首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大陆边缘研究是板块构造运动史重建、地球环境演变研究与矿产资源开发的关键.火山型(volcanic passive margins)与非火山型(magma-poor passive margins)大陆边缘作为被动大陆边缘的2种基本类型,在结构特征、演化过程、洋陆过渡带等方面存在一定的相似之处,但二者在形成机制、构造过程...  相似文献   

2.
3.
The present paper provides an overview of glacial related seabed features and sedimentary sequences found along the formerly glaciated NW European margin and compare it with those found on contemporary glaciated margins from both the Southern and Northern Hemispheres. A brief review of the seabed physiography and strata architecture of the margins under consideration is followed by comparison of the most relevant similarities and differences. Comparison of the present-day bathymetric setting of both former and contemporary glaciated margins reveals no clear link to the effect of neither ice sheet or sediment load. Three different types of glacially eroded shelf transverse troughs have been identified, while marginal troughs seem connected to similar geological settings everywhere. Beyond the shelf edge interaction between downslope and alongslope processes has occurred resulting, amongst others, in the formation of large sedimentary mounds on the rise. More frequent large-scale mass wasting occurs on the former glaciated NW European margin than the Greenland and Antarctic margins in the latest Neogene to recent times. A two-stage evolution of the shelf prograding wedges is observed on all margins under consideration, which may reflect a general development of an ice cover from an initial phase of non- to restricted glaciation, evolving to a mature stage of expansive glaciation.  相似文献   

4.
With the world's increasing demand for tuna and the subsequent exhaustion of tuna stocks, this paper tries to assess the different attempts and/or practices that lead towards sustainability along the tuna value chain in the Philippines. In terms of economic gains, the net margins analysis, was used to measure the level of income of the actors which was considered as a factor that could possibly incentivize the adoption of sustainable practices, along with other market phenomena which were reviewed in this paper. These significant practices in the market include the provision of price premiums for the capture of mature tuna and the stringency of the market in terms of eco-labelling and certifications in contrast to the indifference of the local Philippine market in terms of preference. Lastly, having purse seine as a less sustainable method of tuna fishing, it was seen that there is a lack of incentive for them to adopt more sustainable practices.  相似文献   

5.
At divergent plate margins, black smoke forms immediately on contact of ascending hydrothermal solutions with sea water. The black smoke, consisting mainly of black ore (BO) and barite ore (BaO), is rapidly dispersed in seawater leaving behind a dominantly yellow ore (YO). At convergent plate margins, on the other hand, zinc sulfides and associated chalcophilic elements start depositing within the hydothermal mound at mesothermal temperatures, and are largely trapped there to form a mixed yellow, black and barite ore (YO-BO-BaO). The abundance of individual chalcophilic elements within the mixed ore varies by more than four orders of magnitude, with Zn-Pb-Ba-Cu-As-Sb-Cd being the elements most enriched in these deposits. The differing patterns of element deposition in these two tectonic settings is related to the temperature of the hydrothermal fluids, which is a function of water depth and therefore of tectonic setting (mid-ocean ridge vs volcanic arc). In highly sedimented basins, such as the JADE hydrothermal field in the Okinawa Trough, Pb and other chalcophilic elements are leached from the sediment by slowly migrating hydrothermal fluids to form a mixed black-yellow-barite ore (BO-YO-BaO). This type of deposit is the most enriched in Zn-Pb-Ba-As-Sb-Ag in decreasing order of element abundance. These results indicate that black ore (sphalerite plus galena) is most enriched in sedimented-hosted deposits such as the JADE deposit, is moderately enriched in submarine hydrothermal mineral deposits from convergent plate margins and is poorly enriched in submarine hydrothermal mineral deposits from divergent plate margins.  相似文献   

6.
弧后盆地的形成与演化探讨:以东亚陆缘区为例   总被引:3,自引:2,他引:3  
通过对弧后盆地大地构造体制的讨论,作者认为基属活化作用的产物根据地质,地球物理,地球化学等资料的分析,作者提出结论认为,由于东亚岛弧系岩石圈的均衡作用及海沟外侧冷却大洋岩石圈块体的下沉拖曳牵引等作用,使软流圈在岛弧系下方发生分异,这种分异作用带动东亚陆缘向东扩张,从而产生弧后的张开。  相似文献   

7.
Seismic reflection data imaging conjugate crustal sections at the South China Sea margins result in a conceptual model for rift-evolution at conjugate magma-poor margins in time and space.The wide Early Cenozoic South China Sea rift preserves the initial rift architecture at the distal margins. Most distinct are regular undulations in the crust–mantle boundary. Individual rift basins are bounded to crustal blocks by listric normal faults on either side. Moho uplifts are distinct beneath major rift basins, while the Moho is downbended beneath crustal blocks, with a wavelength of undulations in the crust–mantle boundary that approximately equals the thickness of the continental crust. Most of the basin-bounding faults sole out within the middle crust. At the distal margins, detachment faults are located at a mid-crustal level where a weak zone decouples crust and mantle lithosphere during rifting. The lower crust in contrast is interpreted as being strong. Only in the region within about 50 km from the Continent–Ocean Transition (COT) we suggest that normal faults reach the mantle, enabling potentially a coupling between the crust and the mantle. Here, at the proximal margins detachment fault dip either seaward or landward. This may indicate the presence of exhumed mantle bordering the continental margins.Post-rift shallow-water platform carbonates indicate a delay in subsidence during rifting in the South China Sea. We propose that this is an inherent process in highly extended continental margins and a common origin may be the influx of warm asthenospheric material into initially cool sub-lithospheric mantle.On a crustal-scale largely symmetric process predominate in the initial rifting stage. At the future COT either of the rift basin-bounding faults subsequently penetrates the entire crust, resulting in asymmetry at this location. However, asymmetric deformation which is controlled by large scale detachment faulting is confined to narrow areas and does not result in a margin-wide simple-shear model. Rather considerable along-margin variations are suggested resulting in alternating “upper and lower plate” margins.  相似文献   

8.
Crustal rheology controls the style of rifting and ultimately the architecture of rifted margins. Here we review the formation of three magma-poor margin pairs, Iberia-Newfoundland, the central segment of the South Atlantic Rift, and the South China Sea by integrating observational data into a numerical forward modelling framework. We utilise a 2D version of the finite element code SLIM3D, which includes nonlinear temperature- and stress-dependent elasto-visco-plastic rheology and is able to reproduce a wide range of rift-related deformation processes such as flexure, lower crustal flow, and faulting.Extension in cold, strong, or thin crust is accommodated by brittle faults and ductile shear zones that facilitate narrow rifts with asymmetric fault geometries. Hot, weak, or thick continental crust is dominated by ductile deformation and often extends symmetrically into a wide rift system. This simple recipe provides the standard framework to understand initial rift geometry, however, it is insufficient to account for the dynamics of intermediate and late rift stages that shape the final margin architecture.Asymmetric conjugate margins where one side is wide and the other narrow can be formed via both wide and narrow rift styles, which we reproduce with weak and strong crustal rheologies, respectively. Exemplified by the Iberia-Newfoundland conjugates and the Central South Atlantic, we define three characteristic rift phases: an initial phase of simultaneous faulting, an intermediate phase of rift migration that involves sequential fault activity, and finally, the breakup phase. Crustal rheology plays an overarching role in governing the dynamics of these asymmetric margins: we illustrate that weak rheologies generally prolong the phase of simultaneous faulting, while rift migration is enabled by initial fault asymmetry as well as relatively weak crust.Formation of the predominantly symmetric and wide margins of the South China Sea was controlled by extraordinarily weak crust that extended the phase of simultaneous faulting until breakup. The weak crustal rheology of this region relates to the South China Sea's pre-rift history where plate convergence lead to crustal thickening and magmatic additions in a back-arc regime shortly before the onset of rifting.  相似文献   

9.
In the last few decades, seafloor imagery systems have drastically changed our vision of a mostly regular and depositional marine landscape, evidencing how erosive and mass-wasting processes are widespread in the marine environments, with particular reference to geologically-active areas. Most of the previous studies have focused on the characterization of these features, whereas a very few ones have tried to estimate what is the extent and order of magnitude of erosion rates in these areas. In this paper, we show several examples from some of the most geologically-active margins off Southern Italy aimed to a) quantify the spatial extent of such processes, b) better understand the role of submarine erosion in the morphogenesis of the coastal sector, and c) try to roughly estimate the order of magnitude of erosion rates in these areas. The results are impressive, with mass-wasting features widespread from coast down to −2600, affecting from the 52% up to 97% of the whole continental slope. Because of the narrow or totally lacking shelves in these areas, mass-wasting processes often occur close to the coast and match embayment of the coast, so indicating a key role in the morphogenesis of coastal sector, with significant implication on the related geohazard. Finally, based on a morphological approach integrated by available stratigraphic constraints we have roughly estimated average erosion rates in these areas, ranging from (at least) some mm/year to a few cm/year, i.e., some hundreds of meters up to kilometers eroded in each eustatic cycle. Despite the large uncertainties of these estimates as well as their spatial and temporal variability in response to regional and local factors, the obtained values are very high and they should be considered for future model of margin evolution, source-to-sink computation and marine/coastal geohazard assessment.  相似文献   

10.
大河影响下的陆架边缘海沉积有机碳的再矿化作用   总被引:8,自引:5,他引:3  
大河影响下的陆架边缘海(RiOMars)是陆源有机碳的主要沉积汇,是陆海相互作用最重要的区域,在全球碳的生物地球化学循环中发挥着重要作用。受到RiOMars系统内频繁的物理和生物等改造作用的影响,该区沉积的有机碳并没有得到很好地保存而被永久埋藏,而是发生了显著的再矿化分解。本文首先对目前常用的基于O2消耗速率和CO2产生速率的两类测定RiOMars系统沉积有机碳再矿化速率的方法进行了介绍,分析了各自的优缺点和适用性,进而从碳的形态转化、表层沉积物混合均匀、形成次氧化的氧化还原条件、有机碳保存效率低、发生反风化作用和微生物发挥着重要作用等几个方面对RiOMars系统沉积物发生再矿化作用时的主要过程和特征进行了剖析,以期深入认识边缘海的再矿化作用及其对边缘海碳汇的影响。  相似文献   

11.
The Yermak Plateau, bordering the Arctic Ocean and the Norwegian-Greenland Sea, and adjacent to the continental Svalbard Archipelago, is characterized by high heat flow relative to its surrounding region. South of and parallel to the trend of the plateau lies the formerly active-Spitsbergen Shear Zone (De Geer Zone), which is now occupied by the slowly spreading Knipovich and Molloy Ridges. An analysis of these heat flow data suggest that asymmetric spreading within the Norwegian-Greenland Sea propagated northwards along one of the faults associated with the Spitsbergen Shear Zone. The broad zone of faults, once associated with this paleo-shear zone, extends throughout Svalbard as well as on and to the west of the Knipovich Ridge. This network of faults may comprise a complex system of detachment surfaces along which magma may rise from a deep-seated source and across which simple shear extension may develop. Dike injection into the Yermak Plateau, north of the propagating ridge may have been initiated by the thermal response of the highly fractured lithosphere to this propagating asthenospheric front. We suggest that one of these faults, acting as a secondary detachment to the main fault underlying the Knipovich Ridge, may be dissecting the Yermak Plateau. Based on an analysis of the thermal data, simple shear extension may have been taking place along a broad zone of intrusion. This region has undergone and is probably still undergoing thermal rejuvenation. Multiple zones of intrusion may be a common phenomena along newly rifted continental margins especially when they have been substantially faulted prior to rifting.  相似文献   

12.
Hydrodynamic processes sort and redistribute organic matter (OM) and minerals on continental margins. Density fractionations were conducted on sediments from diverse margins (Mexico margin, Gulf of Mexico, Mississippi River delta, Eel River margin) to investigate the nature, provenance and age of OM among density fractions. Mass, elemental (C and N), lignin, and surface area distributions, as well as stable carbon and radiocarbon isotopic compositions were measured. The lowest density fractions (< 1.6 g cm− 3) contained the highest organic carbon (OC) (up to 45%) and lignin concentrations (up to 8 mg g− 1) due to abundant woody debris, whereas high density fractions (> 2.5 g cm− 3) were OC-poor (%OC < 0.5) mineral material. Most sediment mass was found in the mesodensity fractions (1.6 to 2.5 g cm− 3) that contained the highest proportion of OC (up to ~ 75%) for each sediment. Stable carbon isotope compositions (δ13C − 25.5‰ to − 22.9‰) show terrigenous OC as a significant component of density isolates from the river-dominated sediments (Gulf of Mexico, Mississippi River, and Eel margin), whereas the Mexico margin, least influenced by riverine input, was dominated by autochthonous marine OC (δ13C ~ − 21.5‰). Radiocarbon compositions of density fractions indicate significant pre-aged OC (Δ14C as low as − 900‰) in river-influenced sediments but not on the Mexico margin (Δ14C > − 200‰). Ratios of vanillic acid to vanillin (Ad/Al)v among lignin oxidation products increase with increasing particle density suggesting variable lignin sources or selective degradation of lignin among the different density fractions.  相似文献   

13.
The Uruguayan continental margin comprises three sedimentary basins: the Punta del Este, Pelotas and Oriental del Plata basins, the genesis of which is related to the break-up of Gondwana and the opening of the Atlantic Ocean. Herein the continental margin of Uruguay is studied on the basis of 2D multichannel reflection seismic data, as well as gravity and magnetic surveys. As is typical of South Atlantic margins, the Uruguayan continental margin is of the volcanic rifted type. Large wedges of seaward-dipping reflectors (SDRs) are clearly recognizable in seismic sections. SDRs, flat-lying basalt flows, and a high-velocity lower crust (HVLC) form part of the transitional crust. The SDR sequence (subdivided into two wedges) has a maximum width of 85 km and is not continuous parallel to the margin, but is interrupted at the central portion of the Uruguayan margin. The oceanic crust is highly dissected by faults, which affect post-rift sediments. A depocenter over oceanic crust is reported (deepwater Pelotas Basin), and volcanic cones are observed in a few sections. The structure of continental crust-SDRs-flat flows-oceanic crust is reflected in the magnetic anomaly map. The positive free-air gravity anomaly is related to the shelf-break, while the most prominent positive magnetic anomaly is undoubtedly correlated to the landward edge of the SDR sequence. Given the attenuation, interruption and/or sinistral displacement of several features (most notably SDR sequence, magnetic anomalies and depocenters), we recognize a system of NW-SE trending transfer faults, here named Río de la Plata Transfer System (RPTS). Two tectono-structural segments separated by the RPTS can therefore be recognized in the Uruguayan continental margin: Segment I to the south and Segment II to the north.  相似文献   

14.
The tectonic interpretation of basement structures in seismic reflection profiles from ocean-continent transitions (OCT) of magma-poor rifted margins is notoriously difficult due to the scarcity of borehole information. Low-angle intra-basement reflections are frequently interpreted as detachment faults, and in certain locations the drilled top of the basement is interpreted as exhumed detachment fault. The seismic expression of such detachment faults is, however, poorly understood. We address this problem by comparing synthetic seismic data from the Tasna OCT, an exposed remnant of a Tethyan margin, with seismic reflection data from Hobby High, a drilled basement high within the west Iberian margin. Both sites are widely considered as being representative of OCT zones. Their geological similarity and the complementary nature of the data enable us to perform a detailed investigation of the seismic structure and response of these OCT zones. This provides insights into the seismic imaging of OCT zones in general and the tectonic evolution of the associated detachment systems in particular. On the basis of the Tasna OCT models and their seismic responses we have identified some potential characteristics of intra- and top-basement detachments: (i) variable amplitudes and numerous diffractions from the top of exhumed subcontinental mantle, (ii) a continuous and strong reflection imaging the top of exhumed lower crustal rocks, and (iii) a weak and discontinuous reflection of inverse polarity representing a shallow intra-basement crust-mantle detachment. Similar features are consistently observed at geologically equivalent positions in the seismic data from Hobby High and may thus serve as guidelines for interpretation of seismic data from un-drilled OCT zones.  相似文献   

15.
Seismic profiles across the transform continental margin off the Ivory Coast and Ghana (Western Africa) illustrate the structural style resulting from the early Cretaceous phase of shear stress which leads to the final separation between the African and Brazilian continental margins in this area. Most of the characteristic tectonic features observed along this portion of margin (asymmetric grabens on the Ghanean platform, folds of the deep Ivory Coast basin, the Ivory Coast—Ghana marginal ridge) are believed to result from progressive transform contacts between the African and Brazilian continents as their margins were created during early Cretaceous time. A major tectonic unconformity inferred to be of upper Albian-lower Cenomanian age, may be a direct consequence of the final separation of the continental margins. The later evolution of the transform margin is chiefly explained by thermal subsidence.  相似文献   

16.
We report the structural geometry and facies architecture of a small diapir-related carbonate-dominated basin from the Jurassic rift of the Moroccan High Atlas. The Azag minibasin is a lozenge-shaped depocenter completely enclosed by tectonic boundaries that we interpret as welds after former salt anticlines or salt walls. The exposed ca. 3000 m-thick infill of the Azag minibasin is asymmetric; layers are tilted to the W defining a rollover geometry. Areally-restricted sedimentary discontinuities and wedges of growth strata near the basin margins indicate sedimentation contemporaneous with diapiric rise of a Triassic ductile layer. Facies evolution through the basin reflects local accommodation by salt withdrawal and regional events in the High Atlas rift. The early basin infill in the Sinemurian and Pliensbachian shows thickness variations indicative of low-amplitude halokinetic movements, with reduced exposed thicknesses compared to surrounding areas. The exposed Toarcian and Aalenian deposits are also reduced in thickness compared to areas outside the basin. Subsidence increased dramatically in the Bajocian-early Bathonian (?), the main phase of downbuilding, when over 2600 m of carbonates and shales accumulated at a rate > 0.5 mm/a in the depocentral area of the minibasin governed by W-directed salt expulsion. The stratigraphic units distinguished often show maximum thicknesses and deeper facies in the depocentral area, and rapidly change to shallower facies at the basin margins. The Bajocian carbonate facies assemblage of the minibasin include: reservoir facies as microbialite-coral reefs in the basin margins (formed during periods of strong diapir inflation and bathymetric relief), basin-expansive oolite bars (formed during episodes of subdued relief), and organic-rich, dark lime mudstones and shales that show source-rock characteristics. The Azag basin is a good analog for the exploration of salt-related carbonate plays in rifts and continental margins where source-rock and reservoir can form in a same minibasin.  相似文献   

17.
Results are presented from particle flux studies using sediment trap and current meter moorings along a transect at the European continental margin at 49°N within the EU-funded Ocean Margin Exchange (OMEX) project. Two moorings were placed, at the mid- and outer slope in water depths of 1500 and 3660 m, with traps at 600 and 1050 m and at 580, 1440 and 3220 m, respectively. Residual currents at the mid-slope follow the slope contour, whereas seasonal off-slope flow was registered at the outer slope. At 600 m on the slope fluxes are similar to those in the abyssal North Atlantic. The flux of all components (bulk dry weight, particulate organic and inorganic carbon, lithogenic matter and opal) increased with water depth. Highest fluxes were recorded at 1440 m at the outer slope, where off-slope residual currents mediate particle export. The injection of biogenic and lithogenic particles below the depth of winter mixing results in the export of particles from shallower waters. Calculated lateral fluxes of particulate organic carbon exceed the primary flux by over a factor of 2 at 1440 m on the outer slope. Estimated lateral fluxes of suspended particulate matter in the water column and intermediate nepheloid layers at the outer slope are potentially large compared to sinking fluxes measured by sediment traps. A comparison is made of particle flux at three continental margin sites and two sites in the adjacent open North Atlantic, from which it is seen that bulk and organic matter flux increases exponentially with proximity to the shelf break. The percentage contribution of particulate organic carbon to biogenic fluxes increases from a mean of 5.7% in the abyssal N. Atlantic to 13.9% at the continental margins.  相似文献   

18.
Submarine canyons increase seascape diversity on continental margins and harbour diverse and abundant biota vulnerable to fishing. Because many canyons are fished, there is an increasing emphasis on including them in conservation areas on continental margins. Here we report on sponge diversity and bottom cover in three canyons of South-eastern Australia, test the performance of biological and abiotic surrogates, and evaluate how biological data from detailed seabed surveys can be used in conservation planning in these habitats. The biological data on sponge assemblage structure and species richness were obtained from 576 seafloor images taken between 148 and 472 m depth, yielding 65 morphospecies. Seafloor characteristics were similar within and between canyons, being almost exclusively composed of sediments with very few rocky substrates of higher relief. This environmental homogeneity did not, however, translate into biological uniformity of the megabenthos, and environmental factors were consequently poor predictors of biological features. By contrast, total bottom cover of sponges was highly correlated with species richness and served as a good proxy for species-level data in this situation. Design strategies that employ information on cover or richness of sponges provided a large dividend in conservation effort by dramatically reducing the number of spatial units required to achieve a specified conservation target of 50–90% of species to be included in reserves. This demonstrates that image-derived data are useful for the design of reserves in the deep sea, particularly where extractive sampling is not warranted. Using biological data on the sponge megabenthos to identify conservation units can also minimise socio-economic costs to fisheries because of a smaller geographic and bathymetric ambit of conservation areas.  相似文献   

19.
The northern Norwegian-Greenland Sea opened up as the Knipovich Ridge propagated from the south into the ancient continental Spitsbergen Shear Zone. Heat flow data suggest that magma was first intruded at a latitude of 75° N around 60 m.y.b.p. By 40–50 m.y.b.p. oceanic crust was forming at a latitude of 78° N. At 12 m.y.b.p. the Hovgård Transform Fault was deactivated during a northwards propagation of the Knipovich Ridge. Spreading is now in its nascent stages along the Molloy Ridge within the trough of the Spitsbergen Fracture Zone. Spreading rates are slower in the north than the south. For the Knipovich Ridge at 78° N they range from 1.5–2.3 mm yr-1 on the eastern flank to 1.9–3.1 mm yr-1 on the western flank. At a latitude of 75° N spreading rates increase to 4.3–4.9 mm yr-1.Thermal profiles reveal regions of off-axial high heat flow. They are located at ages of 14 m.y. west and 13 m.y. east of the northern Knipovich Ridge, and at 36 m.y. on the eastern flank of the southern Knipovich Ridge. These may correspond to episodes of increased magmatic activity; which may be related to times of rapid north-wards rise axis propagation.The fact that the Norwegian-Greenland Sea is almost void of magnetic anomalies may be caused by the chaotic extrusion of basalts from a spreading center trapped within the confines of an ancient continental shear zone. The oblique impact of the propagating rift with the ancient shear zone may have created an unstable state of stress in the region. If so, extension took place preferentially to the northwest, while compression occurred to the southeast between the opening, leaking shear zone and the Svalbard margin. This caused faster spreading rates to the northwest than to the southeast.  相似文献   

20.
The Cenozoic margins of the Norwegian-Greenland Sea offer ideal conditions for passive margin studies. A series of structural elements, first observed on these margins, led to the concept of volcanic passive margins. Questions still remain about the development of such features and the location of the boundary between oceanic and continental crust. Despite the thin sediment cover of the margins, seismic reflection data are not able to image the deeper structures due to the occurrence of igneous rocks at shallow depth.This paper presents a 320-km long profile perpendicular to the strike of the main structural units of the Lofoten Margin in Northern Norway. A geological model is proposed, based on observations made with ocean bottom seismographs, which recorded seismic refraction data and wide angle reflections, along with a seismic reflection profile covering the same area. Ray-tracing was used to calculate a geophysical model from the shelf area into the Lofoten basin. The structures typical of a volcanic passive margin were found, showing that the Lofoten Margin was influenced by increased volcanic activity during its evolution. The ocean/continent transition is located in a 30-km wide zone landwards of the Vøring Plateau escarpment.The whole margin is underlain by a possibly underplated, high velocity layer. Evidence for a pre-rift sediment basin landwards of the escarpment, overlain by basalt flows, was seen. These structural features, related to extensive volcanism on the Lofoten Margin, are not as distinct as further south along the Norwegian Margin. Viewed in the light of the hot-spot theory of White and McKenzie (1989) the Lofoten Margin can be interpreted as a transitional type between volcanic and non-volcanic passive margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号