首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In binary stellar systems, exoplanet searches have revealed planetary mass companions orbiting both in circumstellar and in circumbinary orbits. Modelling studies suggest increased dynamical complexity around the young stars that form such systems. Circumstellar and circumbinary disks likely exhibit different physical conditions for planet formation, which also depends on the stellar separation. Although binaries and higher order multiple stars are relatively common in nearby star-forming regions, surprisingly few systems with circumbinary distributions of proto-planetary material have been found. With its spectacular ring of dust and gas encircling the central triple star, one such system, GG Tau A, has become a unique laboratory for investigating the physics of circumsystem gas and dust evolution. We review here its physical properties.  相似文献   

2.
We investigate the formation of binary stellar systems. We consider a model where a 'seed' protobinary system forms, via fragmentation, within a collapsing molecular cloud core and evolves to its final mass by accreting material from an infalling gaseous envelope. This accretion alters the mass ratio and orbit of the binary, and is largely responsible for forming the circumstellar and/or circumbinary discs.
Given this model for binary formation, we predict the properties of binary systems and how they depend on the initial conditions within the molecular cloud core. We predict that there should be a continuous trend such that closer binaries are more likely to have equal-mass components and are more likely to have circumbinary discs than wider systems. Comparing our results with observations, we find that the observed mass-ratio distributions of binaries and the frequency of circumbinary discs as a function of separation are most easily reproduced if the progenitor molecular cloud cores have radial density profiles between uniform and 1/ r (e.g., Gaussian) with near-uniform rotation. This is in good agreement with the observed properties of pre-stellar cores. Conversely, we find that the observed properties of binaries cannot be reproduced if the cloud cores are in solid-body rotation and have initial density profiles which are strongly centrally condensed. Finally, in agreement with the radial-velocity searches for extrasolar planets, we find that it is very difficult to form a brown dwarf companion to a solar-type star with a separation ≲10 au, but that the frequency of brown dwarf companions should increase with larger separations or lower mass primaries.  相似文献   

3.
A high angular resolution near-infrared image that shows the intensity of polarization for the GG Tau A binary system was obtained with the Subaru Telescope.The image shows a circumbinary disk scattering the light from the central binary. The azimuthal profile of the intensity of polarization for the circumbinary disk is roughly reproduced by a simple disk model with the Henyey-Greenstein phase function and the Rayleigh function, indicating there are small dust grains at the surface of the disk.Combined with a previous observation of the circumbinary disk, our image indicates that the gap structure in the circumbinary disk orbits counterclockwise, but material in the disk orbits clockwise. We propose that there is a shadow caused by material located between the central binary and the circumbinary disk. The separations and position angles of the stellar components of the binary in the past 20 yr are consistent with the binary orbit with a = 33.4 AU and e = 0.34.  相似文献   

4.
具有不同质量的恒星在耗尽其热核能源后,最终可能会坍缩成为性质完全不同的致密天体,如白矮星、中子星或者黑洞。从20世纪30年代起,黑洞的观测及其证认一直是天体物理学的研究热点之一。首先简要地回顾了恒星级黑洞的形成及其候选天体的研究历史;然后介绍了如何从观测上证认恒星级黑洞:接着详细讨论了恒星级黑洞的质量和自转参数的测量方法;最后介绍恒星级黑洞观测及其证认的最新研究进展,并做出结论:目前已经有充分的证据宣告在部分吸积X射线双星中存在恒星级黑洞。  相似文献   

5.
We study the orbital evolution and accretion history of massive black hole (MBH) pairs in rotationally supported circumnuclear discs up to the point where MBHs form binary systems. Our simulations have high resolution in mass and space which, for the first time, makes it feasible to follow the orbital decay of a MBH either counter- or corotating with respect to the circumnuclear disc. We show that a moving MBH on an initially counter-rotating orbit experiences an 'orbital angular momentum flip' due to the gas-dynamical friction, i.e. it starts to corotate with the disc before a MBH binary forms. We stress that this effect can only be captured in very high resolution simulations. Given the extremely large number of gas particles used, the dynamical range is sufficiently large to resolve the Bondi–Hoyle–Lyttleton radii of individual MBHs. As a consequence, we are able to link the accretion processes to the orbital evolution of the MBH pairs. We predict that the accretion rate is significantly suppressed and extremely variable when the MBH is moving on a retrograde orbit. It is only after the orbital angular momentum flip has taken place that the secondary rapidly 'lights up' at which point both MBHs can accrete near the Eddington rate for a few Myr. The separation of the double nucleus is expected to be around ≲10 pc at this stage. We show that the accretion rate can be highly variable also when the MBH is corotating with the disc (albeit to a lesser extent) provided that its orbit is eccentric. Our results have significant consequences for the expected number of observable double active galactic nuclei at separations of ≲100 pc.  相似文献   

6.
The dynamical evolution of small stellar groups composed of N=6 components was numerically simulated within the framework of a gravitational N-body problem. The effects of stellar mass loss in the form of stellar wind, dynamical friction against the interstellar medium, and star mergers on the dynamical evolution of the groups were investigated. A comparison with a purely gravitational N-body problem was made. The state distributions at the time of 300 initial system crossing times were analyzed. The parameters of the forming binary and stable triple systems as well as the escaping single and binary stars were studied. The star-merger and dynamical-friction effects are more pronounced in close systems, while the stellar wind effects are more pronounced in wide systems. Star-mergers and stellar wind slow down the dynamical evolution. These factors cause the mean and median semimajor axes of the final binaries as well as the semimajor axes of the internal and external binaries in stable triple systems to increase. Star mergers and dynamical friction in close systems decrease the fraction of binary systems with highly eccentric orbits and the mean component mass ratios for the final binaries and the internal and external binaries in stable triple systems. Star mergers and dynamical friction in close systems increase the fraction of stable triple systems with prograde motions. Dynamical friction in close systems can both increase and decrease the mean velocities of the escaping single stars, depending on the density of the interstellar medium and the mean velocity of the stars in the system.  相似文献   

7.
We investigate the distribution of massive black holes (MBHs) in the Virgo cluster. Observations suggest that active galactic nuclei activity is widespread in massive galaxies ( M *≳ 1010 M), while at lower galaxy masses star clusters are more abundant, which might imply a limited presence of central black holes in these galaxy-mass regimes. We explore if this possible threshold in MBH hosting is linked to nature , nurture or a mixture of both. The nature scenario arises naturally in hierarchical cosmologies, as MBH formation mechanisms typically are efficient in biased systems, which would later evolve into massive galaxies. Nurture , in the guise of MBH ejections following MBH mergers, provides an additional mechanism that is more effective for low mass, satellite galaxies. The combination of inefficient formation, and lower retention of MBHs, leads to the natural explanation of the distribution of compact massive objects in Virgo galaxies. If MBHs arrive to the correlation with the host mass and velocity dispersion during merger-triggered accretion episodes, sustained tidal stripping of the host galaxies creates a population of MBHs which lie above the expected scaling between the holes and their host mass, suggesting a possible environmental dependence.  相似文献   

8.
Stars on eccentric orbits around a massive black hole (MBH) emit bursts of gravitational waves (GWs) at periapse. Such events may be directly resolvable in the Galactic Centre. However, if the star does not spiral in, the emitted GWs are not resolvable for extragalactic MBHs, but constitute a source of background noise. We estimate the power spectrum of this extreme mass ratio burst background (EMBB) and compare it to the anticipated instrumental noise of the Laser Interferometer Space Antenna (LISA). To this end, we model the regions close to an MBH, accounting for mass segregation, and for processes that limit the presence of stars close to the MBH, such as GW inspiral and hydrodynamical collisions between stars. We find that the EMBB is dominated by GW bursts from stellar mass black holes, and the magnitude of the noise spectrum  ( fS GW)1/2  is at least a factor of ∼10 smaller than the instrumental noise. As an additional result of our analysis, we show that LISA is unlikely to detect relativistic bursts in the Galactic Centre.  相似文献   

9.
The formation, merging and accretion history of massive black holes (MBHs) along the hierarchical build-up of cosmic structures leaves a unique imprint on the background of gravitational waves (GWs) at mHz frequencies. We study here, by means of dedicated simulations of black hole build-up, the possibility of constraining different models of black hole cosmic evolution using future GW space-borne missions, such as LISA . We consider two main scenarios for black hole formation, namely, one where seeds are light (  ≃102 M  , remnant of Population III stars) and one where seeds are heavy (  ≳104 M  , direct collapse). In all the models we have investigated, MBH binary coalescences do not produce a stochastic GW background, but rather, a set of individual resolved events. Detection of several hundreds merging events in a 3-yr LISA mission will be the sign of a heavy seed scenario with efficient formation of black hole seeds in a large fraction of high-redshift haloes. At the other extreme, a low event rate, about a few tens in 3 yr, is peculiar of scenarios where either the seeds are light, and many coalescences do not fall into the LISA band, or seeds are massive, but rare. In this case a decisive diagnostic is provided by the shape of the mass distribution of detected events. Light binaries  ( m < 104 M)  are predicted in a fairly large number in Population III remnant models, but are totally absent in direct collapse models. Finally, a further, helpful diagnostic of black hole formation models lies in the distribution of the mass ratios in binary coalescences. While heavy seed models predict that most of the detected events involve equal-mass binaries, in the case of light seeds, mass ratios are equally distributed in the range 0.1–1.  相似文献   

10.
We discuss the importance of feedback via photoionization and Compton heating on the co-evolution of massive black holes (MBHs) at the centre of spheroidal galaxies, and their stellar and gaseous components. We first assess the energetics of the radiative feedback from a typical quasar on the ambient interstellar medium (ISM). We then demonstrate that the observed   M BH–σ  relation could be established following the conversion of most of the gas of an elliptical progenitor into stars, specifically when the gas-to-stars mass ratio in the central regions has dropped to a low level  ∼0.01  or less, so that gas cooling is no longer able to keep up with the radiative heating by the growing central massive black hole (MBH). A considerable amount of the remaining gas will be expelled and both MBH accretion and star formation will proceed at significantly reduced rates thereafter, in agreement with observations of present-day ellipticals. We find further support for this scenario by evolving over an equivalent Hubble time a simple, physically based toy model that additionally takes into account the mass and energy return for the spheroid evolving stellar population, a physical ingredient often neglected in similar approaches.  相似文献   

11.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

12.
Evidence shows that massive black holes reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than the host (~0.1%), are linked to the evolution of galactic structure. In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation had to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for ‘seed’ black holes that are likely to place at early cosmic epochs, and possible observational tests of these scenarios.  相似文献   

13.
We have compared the kinematics and metallicity of the main-sequence binary and single uvby F stars from the Hipparcos catalog to see if the populations of these stars originate from the same statistical ensemble. The velocity dispersions of the known unresolved binary F stars have been found to be dramatically smaller than those of the single F stars. This suggests that the population of these binaries is, in fact, younger than that of the single stars, which is further supported by the difference in metal abundance: the binaries turn out to be, on average, more metal rich than the single stars. So, we conclude that the population of these binaries is indeed younger than that of the single F stars. Comparison of the single F stars with the C binaries (binary candidates identified in Suchkov & McMaster) has shown, on the other hand, that the latter stars are, on average, older than the single F stars. We suggest that the age difference between the single F stars, known unresolved binaries, and C binaries is associated with the fact that stellar evolution in a binary systems depends on the binary components' mass ratio and separation, with these parameters being statistically very different for the known binaries and C binaries (e.g., mostly substellar secondaries in C binaries vs. stellar secondaries in known binaries). In general we conclude that the populations of known binaries, C binaries, and single F stars do not belong to the same statistical ensemble. The implications of the discovered age difference between these populations along with the corresponding differences in kinematics and metallicity should be important not only for understanding the evolution of stars but also for the history of star formation and the evolution of the local Galactic disk.  相似文献   

14.
双黑洞组成的近密双星系统并合是激光干涉仪引力波天文台等地基引力波探测器的主要探测对象。随着探测器灵敏度的提高,大量该类信号的探测将成为进一步研究黑洞物理的有效工具。但是目前对双黑洞系统的起源机制和内禀参数分布等物理问题的研究还不够深入,例如由引力波探测得到的黑洞质量分布与X射线双星观测的结果存在较大差异,还未有很好的理论模型可解释该结果。目前普遍认为双黑洞系统主要有两种起源:大质量双星演化机制和动力学起源机制。基于这两类起源的双黑洞系统在质量、自旋分布等方面存在差异。因此可在贝叶斯理论框架下,利用引力波信号携带的波源质量和自旋等信息,推断波源起源,计算不同起源的双黑洞系统所占比例,以及检验质量自旋等参数分布的差异。  相似文献   

15.
Most stars reside in binary/multiple star systems; however, previous models of planet formation have studied growth of bodies orbiting an isolated single star. Disk material has been observed around both components of some young close binary star systems. Additionally, it has been shown that if planets form at the right places within such disks, they can remain dynamically stable for very long times. Herein, we numerically simulate the late stages of terrestrial planet growth in circumbinary disks around ‘close’ binary star systems with stellar separations 0.05 AU?aB?0.4 AU and binary eccentricities 0?eB?0.8. In each simulation, the sum of the masses of the two stars is 1 M, and giant planets are included. The initial disk of planetary embryos is the same as that used for simulating the late stages of terrestrial planet formation within our Solar System by Chambers [Chambers, J.E., 2001. Icarus 152, 205-224], and around each individual component of the α Centauri AB binary star system by Quintana et al. [Quintana, E.V., Lissauer, J.J., Chambers, J.E., Duncan, M.J., 2002. Astrophys. J. 576, 982-996]. Multiple simulations are performed for each binary star system under study, and our results are statistically compared to a set of planet formation simulations in the Sun-Jupiter-Saturn system that begin with essentially the same initial disk of protoplanets. The planetary systems formed around binaries with apastron distances QB≡aB(1+eB)?0.2 AU are very similar to those around single stars, whereas those with larger maximum separations tend to be sparcer, with fewer planets, especially interior to 1 AU. We also provide formulae that can be used to scale results of planetary accretion simulations to various systems with different total stellar mass, disk sizes, and planetesimal masses and densities.  相似文献   

16.
A black hole transiting a companion star in a binary system will produce a time-varying intensity profile as observed at the Earth because of the Einstein photometric effect (gravitational lens phenomenon). If the transited star is an early-type supergiant with electron scattering as its dominant atmospheric opacity source, then variable linear polarization will also result from the destruction of the circular symmetry of the observed stellar disk. The simultaneous variation of the three Stokes parametersI, Q, andU may be thought of as the signature of a black hole transit. Monte-Carlo calculations show that the effect has the properties expected from qualitative considerations. The amplitude of the photometric and polarimetric light curves in a typical X-ray binary is too small to be observed with present instrumentation. A black hole transit might be detectable in a binary having a large separation of the components. The signature is also masked in close binaries by the much larger variability caused by the changing aspect of the tidally distorted OB star. The polarization induced by tidal distortion always produces a derived inclination of 90° when the standard method of analyzing the data is used. This effect may contribute to the unrealistically large values of inclination derived from polarimetric observations for the Cyg XR-1/HDE226868 system.  相似文献   

17.
It is shown that during contact eclipsing binaries evolution under the influence of stellar wind, magnetic stellar wind and with matter transfer by gas flow, in binary stellar systems there may take place a process of star merger (low mass stars) within 105–107 yr and a fast increase of distance between stars of massive binaries. W UMa-type stars are a finite evolutionary stage of very close and low mass binary pairs. As for contact systems of early spectral types (CE-systems), they are more varied in evolution.  相似文献   

18.
The bar formation is still an open problem in modern astrophysics. In this paper we present numerical simulations performed with the aim of analyzing the growth of the bar instability inside stellar-gaseous disks, where the star formation is triggered, and a central black hole is present. The aim of this paper is to point out the impact of such a central massive black hole on the growth of the bar. We use N-body-SPH simulations of the same isolated disk-to-halo mass systems harboring black holes with different initial masses and a different energy feedback on the surrounding gas. We compare the results of these simulations with the one of the same disk without a black hole in its center. We make the same comparison (disk with and without black hole) for a stellar disk in a fully cosmological scenario. A stellar bar, lasting 10 Gyrs, is present in all our simulations.  相似文献   

19.
Be单星和Be/X射线双星作为一类特殊早型天体和特殊的大质量X射线双星 ,在各个波段都有与其它相同光谱型的B型天体显著不同的特征 ,因此长期以来引起中外天文学者的关注。首先在可见光波段发射线的存在 ,就是对仅产生吸收线的经典大气的挑战 ;其次Be星作为一类早型带有包层天体 ,研究Be星包层的性质 ,对研究原恒星包层性质和进一步了解早型星其它光谱型的性质是非常重要的 ;再者可以研究Be星的存在与星际磁场或湍流的星际介质是否有关 ;最后研究Be/X射线双星 ,对双星的演化模型也有很重要的作用。随着天文观测手段的不断完善和理论模型的发展 ,我们对Be星的现象有了更深的了解 ,并且产生了一些模型。研究内容包括Be星包层和星风的性质 ,以及包层形成机制 ,Be/X射线双星物质相互作用等。本文共分五章 ,第一章主要概要介绍Be和Be/X射线双星历史和目前已经取得的成就 ;第二章介绍Be单星多波段观测结果 ;第三章介绍Be/X射线双星的观测结果 ;第四章介绍目前主要的Be单星和Be/X射线双星模型 ;第五章给出Be/X射线双星XPer/ 4U0 352 30的分光观测结果 ,并结合单臂振动盘模型给出定性解释。  相似文献   

20.
We present results from high-resolution hydrodynamical simulations that explore the effects of small-scale clustering in star-forming regions. A large ensemble of small- N clusters with five stellar seeds have been modelled and the resulting properties of stars and brown dwarfs statistically derived and compared with observational data.
Close dynamical interactions between the protostars and competitive accretion driven by the cloud collapse are shown to produce a distribution of final masses that is bimodal, with most of the mass residing in the binary components. When convolved with a suitable core mass function, the final distribution of masses resembles the observed initial mass function, in both the stellar and substellar regimes. Binaries and single stars are found to constitute two kinematically distinct populations, with about half of the singles attaining velocities ≥2 km s−1, which might deprive low-mass star-forming regions of their lightest members in a few crossing times. The eccentricity distribution of binaries and multiples is found to follow a distribution similar to that of observed long-period (uncircularized) binaries.
The results obtained support a mechanism in which a significant fraction of brown dwarfs form under similar circumstances as those of normal stars but are ejected from the common envelope of unstable multiple systems before their masses exceed the hydrogen burning limit. We predict that many close binary stars should have wide brown dwarf companions. Brown dwarfs, and, in general, very low-mass stars, would be rare as pure binary companions. The binary fraction should be a decreasing function of primary mass, with low-mass or substellar primaries being scarce. Where such binaries exist, they are expected either to be close enough (semimajor axis ∼10 au) to survive strong interactions with more massive binaries or to be born in very small molecular cloud cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号