异,可能与中国南北方气候的响应机制有关.从早全新世平均分辨率10年的LM2石笋记录中识别出8.2 ka,9.5 ka,10.2 ka和10.9 ka显著弱季风事件,尤其是8.2 ka和9.5 ka事件.对比分析老母洞与已发表的高分辨率石笋δ18O记录发现:石笋所揭示的某些冷事件发生时间在亚洲季风区存在差异,主要表现在事件内部变化特征及趋势上.LM2石笋δ18O曲线并没有明显记录9.3 ka弱季风事件,而是在9.3~9.6 ka B.P.左右记录了一个弱季风事件,与DSY09(2009)、Y1、HS-4记录相似,表明在该时段内存在季风的减弱事件,但是氧同位素传输的复杂性,使其在南北方表现不同.此外,在LM2石笋δ18O的8.2 ka B.P.开始时段,氧同位素曲线阶段性下降,且变幅达3‰,与Zhang等研究万象洞石笋提出的“中国8 200阶段”吻合,表明中国北方地区的8.2 ka事件是阶段性的事件,而南方的石笋氧同位素记录揭示的8.2 ka事件并未表现出阶段性特征,其原因有待于更多北方高精度石笋记录来进一步研究.LM2石笋氧同位素记录进行功率谱分析发现:在短尺度上季风变化与太阳活动密切相关,这与近年来对早全新世极端气候变化研究的驱动机制是一致的,早全新世亚洲季风的演化与太阳活动变化引起的太阳辐射能量的变化和北半球高纬气候的变化状况有关.  相似文献   

16.
21世纪的第一个十年,陨石学与天体化学研究在中国迎来了一个前所未有的发展时期。在南极格罗夫山地区共开展了5次科学考察,收集到超过1万块陨石,提供了珍贵的研究样品;嫦娥工程的立项和一期工程的成功实施,是陨石学与天体化学发展的重大机遇,也是挑战;高精度原位微区分析平台建设的完成,则为地外物质样品的分析提供了关键的技术保证。更为重要的是,通过大量南极陨石的分类工作,培养和锻炼了陨石学研究的青年人才。在此基础上,通过对各化学群陨石的研究,取得了许多重要的成果,包括陨石中前太阳颗粒的发现和研究、陨石中的灭绝核素、太阳星云在不同条件下的凝聚过程、月球陨石和火星陨石的岩石学成因与同位素定年、陨石的冲击变质与高压矿物、以及中国第一个陨石坑的证实等。  相似文献   

17.
Indian Monsoon Variability in a Global Warming Scenario   总被引:4,自引:0,他引:4  
The Intergovernmental Panel on Climate Change (IPCC) constituted by the World Meteorological Organisation provides expert guidance regarding scientific and technical aspects of the climate problem. Since 1990 IPCC has, at five-yearlyintervals, assessedand reported on the current state of knowledge and understanding of the climate issue. These reports have projected the behaviour of the Asian monsoon in the warming world. While the IPCC Second Assessment Report (IPCC, 1996) on climate model projections of Asian/Indian monsoon stated ``Most climate models produce more rainfall over South Asia in a warmer climate with increasing CO2', the recent IPCC (2001) Third Assessment Report states ``It is likely that the warming associated with increasing greenhouse gas concentrations will cause an increase in Asian summer monsoon variability and changes in monsoon strength.'Climate model projections(IPCC, 2001) also suggest more El Niño – like events in the tropical Pacific, increase in surface temperatures and decrease in the northern hemisphere snow cover. The Indian Monsoon is an important component of the Asian monsoon and its links with the El Niño Southern Oscillation (ENSO) phenomenon, northern hemisphere surface temperature and Eurasian snow are well documented.In the light of the IPCC globalwarming projections on the Asian monsoon, the interannual and decadal variability in summer monsoon rainfall over India and its teleconnections have been examined by using observed data for the 131-year (1871–2001) period. While the interannual variations showyear-to-year random fluctuations, thedecadal variations reveal distinct alternate epochs of above and below normal rainfall. The epochs tend to last for about three decades. There is no clear evidence to suggest that the strength and variability of the Indian Monsoon Rainfall (IMR) nor the epochal changes are affected by the global warming. Though the 1990s have been the warmest decade of the millennium(IPCC, 2001), the IMR variability has decreased drastically.Connections between the ENSO phenomenon, Northern Hemisphere surface temperature and the Eurasian snow with IMR reveal that the correlations are not only weak but have changed signs in the early 1990s suggesting that the IMR has delinked not only with the Pacific but with the Northern Hemisphere/Eurasian continent also. The fact that temperature/snow relationships with IMR are weak further suggests that global warming need not be a cause for the recent ENSO-Monsoon weakening.Observed snow depth over theEurasian continent has been increasing, which could be a result of enhanced precipitation due to the global warming.  相似文献   

18.
晚中新世以来亚洲季风阶段性演化的海陆记录   总被引:4,自引:0,他引:4  
本文在综合对比晚新生代以来中国黄土高原黄土一红粘土沉积、西北太平洋粉尘沉积、南海有孔虫、阿拉伯海有孔虫记录的基础上,探讨了大约8Ma以来亚洲季风的阶段性演化历史。结果发现,黄土高原粉尘沉积在8Ma前后大规模出现,在3.5Ma前后大幅增加;印度季风在8Ma前后形成(或显著加强);南海ODP1146站位浮游有孔虫Neoglcboquadrina丰度也有两次明显增加,表明海水表面温度不断降低和海洋生产力的增加,指示东亚冬季风作用增强。北太平洋()DP885/886钻孔风成粉尘通量也有增加,指示亚洲内陆进一步的干旱化和冬季风作用的增强。印度洋沉积通量在11Ma前后开始增加。在9~8Ma时出现峰值,表明喜马拉雅山和青藏高原南部逐渐隆起。当隆起达到足够高度时,导致亚洲内陆干旱气候带扩大,同时提供大量粉尘并向东传输到中国北方和北太平洋地区。青藏高原北缘山前盆地的沉积记录显示,在3.6Ma时,高原北部的进一步快速隆升过程可能影响到整个高原,从而导致亚洲内陆更加干旱化,东亚季风增强,粉尘沉积加快,南海及印度洋陆源沉积作用加剧。  相似文献   

19.
The Qinghai-Tibet Plateau,the third pole towering high in the world,has always been the object of extreme climate research.This is the most extensive high altitude area in the world,with an average altitude of 4000 meters.Such a wide mountainous area absorbs more solar energy than one at sea level,so the winter here is cold and summer is broiling hot.In the 1950s,the Chinese atmospheric scientist Ye Duzheng and German meteorologist Hermann Flohn both suggested that the air layer of the summer plateau was warmer than the sea and the air layer with the same altitude over land located at sea level,so that the temperature difference generated winds,which blow moist air from the ocean into the interior of the subcontinent of India,becoming a driving engine of the rainy season,the Monsoon.  相似文献   

20.
Temporal and spatial variations in phytoplankton in Asan Bay, a temperate estuary under the influence of monsoon, were investigated over an annual cycle (2004). Phytoplankton blooms started in February (>20 μg chl l−1) and continued until April (>13 μg chl l−1) during the dry season, especially in upstream regions. The percentage contribution of large phytoplankton (micro-sized) was high (78–95%) during the blooms, and diatoms such as Skeletonema costatum and Thalassiosira spp. were dominant. The precipitation and freshwater discharge from embankments peaked and supplied nutrients into the bay during the monsoon event, especially in July. Species that favor freshwater, such as Oscillatoria spp. (cyanobacteria), dominated during the monsoon period. The phytoplankton biomass was minimal in this season despite nutrient concentrations that were relatively sufficient (enriched), and this pattern differed from that in tropical estuaries affected by monsoon and in temperate estuaries where phytoplankton respond to nutrient inputs during wet seasons. The flushing time estimated from the salinity was shorter than the doubling time in Asan Bay, which suggests that exports of phytoplankton maximized by high discharge directly from embankments differentiate this bay from other estuaries in temperate and tropical regions. This implies that the change in physical properties, especially in the freshwater discharge rates, has mainly been a regulator of phytoplankton dynamics since the construction of embankments in Asan Bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号