首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) have revealed the weak dis- turbances (WDs) propagating in the fan-like coronal loops of the active region (AR 11092) at 171 ?A, 193 ?A, and 211 ?A. These WDs seem to be a common phenomenon in this part of the active region. The disturbances originate from the bright loop foot, and propagate along the loops. The observed propagation speed decreases with the increasing temperature, and varies between 40 km/s and 121 km/s, close to and less than the sound speed in coronal loops. Consid- ering the projection effect and the different angles of the loops with respect to the line of sight, this is exactly what the slow-wave model expects. The wavelet analysis shows that the periods of the WDs observed in different wavebands have no signi?cant difference, the two distinct periods, 3 min and more than 10 min, are all detected in the three EUV wavebands. Not only the coronal loops but also the sunspot region in the chromosphere exhibit intensity oscillations with a period of the order of 3 min. This result suggests that the sunspot oscillations can propagate into the corona through the chromosphere and transition region.  相似文献   

2.
We study chromospheric oscillations including umbral flashes and running penumbral waves in a sunspot of active region NOAA 11242 using scanning spectroscopy in Hα and Ca?ii 8542 Å with the Fast Imaging Solar Spectrograph (FISS) at the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. A bisector method is applied to spectral observations to construct chromospheric Doppler-velocity maps. Temporal-sequence analysis of these shows enhanced high-frequency oscillations inside the sunspot umbra in both lines. Their peak frequency gradually decreases outward from the umbra. The oscillation power is found to be associated with magnetic-field strength and inclination, with different relationships in different frequency bands.  相似文献   

3.
Our theory of a resonator for slow magneto-atmospheric waves in the chromosphere of a sunspot umbra has been used to check different models of the structure of the chromosphere and transition region. Oscillations of velocity and intensity in Civ, Siiv, and Oiv lines observed by Gurman et al. (1982) on the SMM spacecraft have been compared with the calculated oscillations. The observed spectrum of resonant peaks could well be explained by a gradient model of the umbral chromosphere. Different assumptions concerning the structure of the transition region do not influence the calculated resonance periods, but the amplitudes and phases of oscillations are modified. There is strong evidence for a concentration of the observed oscillations in cold fine structure elements of the transition region, even if the filling factor of such elements is very small (some few percent). Isothermal rather than adiabatic oscillations in the cold elements should be assumed in order to explain the observed fluctuations of line intensity; the relative amplitudes of pressure oscillations in the hot main component with a steep gradient of temperature are too small to explain the observed intensity fluctuations.  相似文献   

4.
Large-scale, wave-like disturbances in extreme-ultraviolet (EUV) and type II radio bursts are often associated with coronal mass ejections (CMEs). Both phenomena may signify shock waves driven by CMEs. Taking EUV full-disk images at an unprecedented cadence, the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory has observed the so-called EIT waves or large-scale coronal propagating fronts (LCPFs) from their early evolution, which coincides with the period when most metric type II bursts occur. This article discusses the relation of LCPFs as captured by AIA with metric type II bursts. We show examples of type II bursts without a clear LCPF and fast LCPFs without a type II burst. Part of the disconnect between the two phenomena may be due to the difficulty in identifying them objectively. Furthermore, it is possible that the individual LCPFs and type II bursts may reflect different physical processes and external factors. In particular, the type II bursts that start at low frequencies and high altitudes tend to accompany an extended arc-shaped feature, which probably represents the 3D structure of the CME and the shock wave around it, and not just its near-surface track, which has usually been identified with EIT waves. This feature expands and propagates toward and beyond the limb. These events may be characterized by stretching of field lines in the radial direction and may be distinct from other LCPFs, which may be explained in terms of sudden lateral expansion of the coronal volume. Neither LCPFs nor type II bursts by themselves serve as necessary conditions for coronal shock waves, but these phenomena may provide useful information on the early evolution of the shock waves in 3D when both are clearly identified in eruptive events.  相似文献   

5.
Variations in the propagation of globally propagating disturbances (commonly called “EIT waves”) through the low solar corona offer a unique opportunity to probe the plasma parameters of the solar atmosphere. Here, high-cadence observations of two “EIT wave” events taken using the Atmospheric Imaging Assembly (AIA) instrument onboard the Solar Dynamics Observatory (SDO) are combined with spectroscopic measurements from the Extreme ultraviolet Imaging Spectrometer (EIS) onboard the Hinode spacecraft and used to examine the variability of the quiet coronal magnetic-field strength. The combination of pulse kinematics from SDO/AIA and plasma density from Hinode/EIS is used to show that the magnetic-field strength is in the range ≈?2?–?6 G in the quiet corona. The magnetic-field estimates are then used to determine the height of the pulse, allowing a direct comparison with theoretical values obtained from magnetic-field measurements from the Helioseismic and Magnetic Imager (HMI) onboard SDO using global-scale PFSS and local-scale extrapolations. While local-scale extrapolations predict heights inconsistent with prior measurements, the agreement between observations and the PFSS model indicates that “EIT waves” are a global phenomenon influenced by global-scale magnetic field.  相似文献   

6.
We present simultaneous observations of three recurring jets in EUV and soft X-ray (SXR), which occurred in an active region on 2007 June 5. By comparing their morphological and kinematic characteristics in these two different wavelengths, we found that EUV and SXR jets had similar locations, directions, sizes and velocities. We also analyzed their spectral properties by using six spectral lines from the EUV Imaging Spectrometer (EIS) onboard Hinode and found that these jets had temperatures from 0.05 to 2....  相似文献   

7.
A problem of the structure and spectrum of standing slow magnetosonic waves in a dipole plasmasphere is solved. Both an analytical (in WKB approximation) and numerical solutions are found to the problem, for a distribution of the plasma parameters typical of the Earth's plasmasphere. The solutions allow us to treat the total electronic content oscillations registered above Japan as oscillations of one of the first harmonics of standing slow magnetosonic waves. Near the ionosphere the main components of the field of registered standing SMS waves are the plasma oscillations along magnetic field lines, plasma concentration oscillation and the related oscillations of the gas-kinetic pressure. The velocity of the plasma oscillations increases dramatically near the ionospheric conductive layer, which should result in precipitation of the background plasma particles. This may be accompanied by ionospheric F2 region airglows modulated with the periods of standing slow magnetosonic waves.  相似文献   

8.
Electromagnetic waves in the frequency range 0.2–11 Hz have been detected onboard the GEOS-1 and -2 satellites. The purpose of this paper is to report on these observations. The three orthogonal magnetic sensors allow us to determine the polarization of the waves. Two kinds of waves are commonly observed, which can easily be distinguished by their polarization.

(1) Waves with a magnetic field aligned with the DC magnetic field. These events often present a typical harmonic structure. The fundamental—which is not always observed—is often in the neighbourhood of the proton gyrofrequency FH+. These waves are generally observed above FH+. We will show that these emissions can be interpreted as magnetosonic waves destabilized by energetic protons (E 15 keV) with a ringlike distribution function.

(2) Waves with a magnetic field in a plane perpendicular to the DC magnetic field. These emissions are identified as Ion Cyclotron Waves (ICW's). These waves can, under certain conditions, propagate along the line of force of the magnetic field and reach the ground. They can be identified with the well-known Pcl oscillations, which generally have a clear periodic structure. In contrast these periodic structures are seldom observed onboard the satellites. At the geostationary orbit, these emissions exist in limited frequency domains, which are well organized by the helium gyrofrequency FHe+.  相似文献   


9.
We show that no eigenmodes of sunspot oscillations with periods of ~ 3 min or shorter exist. A complex spectrum of the 3-min oscillations arises, because the sunspot atmosphere is a multiband filter for slow MHD waves. To ascertain why the filter transmission bands appear, we have investigated the propagation of waves through a sunspot atmosphere using both multilayered isothermal model atmospheres and various empirical model atmospheres. It turns out that there are several different mechanisms responsible for the appearance of transmission bands in the atmospheric filter for slow waves. The filter lowest-frequency transmission band arises from the effect of a Fabry-Perot interference filter at the resonance frequency of the temperature plateau. The frequency of this band is always lower than the cutoff frequency of the temperature minimum. The next (in frequency) transmission band appears at the cutoff frequency. The higher-frequency transmission bands result from the antireflection of the atmosphere, an effect well-known in optics and acoustics. The nonlinearity of the 3-min oscillations observed in the upper chromosphere and transition region has only an indirect effect on the properties of the filter, increasing its transmission in most bands due to a decrease in the amplitude of the wave reflected from the upper atmosphere caused by nonlinear wave absorption. Knowledge of the formation mechanisms for the 3-min oscillation spectrum has allowed us to suggest a technique for estimating the parameters of sunspot atmospheres from the 3-min oscillation spectrum, i.e., to lay the foundations for the seismology of sunspot atmospheres.  相似文献   

10.
R. L. Moore 《Solar physics》1973,30(2):403-419
From a review of the observed properties of umbral flashes and running penumbral waves it is proposed that the source of these periodic phenomena is the oscillatory convection which Danielson and Savage (1968) and Savage (1969) ave shown is likely to occur in the superadiabatic subphotospheric layers of sunspot umbras. Periods and growth rates are computed for oscillatory modes arising in a simple two-layer model umbra. The results suggest that umbral flashes result from disturbances produced by oscillatory convection occurring in the upper subphotospheric layer of the umbra where the superadiabatic temperature gradient is much enhanced over that in lower layers, while running penumbral waves are due to oscillations in a layer just below this upper layer.  相似文献   

11.
We study the nature of quiet-Sun oscillations using multi-wavelength observations from TRACE, Hinode, and SOHO. The aim is to investigate the existence of propagating waves in the solar chromosphere and the transition region by analyzing the statistical distribution of power in different locations, e.g. in bright magnetic (network), bright non-magnetic and dark non-magnetic (inter-network) regions, separately. We use Fourier power and phase-difference techniques combined with a wavelet analysis. Two-dimensional Fourier power maps were constructed in the period bands 2??C?4?minutes, 4??C?6?minutes, 6??C?15?minutes, and beyond 15?minutes. We detect the presence of long-period oscillations with periods between?15 and 30?minutes in bright magnetic regions. These oscillations were detected from the chromosphere to the transition region. The Fourier power maps show that short-period powers are mainly concentrated in dark regions whereas long-period powers are concentrated in bright magnetic regions. This is the first report of long-period waves in quiet-Sun network regions. We suggest that the observed propagating oscillations are due to magnetoacoustic waves, which can be important for the heating of the solar atmosphere.  相似文献   

12.
The nature of the three-minute and five-minute oscillations observed in sunspots is considered to be an effect of propagation of magnetohydrodynamic (MHD) waves from the photosphere to the solar corona. However, the real modes of these waves and the nature of the filters that result in rather narrow frequency bands of these modes are still far from being generally accepted, in spite of a large amount of observational material obtained in a wide range of wave bands. The significance of this field of research is based on the hope that local seismology can be used to find the structure of the solar atmosphere in magnetic tubes of sunspots. We expect that substantial progress can be achieved by simultaneous observations of the sunspot oscillations in different layers of the solar atmosphere in order to gain information on propagating waves. In this study we used a new method that combines the results of an oscillation study made in optical and radio observations. The optical spectral measurements in photospheric and chromospheric lines of the line-of-sight velocity were carried out at the Sayan Solar Observatory. The radio maps of the Sun were obtained with the Nobeyama Radioheliograph at 1.76 cm. Radio sources associated with the sunspots were analyzed to study the oscillation processes in the chromosphere – corona transition region in the layer with magnetic field B=2000 G. A high level of instability of the oscillations in the optical and radio data was found. We used a wavelet analysis for the spectra. The best similarities of the spectra of oscillations obtained by the two methods were detected in the three-minute oscillations inside the sunspot umbra for the dates when the active regions were situated near the center of the solar disk. A comparison of the wavelet spectra for optical and radio observations showed a time delay of about 50 seconds of the radio results with respect to the optical ones. This implies an MHD wave traveling upward inside the umbral magnetic tube of the sunspot. For the five-minute oscillations the similarity in spectral details could be found only for optical oscillations at the chromospheric level in the umbral region or very close to it. The time delays seem to be similar. Besides three-minute and five-minute ones, oscillations with longer periods (8 and 15 minutes) were detected in optical and radio records. Their nature still requires further observational and theoretical study for even a preliminary discussion.  相似文献   

13.
Using microwave observations made with the Nobeyama radioheliograph (=1.76 cm), we have studied temporal variations of sunspot-associated sources in the circularly polarized component. For all three cases of well-developed and rather stable sunspots we found nearly harmonic oscillations with periods in a range of 120–220 s. In one case of an unstable and quickly devolving active region, the fluctuations appear to be irregular with no dominant period. Sunspot-associated solar radio sources are known to be generated by cyclotron radiation of thermal electrons in magnetic tubes of sunspots at the level of the lower solar corona or chromosphere–corona transition region (CCTR). At the wavelength of 1.76 cm, the polarized emission arises in a layer where the magnetic field is B=2000 G (assuming the emission generated at the third harmonic of electron gyrofrequency). We suggest that the observed effect is a manifestation of the well-known 3-min oscillations observed in the chromosphere and photosphere above sunspots. The observed effects are believed to be a result of resonance oscillation of MHD waves inside a magnetic tube. Radio observations of this phenomenon open a new tool for studying regions of reflection of MHD waves near CCTR level. The method is very sensitive both to the height of the CCTR and magnetic fields above sunspots. Thus, detection of oscillations of the height of the transition region even with an amplitude of a few km are possible. The use of a spectrum of one of the observed sources obtained with the radio telescope RATAN-600 allows us to conclude that oscillations in magnetic field strength of about 4 G could be responsible for the effect and are reliably registered. The appearance of the famous 5-min oscillations in the solar atmosphere was also registered in some spectra of radio oscillations.  相似文献   

14.
We review possibilities for an interpretation of oscillations observed in several period bands (3 min., 5 min., 20 min.) and at different heights in sunspot umbrae. At subphotospheric depths two independent resonators are acting: A resonator for slow, quasi-transverse waves can explain the lifetimes of bright umbral dots (≥20 sec.), while a resonator for fast (acoustic), quasi-longitudinal waves could result in the 5-min. oscillations. The acoustic resonator strongly couples with the slow-mode longitudinal resonator at photospheric and chromospheric heights, the latter produces the resonance peaks in the 3-min. period band. The whole scheme of resonance levels generalizes and corroborates a chromospheric resonator model earlier proposed by the present authors. Comparisons with alternative models and recent measurements show that the present model most naturally explains the majority of observed data.  相似文献   

15.
We study properties of waves of frequencies above the photospheric acoustic cut-off of ≈5.3 mHz, around four active regions, through spatial maps of their power estimated using data from the Helioseismic and Magnetic Imager (HMI) and Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The wavelength channels 1600 Å and 1700 Å from AIA are now known to capture clear oscillation signals due to helioseismic p-modes as well as waves propagating up through to the chromosphere. Here we study in detail, in comparison with HMI Doppler data, properties of the power maps, especially the so-called “acoustic halos” seen around active regions, as a function of wave frequencies, inclination, and strength of magnetic field (derived from the vector-field observations by HMI), and observation height. We infer possible signatures of (magneto)acoustic wave refraction from the observation-height-dependent changes, and hence due to changing magnetic strength and geometry, in the dependences of power maps on the photospheric magnetic quantities. We discuss the implications for theories of p-mode absorption and mode conversions by the magnetic field.  相似文献   

16.
The present work deals with the theory of oscillations with periods of about 3 min observed in the chromosphere above sunspot umbrae. The model of these oscillations (slow mode magneto-acoustic waves trapped in a chromospheric resonant cavity) provides an independent method of checking empirical models of the chromosphere above sunspots. Making use of this method, we investigate sunspot models which have been derived from spectroscopic data; the calculated periods of the oscillations fit well the observed periods.  相似文献   

17.
We examine spectral time series of the transition region line Ov 629Å, observed with the Coronal Diagnostic Spectrometer (CDS) on the SOHO spacecraft in July 1997. Both Fourier and wavelet transforms have been applied independently to the analysis of plume oscillations in order to find the most reliable periods. The wavelet analysis allows us to derive the duration as well as the periods of the oscillations. Our observations indicate the presence of compressional waves with periods of 10–25 min. We have also detected a 11±1 min periodicity in the network regions of the north polar coronal hole. The waves are produced in short bursts with coherence times of about 30 min. We interpret these oscillations as outward propagating slow magneto-acoustic waves, which may contribute significantly to the heating of the lower corona by compressive dissipation and which may also provide enough energy flux for the acceleration of the fast solar wind. The data support the idea that the same driver is responsible for the network and plume oscillations with the network providing the magnetic channel through which the waves propagate upwards from the lower atmosphere to the plumes.  相似文献   

18.
Wei Liu  Leon Ofman 《Solar physics》2014,289(9):3233-3277
Global extreme-ultraviolet (EUV) waves are spectacular traveling disturbances in the solar corona associated with energetic eruptions such as coronal mass ejections (CMEs) and flares. Over the past 15 years, observations from three generations of space-borne EUV telescopes have shaped our understanding of this phenomenon and at the same time led to controversy about its physical nature. Since its launch in 2010, the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) has observed more than 210 global EUV waves in exquisite detail, thanks to its high spatio–temporal resolution and full-disk, wide-temperature coverage. A combination of statistical analysis of this large sample, more than 30 detailed case studies, and data-driven MHD modeling, has been leading their physical interpretations to a convergence, favoring a bimodal composition of an outer, fast-mode magnetosonic wave component and an inner, non-wave CME component. Adding to this multifaceted picture, AIA has also discovered new EUV wave and wave-like phenomena associated with various eruptions, including quasi-periodic fast propagating (QFP) wave trains, magnetic Kelvin–Helmholtz instabilities (KHI) in the corona and associated nonlinear waves, and a variety of mini-EUV waves. Seismological applications using such waves are now being actively pursued, especially for the global corona. We review such advances in EUV wave research focusing on recent SDO/AIA observations, their seismological applications, related data-analysis techniques, and numerical and analytical models.  相似文献   

19.
We detect and analyze the oscillatory behavior of waves using a coronal seismology tool on sequences of coronal images. We study extreme-ultraviolet image sequences of active and quiet Sun regions and of coronal holes we identify 3- and 5-minute periodicities. In each studied region the 3- and 5-minute periodicities are similarly frequent. The number of pixels exhibiting a 3-minute periodicity is between 6 %?–?8 % and those pixels exhibiting a 5-minute periodicity is between 5 %?–?9 % of the total number of observed pixels. Our results show 3-minute oscillations along coronal loop structures but do not show 5-minute oscillations along these same loop structures. The number of pixels exhibiting 3- and 5-minute periodicities in one type of region (active Sun, quiet Sun, and coronal holes) is roughly the same for all observed regions, leading us to infer that the 3- and 5-minute oscillations are the result of a global mechanism.  相似文献   

20.
Extreme low frequency electromagnetic waves have been observed below the F peak in the equatorial ionosphere by instruments onboard OGO-6. Electrostatic wave observations indicate that the steep gradient was unstable to the process which causes equatorial spread F above the region where the electromagnetic waves were observed. The data are very similar to observations near the polar cusp and give further evidence that ELF waves are excluded from regions of rapid and irregular density increases. Low level electromagnetic waves with similar properties were occasionally observed on the nightside by the OVI-17 electric field sensor and may be plasmaspheric hiss which has propagated to low altitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号