首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A pool of dense nonaqueous phase liquid (DNAPI.) containing TCE and other chlorinated solvents has been removed from the subsurface at Hill Air Force Base, Uthah. as part of an interim remedial action. The removal of the DNAPI. pool means that future off-site migration of dissolved contaminants in the ground water is minimized, and costs for final remedial actions are reduced. A pump-and-treat system recovered more than 23.000) gallons of DNAPI. and one million gallons of contaminated ground water from the aquifer. The efficiency of this remedial action was evaluated on the basis of extensive field and laboratory data. The behavior of DNAPI. flow in the aquifer sands was characterized by collecting core samples from two borings in the DNAPL pool and measuring relative permeabilities and DMAPI. saturation. Core Hooding results show that approximately one-third of the DNAPI. originally in the pool is not recovered by water displacement, but remains as a residual saturation held in place by capillary pressure. However, subsequent Hooding with two pore volumes of surfactant solution reduced the residual DNAPI. saturation in the sand by one order of magnitude. Analytical and numerical models for the DNAPI flow behavior at the site were developed. This is the first time that such models have been developed and applied to an actual DNAPI. pumping lest conducted in the field. Because measured permeabilities and residual saturations were used lo calibrate the models. the model predictions could be used lo provide valuable insights into the controlling mechanisms for DNAPL recovery. The data collection and modeling procedures outlined in this paper can be used lo enhance the efficiency and minimize the cost 10 clean up this and other DNAPI.-contaminated sites.  相似文献   

2.
Release of an estimated 150,000 gallons (568,000 L).of 1.2–dichloroethane (EDC) from a buried pipeline into a ditch and surrounding soil resulted in shallow subsurface contamination of a Gulf Coast site. Short-term remediation included removal of EDC DNAPI. (dense nonaqueous phase liquid) by dredging and vacuuming the ditch, and by dredging the river where the ditch discharged. EDC saturation in shallow impacted sediments located beneath the ditch was at or below residual saturation and these sediments were therefore left in place. The ditch was lined, backfilled, and capped. Long-term remediation includes EDC DNAPL recovery and hydraulic containment from the shallow zone with long-term monitoring of the shallow, intermediate, and deep (200 foot) aquifers. Ground water, DNAPL., and dissolved phase models were used to guide field investigations and the selection of an effective remedial action strategy. The DNAPL. modeling was conducted for a two-dimensional vertical cross section of the site, and included the three aquifers separated by two aquitards with microfractures. These aquitards were modeled using a dual porosity approach. Matrix and fracture properties of the aquitards used for DNAPL modeling were determined from small-scale laboratory properties. These properties were consistent with effective hydraulic conductivity determined from ground water flow modeling. A sensitivity analysis demonstrated that the vertical migration of EDC was attenuated by dissolution of EDC into the matrix of the upper aquitard. When the organic/water entry pressure of the aquitard matrix, or the solubility of EDC were decreased to unrealislically low values. EDC DNAPL. accumulated in the aquifer below the upper aquitard.
EDC DNALM, did not reach the regional (deepest) aquifer in any of the cases modeled. The limited extent of vertical EDC migration predicted is supported by ground water monitoring conducted over the four years since the spill.  相似文献   

3.
The influence of aquifer property correlation on multiphase fluid migration, entrapment and recovery was explored by incorporating correlated and uncorrelated porosity, permeability, and capillary pressure-saturation (Pc-Sat) parameter fields in a cross-sectional numerical multiphase flow model. Comparison of two-dimensional entrapped organic saturation distributions for a simulated tetrachloroethylene (PCE) spill in ensembles of aquifer realizations suggests that the degree of spatial correlation in Pc-Sat parameters exerts a controlling influence on dense nonaqueous phase liquid (DNAPL) spreading and redistribution in saturated aquifers. The predicted evolution of DNAPL source zones and resultant remediation efficiency under surfactant enhanced aquifer remediation (SEAR) also appear to be strongly influenced by the spatial correlation of aquifer parameters and multiphase flow constitutive relationships. Results for a limited number of realizations selected from each ensemble showed that removal of 60% to 99% of entrapped PCE could reduce dissolved contaminant concentration and mass flux by approximately two orders of magnitude under natural gradient conditions. Aqueous phase contaminant mass flux did not vary uniformly as a function of % DNAPL removed, however, and notable differences in behavior were observed for models incorporating correlated versus uncorrelated Pc-Sat and permeability fields. Although these results must be confirmed through analysis of additional realizations, it is likely that similar or larger differences between correlated and uncorrelated system behavior will be observed in aquifers with greater spatially variability than that of the nonuniform, homogeneous sand aquifer studied here. Funding for this research was provided by the United States Environmental Protection Agency, Great Lakes and Mid-Atlantic Center for Hazardous Substance Research under Grant No. R-825540, the Michigan Department of Environmental Quality under Contract No. Y80011, and the Strategic Environmental Research and Development Program under Project No. CU-1293. The content of this publication does not necessarily represent the views of these agencies and has not been subject to agency review.  相似文献   

4.
The use of surfactant solutions for the in situ recovery of residual NAPL in aquifers is increasingly considered as a viable remediation technique. The injection of a few pore volumes of high concentration surfactant solutions can mobilize most of the residual NAPL contacted by the solutions. However, the washing solutions'physico-chemical properties (low density and high viscosity), combined with the natural porous media heterogeneity, can prevent a good sweep of the entire contaminated volume. From the petroleum industry, it is well-known that polymer solutions can be injected following a surfactant solution slug to act as a mobility buffer and increase the overall sweep efficiency. The objective of our laboratory study is first to select and characterize polymers that would be suitable for aquifer restoration. Our experiments showed that among several polymers, xanthan gum solution rheology was made in order to predict shear rates, xanthan gum concentrations, salinity, and temperature effects on solution viscosity. The second set of experiments were made with a sand box which was designed to reproduce a simple heterogeneous media consisting of layers of sand with different permeability. These tests illustrate the xanthan gum solution's ability to increase surfactant solution's sweep efficiency and limit viscous fingering. The tests established that: (1) the injection of xanthan solution behind a surfactant solution slug decreases fluid velocity in high permeability layers and increases it in low-permeability ones, thus increasing the sweep efficiency (2) xanthan solutions eliminate viscous fingering at the polymer/surfactant solution front; (3) a xanthan solution preflush is desirable to limit surfactant solution mobility and prevent surfactant adsorption on solids; and (4) depending on site heterogeneity injection strategies should be applied to limit overriding by low-density surfactant solution.  相似文献   

5.
An automated in-line analytical system has been developed to provide near real-time results for partitioning interwell tracer testing (PITT) and surfactant enhanced aquifer remediation (SEAR). The analytical methodology is based on gas chromatography (GC) with flame ionization detection and direct aqueous injection. The system was constructed from both commercially available and custom-manufactured components that are linked electronically to facilitate autonomous operation. For the field trials presented herein, the in-line GC method provided superior or comparable PITT and SEAR data compared to conventional sample collection followed by shipment and analysis at a commercial analytical laboratory. Analytical precolumns were shown to effectively safeguard the integrity of the analytical column, despite the consecutive analysis of more than 1000 samples per PITT or SEAR. Additionally, the use of the in-line GC resulted in an 85% and 74% reduction in analytical costs per PITT and SEAR, respectively.  相似文献   

6.
Gerhard JI  Pang T  Kueper BH 《Ground water》2007,45(2):147-157
The time required for dense nonaqueous phase liquid (DNAPL) to cease migrating following release to the subsurface is a valuable component of a site conceptual model. This study uses numerical simulation to investigate the migration of six different DNAPLs in sandy aquifers. The most influential parameters governing migration cessation time are the density and viscosity of the DNAPL and the mean hydraulic conductivity of the aquifer. Releases of between 1 and 40 drums of chlorinated solvent DNAPLs, characterized by relatively high density and low viscosity, require on the order of months to a few years to cease migrating in a heterogeneous medium sand aquifer having an average hydraulic conductivity of 7.4 x 10(-3) cm/s. In contrast to this, the release of 20 drums of coal tar (rho(D)= 1061 kg/m(3), micro(D)= 0.161 Pa.s) requires more than 100 years to cease migrating in the same aquifer. Altering the mean hydraulic conductivity of the aquifer results in a proportional change in cessation times. Parameters that exhibit relatively little influence on migration time scales are the DNAPL-water interfacial tension, release volume, source capillary pressure, mean aquifer porosity, and ambient ground water hydraulic gradient. This study also demonstrates that low-density DNAPLs (e.g., coal tar) give rise to greater amounts of lateral spreading and greater amounts of pooling on capillary barriers than high-density DNAPLs such as trichloroethylene or tetrachloroethylene.  相似文献   

7.
The in situ vertical circulation column (ISVCC) is a cylindrical containment system consisting of an instrumented steel cylinder used for experimental ground water studies in sandy aquifers. Vertical flow is imposed inside the ISVCC. Although vertical wells are an option, the ISVCC installed in the Borden Aquifer is instrumented with horizontal wells and monitoring ports to avoid creating vertical preferential flow paths. The cylinder was driven downward into the aquifer using a small backhoe equipped with a vibrating plate. The ISVCC penetrates the 2.3-m-thic sand aquifer and is keyed 20 cm into the underlying clay aquitard. The cylinder was installed inside a 2 m X 2 m steel sheet pile enclosure so that the enclosed segment of aquifer could be conveniently dewatered and then excavated to allow installation of the horizontal wells. The dispersivity of the column was comparable to literature values for long sand-packed laboratory columns.
Pure phase DNAPL (tetrachloroethene and 1,1,1-trichloroethane) was slowly pumped into two ports in the center of the column. Following this DNAPL injection, an aqueous solution of vitamin B12 and reduced titanium was circulated through the column to promote degradation of the solvents. Processes observed in the ISVCC included DNAPL distribution, dissolution, and degradation, and geochemical evolution of the aquifer.
The ISVCC provides a convenient means for testing in situ technologies in the experimental stage or for selection of proven technologies to find the most effective at a specific site. It is inexpensive, easy to install, and maximizes control over flow distribution in a heterogeneous aquifer. Its application will be restricted where low hydraulic conductivity beds are present in the aquifer.  相似文献   

8.
A two-dimensional numerical transport model is developed to determine the effect of aquifer anisotropy and heterogeneity on mass transfer from a dense nonaqueous phase liquid (DNAPL) pool. The appropriate steady state groundwater flow equation is solved implicitly whereas the equation describing the transport of a sorbing contaminant in a confined aquifer is solved by the alternating direction implicit method. Statistical anisotropy in the aquifer is introduced by two-dimensional, random log-normal hydraulic conductivity field realizations with different directional correlation lengths. Model simulations indicate that DNAPL pool dissolution is enhanced by increasing the mean log-transformed hydraulic conductivity, groundwater flow velocity, and/or anisotropy ratio. The variance of the log-transformed hydraulic conductivity distribution is shown to be inversely proportional to the average mass transfer coefficient.  相似文献   

9.
Aqueous Surfactant Washing of Residual Oil Contamination from Sandy Soil   总被引:2,自引:0,他引:2  
A laboratory study was conducted to determine the efficiency of different aqueous concentrations of an alcohol ethoxylate surfactant in washing residual levels of an oil [automatic transmission fluid (ATF)] from sandy soil. Five glass columns packed with the soil were prepared in a manner that simulated conditions leading to residual saturation in an actual oil leak. Each of four columns was washed continuously with 28 pore volumes of solution by pumping either 0.0 percent (water), 0.5 percent, 1.0 percent, or 2.0 percent aqueous surfactant solutions through the columns. The fifth column was washed intermittently with 28 pore volumes of a 1.0 percent surfactant solution. Water washed only 25.5 percent of the ATF from the column soil, while the 0.5 percent, 1 percent, and 2 percent surfactant solutions washed 55 percent, 60 percent, and 72.8 percent of the ATF, respectively. The distribution of the ATF remaining in the column after washing showed that the ATF removed by water was mainly from the outlet side of the column, while the ATF removed by the 2.0 percent surfactant solution was mainly from the inlet side of the column. This observation indicated that different mechanisms were involved; namely, the displacement of oil through the soil-pore space, the dispersion of oil due to reduced surface tension, and the solubilization of oil by surfactant micelles. In the case of water, the displacement of oil was the main washing mechanism, while all three mechanisms were operative during surfactant washing. ATF dispersion and solubilization were improved at higher surfactant concentrations. The column that was washed intermittently to pulse ATF from dead end pores did not show a significant improvement over the column that was continuously washed with the same 1.0 percent surfactant solution. The results show promising potential for application in the field and will be further investigated in a two-dimensional model aquifer.  相似文献   

10.
At sites where a dense nonaqueous phase liquid (DNAPL) was spilled or released into the subsurface, estimates of the mass of DNAPL contained in the subsurface from core or monitoring well data, either in the nonaqueous or aqueous phase, can be highly uncertain because of the erratic distribution of the DNAPL due to geologic heterogeneity. In this paper, a multiphase compositional model is applied to simulate, in detail, the DNAPL saturations and aqueous-phase plume migration in a highly characterized, heterogeneous glaciofluvial aquifer, the permeability and porosity data of which were collected by researchers at the University of Tübingen, Germany. The DNAPL saturation distribution and the aqueous-phase contaminant mole fractions are then reconstructed by sampling the data from the forward simulation results using two alternate approaches, each with different degrees of sampling conditioning. To reconstruct the DNAPL source zone architecture, the aqueous-phase plume configuration, and the contaminant mass in each phase, one method employs the novel transition probability/Markov chain approach (TP/MC), while the other involves a traditional variogram analysis of the sampled data followed by ordinary kriging. The TP/MC method is typically used for facies and/or hydraulic conductivity reconstruction, but here we explore the applicability of the TP/MC method for the reconstruction of DNAPL source zones and aqueous-phase plumes. The reconstructed geometry of the DNAPL source zone, the dissolved contaminant plume, and the estimated mass in each phase are compared using the two different geostatistical modeling approaches and for various degrees of data sampling from the results of the forward simulation. It is demonstrated that the TP/MC modeling technique is robust and accurate and is a preferable alternative compared to ordinary kriging for the reconstruction of DNAPL saturation patterns and dissolved-phase contaminant plumes.  相似文献   

11.
12.
The 1999 Chi‐Chi earthquake significantly altered the landscape of central Taiwan. Surface deformation produced by the earthquake along the trace of the Chelungpu thrust can be classified into two styles: (1) uplift without significant surface rupture, and (2) uplift accompanied by surface rupture. Here we examine areas that exhibited the first style of deformation (e.g. Wufeng). Seismic stress at the time of the main shock may have been relieved by high pore‐fluid pressure in a 300‐m‐thick sand and gravel aquifer. Along the thrust fault, frictional heating of these sediments resulted in thermal expansion and an increase in pore‐fluid pressure. High pore‐fluid pressure damped seismic‐wave energy and enhanced intergranular slips of unconsolidated sandy and gravel sediments, which were possibly assisted by sulphuric acid corrosion, leading to a high sulphate content in the groundwater (c. 70 mg L?1). These changes permitted surface folding and terrace‐style uplifting to occur without significant rupture. In contrast, other areas in which the second style of deformation is dominant (e.g. Fengyuen‐Shihkang) have thin (0–10 m) sand and gravel deposits and lower concentrations of sulphate (c. 30 mg L?1) in groundwater. In these areas, sediments were heated but not sufficiently to produce significant thermal expansion and increase in pore‐fluid pressure; accumulation of stress in these locations led to rupture at the ground surface, with the formation of steep fault scarps. The areas exhibiting the first deformation style are characterized by the presence of high pore‐fluid pressure, frictional heat conduction, and possibly chemical corrosion related to sulphuric acid attack and formation of sulphate, in contrast to those involving significant uplift and surface rupture. The areal distribution of these two surface deformation styles suggests that the aforementioned fluid‐related subsurface processes may have altered the characteristics of sediments and caused diverse responses to the quake. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
The release of stored dissolved contaminants from low permeability zones contributes to plume persistence beyond the time when dense nonaqueous phase liquid (DNAPL) has completely dissolved. This is fundamental to successfully meeting acceptable low concentrations in groundwater that are driven by site‐specific cleanup goals. The study goals were to assess the role of DNAPL entrapment morphology on mass storage and plume longevity. As controlled field studies are not feasible, two‐dimensional (2D) test tanks were used to quantify the significance of mass loading processes from source dissolution and stored mass rebound. A simple two‐layer soil domain representing a high permeable formation sand overlying a zone of lower permeability sand was used in the tests. DNAPL mass depletion through dissolution was monitored via X‐ray photon attenuation, and effluent samples were used to monitor the plume. These data enabled analysis of the DNAPL distribution, the dissolved plume, and the dissolved phase distribution within the low permeability layer. Tests in an intermediate tank showed that mass storage contributes substantially to plume longevity. Detectable effluent concentrations persisted long after DNAPL depletion. The small tank results indicated that the DNAPL morphology influenced the flow field and caused distinctive transport mechanisms contributing to mass storage. Zones of high DNAPL saturation at the interface between the low and high permeability layers exhibited flow bypassing and diffusion dominated transport into the low permeability layer. In the absence of a highly saturated DNAPL zone near the soil interface the contaminant penetrated deeper into the low permeability layer caused by a combination of advection and diffusion.  相似文献   

14.
A tracer test was used to evaluate whether cross contamination exists along a monitoring well completed through a shallow ground water system in fractured clay and screened in a sand and gravel aquifer. The fractured clay is separated from the sand and gravel deposit by a layer of highly plastic unfractured clay. A natural vertical downward hydraulic gradient of approximately 0.5 exists between the shallow system and the sand and gravel aquifer. Ground water contamination was detected in an adjacent monitoring well screened in the fractured clay and in the monitoring well screened in the sand and gravel deposit. No ground water contamination was apparent in an intermediate well screened in the unfractured clay layer. A tracer of sodium bromide was injected into a shallow boring near the monitoring wells. The tracer was detected in the monitoring well in the sand and gravel aquifer after three to seven days. The bromide concentration continued to increase in this well with time while the concentration in the shallow boring declined. This trend of tracer concentration indicates the tracer has in fact migrated downward and possibly traveled along the well column.  相似文献   

15.
More than 200,000 gallons of automatic transmission fluid (ATF) leaked from an underground storage tank system and contaminated an area of about 64,000 ft2 of a soil and ground water system. A pumping strategy for improved drainage and recovery of free oil was developed, tested in a laboratory model aquifer, and implemented and evaluated at the field site. This pumping strategy differs from conventional approaches in two important ways: (1) The oil recovery rate is carefully controlled to maximize the pumping rate while maintaining continuity between the oil layer in the soil and the recovery well, to avoid isolation of the oil in the subsurface; and (2) The rate of ground water pumping is controlled to maintain the depressed oil/water interface at its prepumped position. This approach prevents further spread of oil into the ground water, prevents reduction in the volume of recoverable oil due to residual retention, and maintains a gradient for oil flow toward the recovery well. In a model aquifer study, nearly 100 percent of the recoverable volume of ATF was pumped from the system, and about 56,000 gallons of the ATF has been recovered from the field site.  相似文献   

16.
Treatability tests and cost analyses were conducted to provide objective criteria for selection of a surfactant formulation to be used for surfactant enhanced aquifer remediation (SEAR) of a tetrachloroethene (PCE)-contaminated site in Oscoda, Michigan. Two surfactant formulations, 4% Tween 80 + 500 mg/L CaCl2 and 8% Aerosol MA/IPA +15,000 mg/L NaCl + 1000 mg/L CaCl2, were considered based on their capacity to solubilize PCE and prior use in SEAR applications. Results of a two-dimensional aquifer cell experiment indicated that 53% of the released PCE was recovered after flushing with approximately 8 pore volumes of 4% Tween 80. In contrast, only 3 pore volumes of 8% Aerosol MA/IPA solution were required to recover 78% of the PCE from the two-dimensional aquifer cell, although the greater recovery of PCE was attributed, in large part, to the higher concentration of Aerosol MA. However, mobilization of PCE as free product was observed during the 8% Aerosol MA/IPA flood, which was consistent with total trapping number (NT) calculations. At the pilot-scale, SEAR treatment costs were estimated to be $222,000 and $244,000 for 4% Tween 80 and 8% Aerosol MA/IPA, respectively, which compared favorably to the estimated pump-and-treat cost of $316,000. Projected full-scale costs, based on a line-drive flushing system, were $382,000 for 4% Tween 80 and $443,000 for 8% Aerosol MA/IPA. In contrast, full-scale pump-and-treat costs were estimated to be $1,167,000. Surfactant recycling was shown to be logistically and economically infeasible at the pilot scale, and provided only a minimal cost benefit for 4% Tween 80 at the full scale. Based on the similarities in solubilization capacity and treatment cost, but substantially lower risk of PCE displacement, Tween 80 was recommended over Aerosol MA/IPA for pilot-scale testing of SEAR.  相似文献   

17.
Naturally occurring radon in ground water can potentially be used as an in situ partitioning tracer to characterize dense nonaqueous phase liquid (DNAPL) saturations. The static method involves comparing radon concentrations in water samples from DNAPL-contaminated and noncontaminated portions of an aquifer, while the push-pull method involves the injection (push) and extraction (pull) of a radon-free test solution from a single well. In the presence of DNAPL, radon concentrations during the pull phase are retarded, with retardation manifested in greater dispersion of radon concentrations relative to a conservative tracer. The utility of these methods was investigated in the laboratory using a physical aquifer model (PAM). Static and push-pull tests were performed before and after contamination of the PAM sediment pack with trichloroethene (TCE), and after alcohol cosolvent flushing and pump-and-treat remediation. Numerical simulations were used to estimate the retardation factor for radon in push-pull tests. Radon partitioning was observed in static and push-pull tests conducted after TCE contamination. Calculated TCE saturations ranged up to 1.4% (static test) and 14.1% (push-pull test). Post-remediation tests showed decreases in TCE saturations. The results show that radon is sensitive to changes in DNAPL saturation in space and time. However, the methods are sensitive to DNAPL saturation heterogeneity, test location, sample size, and test design. The influence of these factors on test results, as well as the apparent overestimation of the retardation factor in push-pull tests, warrant further investigation.  相似文献   

18.
The performance of cyclodextrin (CD)‐enhanced push‐pull (PP) and line‐drive (LD) approaches to remediation of a site contaminated with a multicomponent dense nonaqueous phase liquid (DNAPL) present in a surficial sandy aquifer was evaluated in this field study. The treatment techniques were compared to each other and to the projected performance of a conventional water‐flushing system. Performance was assessed based on contaminant mass removed per unit volume of extraction solution and per unit time of operation. As expected, the CD‐enhanced LD and PP approaches to remediation were more efficient than conventional flushing with water. Between the two techniques, the PP approach performed 1.5 to 2 times better than the LD approach, particularly for higher DNAPL saturation of the source zone. This result suggests that forcing the flushing solution directly into and through the DNAPL source zone minimized flow bypassing and consequently resulted in a more efficient transfer of contaminant mass between the DNAPL phase and the flushing solution. Nonuniform treatment zone contaminant concentrations and changes in contaminant composition influenced the treatment performances, but these effects were small and still permitted the comparison of successive tests. Although CD was used as the solubility‐enhancing flushing agent in this study, it is likely that the results can be transferred to other chemically enhanced flushing technologies that use, for example, surfactants or alcohols.  相似文献   

19.
Field investigations were carried out to determine the occurrence of tetrachloroethene (PCE) dense nonaqueous phase liquid (DNAPL), the source zone architecture and the aquitard integrity at a 30‐ to 50‐year old DNAPL release site. The DNAPL source zone is located in the clay till unit overlying a limestone aquifer. The DNAPL source zone architecture was investigated through a multiple‐lines‐of‐evidence approach using various characterization tools; the most favorable combination of tools for the DNAPL characterization was geophysical investigations, membrane interface probe, core subsampling with quantification of chlorinated solvents, hydrophobic dye test with Sudan IV, and Flexible Liner Underground Technologies (FLUTe) NAPL liners with activated carbon felt (FACT). While the occurrence of DNAPL was best determined by quantification of chlorinated solvents in soil samples supported by the hydrophobic dye tests (Sudan IV and NAPL FLUTe), the conceptual understanding of source zone architecture was greatly assisted by the indirect continuous characterization tools. Although mobile or high residual DNAPL (S t > 1%) only occurred in 11% of the source zone samples (intact cores), they comprised 86% of the total PCE mass. The dataset, and associated data analysis, supported vertical migration of DNAPL through fractures in the upper part of the clay till, horizontal migration along high permeability features around the redox boundary in the clay till, and to some extent vertical migration through the fractures in the reduced part of the clay till aquitard to the underlying limestone aquifer. The aquitard integrity to DNAPL migration was found to be compromised at a thickness of reduced clay till of less than 2 m.  相似文献   

20.
We present the results of a pore-scale experimental study of residual trapping in consolidated sandstone and carbonate rock samples under confining stress. We investigate how the changes in wetting phase flow rate impacts pore-scale distribution of fluids during imbibition in natural, water-wet porous media. We systematically study pore-scale trapping of the nonwetting phase as well as size and distribution of its disconnected globules. Seven sets of drainage-imbibition experiments were performed with brine and oil as the wetting and nonwetting phases, respectively. We utilized a two-phase miniature core-flooding apparatus integrated with an X-ray microtomography system to examine pore-scale fluid distributions in small Bentheimer sandstone (D = 4.9 mm and L = 13 mm) and Gambier limestone (D = 4.4 mm and L = 75 mm) core samples. The results show that with increase in capillary number, the residual oil saturation at the end of the imbibition reduces from 0.46 to 0.20 in Bemtheimer sandstone and from 0.46 to 0.28 in Gambier limestone. We use pore-scale displacement mechanisms, in-situ wettability characteristics, and pore size distribution information to explain the observed capillary desaturation trends. The reduction was believed to be caused by alteration of the order in which pore-scale displacements took place during imbibition. Furthermore, increase in capillary number produced significantly different pore-scale fluid distributions during imbibition. We explored the pore fluid occupancies and studied size and distribution of the trapped oil clusters during different imbibition experiments. The results clearly show that as the capillary number increases, imbibition produces smaller trapped oil globules. In other words, the volume of individual trapped oil globules decreased at higher brine flow rates. Finally, we observed that the pore space in the limestone sample was considerably altered through matrix dissolution at extremely high brine flow rates. This increased the sample porosity from 44% to 62% and permeability from 7.3 D to 80 D. Imbibition in the altered pore space produced lower residual oil saturation (from 0.28 to 0.22) and significantly different distribution of trapped oil globules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号